説明

光学薄層を有する多層光学フィルムの形成方法

【課題】多層光学フィルムの製作において、層間拡散の影響を制御する方法を提供する。
【解決手段】多層光学フィルムを形成するための方法であって、第1および第2の樹脂を提供するステップと、前記第1および前記第2の樹脂を、複数の層をなし第1および第2の主面を有する樹脂ストリームに押出すステップと、前記第1の主面がキャスティング面に対し流延され、前記第2の主面がキャスティング面に対して流延されるように前記樹脂ストリームを流延するステップと、を含む方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般的には光学フィルムを形成するための方法に関し、さらに詳細には、多層光学フィルムを製作する場合、層間拡散の影響を制御するための方法に関する。
【背景技術】
【0002】
近年、さまざまな興味深い特性を有する多層光学フィルムが、開発されてきた。この種のフィルムは、たとえば、米国特許第08/359,436号に開示される。このようなフィルムの継続的な開発では、製作中にこのようなフィルムの多層構造の結合性を維持することおよび個々の層の間の層間付着性を増強することに特別な配慮がなされてきた。多層光学フィルムにおいて共押出成形された層の間の優れた層間付着性が、事後処理および最終的な使用中に離層の可能性を低減することが望ましい。
【0003】
層間付着性および層の結合性に効果を奏する材料または層の特性は、(溶解パラメータ、相互作用パラメータまたは界面張力などの量によって特徴付けられる)互いに対する材料の相対親和力、このような材料の化学反応による相互作用力、層間界面のあらさ(たとえば、界面領域の局所濃度変動とこの領域の平滑性の両方)、界面領域に沿った材料の平均濃度分布の広範さ、材料の分子量分布および平均(または固有)粘度、溶融粘度、垂直応力、材料のいわゆる「からみ合い」重量および材料の易動度または拡散係数を含むが、これらに限定されているわけではない。材料が界面に沿って化学的に反応した場合には、層間付着性は共重合体の形成を含む架橋の形成または共有結合の他の形によって増強されることができる。
【0004】
層間付着性はまた、化学反応がない場合でも発展させることができるが、層の結合性は低減する可能性がある。隣接層の材料の間の相対親和力が高ければ高いほど、層間付着性も高い。親和力が十分に高い場合には、材料は混和性となり、次いで、相互拡散速度が最終的な構造を決定する。多層構造が求められる場合には、隣接層における混和性材料の間の過度の相互拡散は、層状構造を破壊する可能性があるため、制限される必要がある。比較的高い分子量は相互拡散を低減することができ、極限混和性も制限することができる。
【0005】
隣接層の材料の間の親和力が混和性を生じるためには不十分である場合には、一つの材料の濃度がほぼ純正な値からほぼゼロまで変化する間に、界面領域が成長する。材料が稀にしか完全に混和しないため、その最初の層における材料の濃度は、その最初の値より多少低くなりやすく、他の材料の最初の層における材料の濃度は、ゼロより多少高くなりやすい。部分混和性の場合には、最初の純粋な材料層は、多数の原材料を維持するが隣接している層の材料も相当量含む熱力学相の付近で徐々に形成されやすいと思われる。部分混和性は、重合材料に本来備わっているか、または付加される低分子量の部分の結果である可能性がある。親和力が増大するにつれて、界面領域の有効な幅が増大し、層の最終純度が減少する。層の純度の変化は、次の処理中の層の挙動(たとえば延伸中の配向および結晶化)に変化を及ぼしうるため、最終的なフィルムの光学的および機械的特性が変化する。
【0006】
界面の断面の幅も層間密着性を増強することができる。たとえば、比較的幅の広い界面は破壊エネルギーを効率的に消失させることができ、強度をさらに増大させることになる可能性がある。さらに、溶着強度は層の間の相互からみあい度と明確に相関する。界面幅がからみ合い分子量の重合体コイルの回転半径に比例して減少する場合には、溶着強度が低下すると考えられる。界面領域が分子コイルの大きさに比例して十分広い場合には、層の間の極限相互からみ合い、すなわち層間付着性も材料の平均分子量の増加によって増強されることができる。しかし、分子量の増加はまた、相互拡散を緩慢にし、平衡の確立を妨げる可能性がある。最終的に、界面の断面はこの層間領域全体にわたる光学的および機械的特性における勾配を必然的に確立しなければならず、それによって構造の特性を完全に変更することになる。界面領域の幅が層の厚さに近づくにつれて、フィルムの特性に及ぼす深刻な影響を受けて、層の結合性は低下する。したがって、このような層間特性に影響を及ぼす処理条件および設計の考慮事項も、明らかに問題となる。
【0007】
温度および滞留時間は、層の間の相互拡散および(可能な場合には)化学反応の両方に影響を及ぼすことによって、界面領域に沿った材料の平均濃度分布の広範さに大きく影響を及ぼす可能性がある。初めに、個々の層はフィードブロックに接触し、最終的にこのフィードブロックの中または下流で溶着する。さらに高い温度は、界面領域を本来の場所で確立する相互溶着および拡散工程を増大させる可能性がある。材料が反応せず混和性でない場合には、ある程度の平均界面領域幅を有する平衡平均濃度分布が存在する。
【0008】
所与の易動度を備える所与の材料に関して、処理温度および滞留時間は、ウエブがキャスティングホイールで急冷される前に界面領域が平衡状態にどれほど近づくことができるかを決定する。材料が反応することができる場合には、化学反応の一定のレベルに擬似平衡が存在する。反応が進行する場合には、この平衡はさらに広範な平衡分布に移行することができる。後者の場合は、中でエステル交換反応が界面領域内の本来の場所にある2つの初期材料の共重合体を生成することができるPEN:coPEN系および他のポリエステルを含む可能性があるが、それに限定されるわけではない。したがって、層の組成物と層の結合性との間の実際の最終的な界面の断面は、拡散と化学反応を連結させた結果である。以降、「相互拡散」なる用語は、二つの連結された工程の両方を含むものとする。相互拡散の結果として生じる界面の断面は、異なる材料層の間の顕著な境界から中間段階を経て、相平衡での層の間に含まれている断面まで変化することができる。光学的な性能のために必要な層間付着性および層の結合性は、相互拡散に関して本来の性質と正反対の挙動を示すことがよくあるため、工程はある中間の界面の断面で最適化を行うことも時折ある。
【0009】
工程の影響に関する別の実施例では、溶融列温度および乾燥状態が材料の分子量分布に影響を及ぼす可能性がある。さらに、温度および剪断速度が順番に流動性および中間層の面のあらさに影響を及ぼす可能性のある構成材料層の粘度に影響を及ぼす可能性がある。ある場合には、相対的に低いレベルの計画的な流れの不安定性が、多層積層構造を破壊することなく層間付着性を強化すると考えることもできる。最終的には、工程設計の考慮事項も重要となりうる。たとえば、層はフィードブロックの中、さらにダイの中で圧縮される。フィードブロックに確立された中間層の断面はダイの中で圧縮され、平衡な界面幅を再実現するために、さらに相互拡散も必要となる。溶融列のさまざまな部分を通じて滞留時間を制御することによって、相互拡散度を制御することができる。
【0010】
多層光学フィルムの実効屈折率差は、対応するモノリシックフィルムから予測される値からある程度異なっていることがしばしば観測される。この変動は、光学薄層(すなわちスペクトルの青色領域に同調される層、またはスペクトルの他の領域のために1/4波長未満の厚さに意図的に形成された層)で最も顕著である。この現象の少なくとも一部は層間拡散に起因することが時々ある。例示として、図1に示されているように、6:1の比にまで延伸されたPENおよびcoPENのモノリシックフィルムの500nmにおける屈折率差は、約0.25である。しかし、PEN/coPEN多層フィルムの1/4波長積層サンプル複数によって測定された反射率による実際の光学薄層の実効屈折率差は、いくらか小さく、通常は約0.20であり、0.05ほど低下することが観測されている。実効屈折率差のこのような変動は、フィルムの光学特性に不都合な影響を及ぼし、その結果として、このような材料で形成された反射偏光子および他の光学フィルムでは、理論性能比に限り採用することがよくある。
【発明の概要】
【発明が解決しようとする課題】
【0011】
さまざまな参照文献に光学薄層を有する薄フィルムまたはこのようなフィルムを形成するための方法が記載されている。代表例は米国特許第3,711,176号(Alfrey,Jr.その他)、第3,773,882号(Schrenkその他)、第3,884,606号(Schrenk)、第5,126,880号(Wheatleyその他)、第5,217,794号(Schrenk)、第5,233,465号(Wheatleyその他)、第5,269,995号(Ramanathanその他)、第5,316,703号(Schrenk)、第5,389,324号(Lewisその他)第5,448,404号(Schrenkその他)、第5,540,978号(Schrenk)および第5,568,316号(Schrenkその他)に含まれる。しかし、現在までのところ、実効屈折率差に変動を生じる状態は、わずかに理解されてきただけであり、当業界には具体的に光学薄層を有するフィルムにおいてそのような変動を制御するための方法が提供されていない。したがって、本発明の目的は、そのような方法を提供することにある。
【課題を解決するための手段】
【0012】
本発明の一態様では、薄層の光学特性の劣化が予防されるか最小限に抑えられるような光学薄層を有する多層光学フィルムを形成するための方法が提供される。本方法によれば、最も薄い層がキャスティングホイールまたは他のキャスティング面の約400ミクロン以内になるような方法で、フィルムは多層樹脂ストリームから流延される。驚いたことに、フィルムのキャスティングホイール側に対する空気に触れる側の冷却時間の差が数秒程度にすぎないという事実にもかかわらず、本方法によって製作されたフィルムは、たとえば、空気側の薄層を流延することによって製作されるフィルムに比べて、光学薄層の層の劣化がきわめて小さくてすむことが明らかになってきた。一般に、本発明にとって最も大切な層は、約10ミクロン未満の厚さを有する層である。しかし、特別な用途では、最も大切な薄層は、2または1ミクロンの厚さ未満である可能性があり、結果として生じる光学フィルムがスペクトルの青色領域における少なくとも一つの偏光を反射する必要があるような用途では、0.5ミクロン未満の厚さである。
【0013】
本発明の一実施例では、多層光学フィルムは、第1および第2の樹脂を、複数の層を備え第1および第2の主面を有する樹脂ストリームに押出すことによって形成され、樹脂ストリームにおいて複数の層の少なくとも何層かは第1の樹脂を含み、複数の層の少なくとも何層かは第2の樹脂を含む。樹脂ストリームは、kミクロン未満の層厚を備え第1の面の400ミクロン以内に配置される層の数が、kミクロン未満の層厚を備え第2の面の400ミクロン以内に配置される層の数より大きくなるように押出される。次いで、樹脂ストリームは、第1の主面がキャスティング面に接触するようにキャスティングホイールまたは他のキャスティング面に対して流延される。薄層の相当数が第1と第2の両方の主面の400ミクロン以内に配置されることが望ましい場合には、第1と第2の両方の主面がキャスティング面に接触するようにするために、樹脂ストリームは対向するキャスティング面(すなわち対向するキャスティングホイール)の間に流延されうる。本発明によるさまざまな具体的な実施例では、部分的には含まれる層の配置および次いで延伸されるキャストウエブの程度に応じて、kは10、2、1または0.5の値である。
【0014】
本発明の別の実施例では、多層光学フィルムを形成するための方法は、第1および第2の樹脂が複数の層を備え第1および第2の主面を備えた樹脂ストリームに押出されることによって提供される。樹脂ストリームにおいて複数の層の少なくとも何層かは第1の樹脂を含み、樹脂ストリームにおいて複数の層の少なくとも何層かは第2の樹脂を含む。樹脂ストリームは、少なくとも1つの部材を備えkミクロン未満の層厚を有する層からなり、第1の主面の400ミクロン以内に配置される第1の装置が、kミクロン未満の層厚を有する層からなり、第2の主面の400ミクロン以内に配置される第2の装置と少なくとも同数の部材を備えるような方法であり、第1の装置の中間の層厚が第2の装置の中間の層厚より大きくならないような方法で押出される。次いで、樹脂ストリームは、第1の主面がキャスティングホイールまたは他のキャスティング面に対して配置されるような方法で、キャスティングホイールまたは他のキャスティング面に対して流延される。また、kは10、2、1または0.5の値を有することができる。
【0015】
本発明の別の態様では、多層樹脂ストリームは、kミクロン未満、k<10(たとえば、K=10、2、1または0.5)である層厚を有する層のほぼすべてが、樹脂ストリームの第1の面の400ミクロン以内に配置されるように提供される。このような樹脂ストリームは、最も薄い層の劣化が、キャスティングホイールまたは他の面に対して第1の面を流延することによって、都合よく制御または除去されることができるような光学フィルムを形成するために使用されることができる点で有利である。関連する実施例では、樹脂ストリームは、光学薄層のすべてが樹脂ストリームの両面の400ミクロン以内に配置されるように提供される。また、このような樹脂ストリームは、最も薄い層の劣化が対向するキャスティング面に対して両面を流延することによって、都合よく制御または除去されることができるような光学フィルムを形成するために使用されることができる点で有利である。
【図面の簡単な説明】
【0016】
【図1】PENおよびcoPEN単分子層の屈折率特性を示したグラフ図である。
【図2】PEN/coPEN多層フィルムにおける相互拡散の影響を示した光スペクトルである。
【図3】PEN/coPEN多層フィルムにおける相互拡散の影響を示した光スペクトルである。
【図4】PEN/coPEN多層フィルムにおける相互拡散の影響を示した光スペクトルである。
【図5】PEN/coPEN多層フィルムにおける相互拡散の影響を示した光スペクトルである。
【図6】PEN/coPEN多層フィルムにおける相互拡散の影響を示した光スペクトルである。
【図7】PEN/coPEN多層フィルムにおける相互拡散の影響を示した光スペクトルである。
【図8】本発明のPEN/coPEN多層フィルムの層構成の模式図である。
【発明を実施するための形態】
【0017】
本発明の方法によれば、可視スペクトルの青色領域に同調される光学薄層を有する多層光学フィルムは、キャスティングホイールに近い(たとえば、400ミクロン以内)このような層に流延されることによって形成される。このような方法でフィルムを製作することによって、特に光学薄層に顕著である層の結合性の劣化が防止される。
【0018】
本発明の方法によれば、さまざまな材料が多層光学フィルムを形成する場合に使用されることができる。しかし、偏光面が延伸方向に平行である場合に500nm波長の偏光入射光の屈折率が約1.64から約1.9まで増加することに関連し、延伸後の高い正の応力の光学係数および永久複屈折のために、PENが好ましい材料である。PENおよび70−ナフタレート/30−テレフタレートコポリエステル(coPEN)によって、延伸比5:1を呈する異なる平面内の軸に関係する屈折率の差が、図1に示されている。図1では、下側の曲線のデータは、横断方向におけるPENおよびcoPENの屈折率を示し、上側の曲線は、延伸方向のPENの屈折率を示している。PENは、可視スペクトルにおいて0.25から0.40まで屈折率の差を呈する。複屈折(屈折率の差)は、分子配向の増大によって増大させることができる。PENが複屈折層に好ましい重合体として上記で具体的に述べてきたが、ポリブチレンナフタレートも他の結晶性ナフタレンジカルボンポリエステルと同様に適した材料である。結晶性ナフタレンジカルボンポリエステルは、少なくとも0.05、好ましくは約0.20の異なる平面内の軸に関連する屈折率の差を呈するものとする。
【0019】
PEN/coPEN多層のこの低減される実効屈折率差に寄与しそうな一要因は、層の間の濃度/組成勾配を示すTEM写真から明白であるように、2つの材料の相互拡散である。この影響は、厚い方の層がキャスティングホイールに対して押出されるようにフィードブロックを向ける実験でさらに詳細に調査された。ダイからの押出物を冷却および処理するための方法は多数あるが、ここでいうキャスティングホイールは、押出物に接触する第1の温度に制御されたローラまたは面を指す。薄い方(「青色」)の層はキャスティングホイールに対して押出され、厚い方(「赤色」)の層は空気側に押出されるものとする。キャスティングホイールに近い方の層が速く冷却され、低減された相互作用を示すものとする。空気への熱輸送はきわめて緩慢であり、空気側の層は依然としてほとんどキャスティングホイールによって冷却される。
【0020】
実施例6に示されるように、厚い方の層の光学特性も相互拡散によって影響を及ぼされることができる。いくつかの用途では、これは望ましくない可能性がある。このような場合には、フィルムの両側から冷却を行うために、第2の冷却ロール(たとえば、冷却されたニップローラ)が別の「空気」側に適用されうる。この装置は、光学フィルムが押出されたウエブの各面の約400ミクロン以内に配置される場合に、特に望ましいであろう。
【0021】
空気側の層に関して、その冷却速度は、存在するPBL(保護境界層)、スキン層および光学フィルムの総厚に大きく依存する。厚いPBLに関して、青色および緑色の光に同調され空気側に流延された比較的薄い層は、図2に示された弱消光スペクトルから明白であるように、光学特性に深刻な劣化をもたらした。比較的薄いPBLに関して、図3に示されたように青色の消光は強かったが、図4に示したように比較的薄い層がホイール側に対して流延された場合には芳しくない。これらの結果は驚くべきことであり、フィルムのキャスティングホイール側に対する空気側の冷却時間の差が数秒程度に過ぎないことがわかる。フィルムは、いずれの場合も同じ長さの時間キャスティングホイールの上に配置される。理論に縛られることを望まなくても、拡散は差の根本的な原因として存在しているが、キャスティングホイールにおける異なる冷却時間はまた、結晶の核形成を異なる場合の異なる度合いにすることができる可能性がある。
【0022】
消光ピークの大きさが光学積層におけるピーク屈折率差までの単なるピークによってではなく、積層全体にわたる屈折率分布によって決定されるため、「実効屈折率差」なる語が上記で使用される。結晶化を引き起こす歪みの複雑な詳細から、たとえば、主にPENからなる層が高屈折率を呈するように誘発させることによって、隣接層の層間拡散成分に関してきわめて非線型な変化を生じることができる。たとえば、層間拡散から生じるcoPEN中のさらに高濃度のPENは、coPENを延伸中の結晶化によって誘発される歪みにさらす可能性がある。PENの場合には、これは屈折率を大きく増大させる結果となる。逆に、PENの中で拡散するcoPEN成分は、望ましいレベルの結晶化度を実現するために、たとえば、所与の温度で必要とされる延伸比を増大することによってまたは所与の延伸比で必要とされる温度を下降させることによって、歪みが誘発される結晶化の開始および次の成長を変更することができる。PENについて規定された比較的高い延伸温度で、相互拡散材料で汚染されたPEN層のこのような部分は、層の界面から相当離れている同じPEN層の他の部分より屈折率が相当低い可能性がある。したがって、歪みが誘発される結晶化工程は、等方性または弱配向性である混和性の重合体多層系とはきわめて異なる光学結果をもたらす。このような等方性の系については数人の研究者によって説明されてきた。たとえば、M.A.BargerおよびR.RamanathanによるAnnual Technical Conference、Soc.of Plastics Engineers,53rd conf.Vol.2,1699−1704(1995)およびG.Pollickその他によるJ.of Appl.PolymerScience,Vol.52,163−176(1994)を参照されたい。上記の参照著作は、対称方形波屈折率分布によって生じる奇数のさらに高い次数の消光ピークを除去するための方法として拡散を研究している。単一の4分の1波長積層では、屈折率分布は対称方形波である。このような積層は、いかなる屈折率分布でも最も高い反射度を持ち、3番目、5番目、7番目などの奇数の高次ピークのみを形成する。ルーゲイトフィルタは正弦波の屈折率分布を形成するフィルタであり、高次のピークが存在しない。2つの材料の相互拡散は、おおよその方形波分布を形成することができる。ここに示した実施例は、含まれる結晶化によって誘発された歪みの影響で、対称方形波屈折率分布を有するように押出された積層に対して、相互拡散が偶数の高次ピークを形成することができることを示している。第2次ピークなどの偶数のピークは、非対称の屈折率波形分布を示している。
【0023】
高屈折率が1つの材料の結晶化および延伸によって得られるPEN/coPENなどの結晶性/非結晶性の多層積層に関して、相互拡散は非対称な積層を形成する場合に結晶性/非結晶性の界面の位置を変更することができる。言いかえれば、結晶性の層厚は、非結晶性の層を犠牲にして成長することができる。またはその逆のことが言える。全体的な光学対の厚さは実質的に変化しないが、低屈折率層厚に対する高屈折率層厚の比は劇的に変化する可能性がある。coPENの主成分がPENであり、それによってcoPENの中でPENを部分的に混和性にしているため、および逆も同様であるため、このような独特の光学構造が存在する。したがって、各材料に対して1/4波長の厚さの光学層を有するように押出されたPEN/coPEN積層では、拡散/反応/延伸工程は、非対称な光学積層で生じるこの対称性および第2次反射率ピークの出現を変化させることができる。例は図5および図6に示されており、高速急冷サンプルでは2次ピークがなく、徐々に冷却したサンプルではきわめて大きな2次ピークが存在する。さらに高次のピークも変更されると考えられるが、PEN系の400nm切捨てのためここには測定することができない。
【0024】
高屈折率層および低屈折率層の対は、所与の層において特定の波長で屈折率と所与の層の厚さの積和を特定の波長の半波長に固定することによって、特定の波長に同調される。したがって、半波長層対における各層がほぼ同じ厚さであると仮定するならば、個々の層は、その特定の波長での屈折率によって分割される特定の波長の4分の1波長とほぼ同じ厚さである。薄い方の層が相互拡散の影響を受けやすいため、所与の対の各層をほぼ同じ層厚にして、第1次近似におけるこれらの影響を最小限に抑える。歪みを誘発する結晶化を行う層はこれらの影響を受ける可能性が高いため、そのような材料では第2の材料の補足的な低い方の屈折率層に比べて比較的厚い方の層を有することが、いくつかの場合では好ましい可能性がある。したがって、450nm(たとえば「青色」層)で平均屈折率1.75の層対に関して、各層の最終的な層厚はこの波長に同調するためおよそ64nmでなければならない。最終的な延伸比6が与えられた場合、このような層の流延厚さはおよそ384nm(すなわち0.384ミクロン)でなければならない。
【0025】
おおよその非対称方形波分布は、ピーク屈折率差に対して同じピークを有する対称方形波分布より第1次ピークでは低い反射率を生じるであろう。適度の振幅分布(ピーク屈折率差に対して0.3未満)効率は、屈折率分布の第1次フーリエ展開係数を計算することによる正弦波の分布効率に匹敵する可能性がある。正弦波ではこの値は1.0である。対称方形波ではこの値は4/Piである。
【0026】
遠くの赤色領域において第1次ピークを形成するよう同調された層から生じる第2次反射ピーク(故意であれ系の化学の人為的なものであれ)は、スペクトルの青色/紫外境界で反射光に対しきわめて薄く押出された層の代わりにまたはそのような層を補足するために使用されてもよい。これは、層がきわめて薄いため、層自体に匹敵する厚さを有する材料層の間の界面領域の近傍で、層が不鮮明である可能性がある場合に特に有用となる可能性がある。適切な光学設計であれば、青色または紫外領域の高反射率が、それらの波長に同調された1/4波長の厚さの層を実際に押出さなくとも実現することができる。第2次ピークの大きさが、2つの溶融ストリームの押出量によって、またはストリームの相互拡散の温度/時間制御によって、非対称屈折率波形を形成するように調整されることができる。相互拡散は、光学設計に含まれる異なる層のために、キャスティングホイールからの相対距離を制御することによって、光学積層全体にわたって非対称屈折率波形の変更度を形成するために使用されることができる。
【0027】
本発明はさらに、以下の実施例によって示される。
ここに示した大半の実施例は、第1のマルチプライヤの前に挿入されるPBLに関連して、209層フィードブロックおよび2フィルム層マルチプライヤを用いて形成されるサンプルを含む。このような構成は209層の光学層の4つの「パケット」で生じ、「パケット」は多層にもなる保護境界層によって分離される。このフィルムの構成は図8に示されている。個々の209層パケットの光学素子は、対象のパケットの一方または両方の側から隣接する光学パケットを機械的に除去した後で、測定されうる。所与のパケットの両側にある比較的厚いPBLのために、これは対象の光学層への損失を最小限に抑えることができる。4つの個々のパケットは、パケット#1、パケット#2などラベル付けがなされ、最も薄い光学層のパケットを1、最も厚い層を4とする。ここに与えられた全実施例で、パケット1から4が単調に増大する波長のレンジ、たとえば青色から赤色に同調されるように、マルチプライヤは配置される。パケット4はフィルムのホイール側または空気側のいずれで流延されたかに関係なく、最も薄い光学層を指す。実施例のためにすべてのパケットおよびPBL層の実際の厚さが、表1にまとめられている。所与のパケットにある層からキャスティングホイールまでの距離は、この表からたやすく計算することができる。PBL#1も#5もキャスティングホイールと反対方向にある。
【0028】
【表1】

【実施例】
【0029】
実施例1
キャスティングホイール側にある薄層の場合
約833層からなる同時押出しされたフィルムは、水冷されたキャスティングホイールの上のウエブに押出され、テンタでフィルムを連続的に延伸することによって、製作された。固有粘度0.48dl/gのポリエチレンナフタレート(PEN)(フェノール60重量%/ジクロロベンゼン40重量%)が、1つの押出機によって1時間当り75ポンド(34kg)の速度で排出され、固有粘度0.58dl/gの70/0/30 coPEN(2,6NDC約70mol%およびDMI約30mol%)が、別の押出機によって1時間当り85ポンド(39kg)の速度で排出された。これらの溶融ストリームは、coPENおよびPENの光学層を形成するためにフィードブロックに送出された。フィードブロックは、フィードブロック全体にわたる保護境界層(PBL)として作用するcoPENの2つの外層を備えたPENとcoPEN 70/0/30が交互である層を209層形成した。層厚には近似線形勾配が、材料ごとに最も薄い層に対する最も厚い層の比が約1.30となるように、フィードブロックによって形成された。フィードブロックの後で、第3の押出機が同様の70/0/30 coPENを対称なPBL(光学層ストリームの両側に同一の厚さ)として、1時間当り約28ポンド(13kg)で排出された。材料ストリームは、マルチプライヤ比約1.25の非対称な2倍マルチプライヤ(米国特許第5,094,788号および米国特許第5,094,793号)を通過した。マルチプライヤ比は、大きなコンジットで形成される層の平均層厚を小さなコンジットで形成される平均層厚で除した値で定義される。次いで、材料ストリームは、マルチプライヤ比約1.5の第2の非対称な2倍マルチプライヤを通過した。第2のマルチプライヤの後、厚い対称なPBLには、第3の押出機からさらに供給される1時間当り約113ポンド(51kg)が追加された。次に、材料ストリームがフィルムダイを通過し、温度約13℃の注入水を利用して水冷されたキャスティングホイールの上に送出される。光学層は、フィルムのキャスティングホイールから空気側まで概して単調に増大する厚さ分布を展開した。最も薄い光学層は、キャスティングホイールに最も近い。coPEN溶融工程装置は、約530°F(277℃)で維持され、PEN溶融工程装置は、約545°F(285℃)で維持され、フィードブロック、マルチプライヤ、スキン層モジュールおよびダイは約540°F(282℃)で維持される。
【0030】
全延伸はテンタで行われた。フィルムは約20秒間、約303°F(150℃)に予熱され、1秒当り約25%の速度で延伸比約6.7まで横断方向に延伸された。完成したフィルムは、約125ミクロンの最終的な厚さであった。光学スペクトルは図7に示されている。曲線aは非詠進方向に平行に偏光された光の垂直入射時の透過である。曲線bはこの同一方向に沿ったp偏光の透過であるが、その入射角は60°である。曲線cは、延伸方向に平行に変更された光の垂直入射時の透過を与える。
【0031】
実施例2
空気側にある薄層が最も厚いPBLである場合
約833層からなる同時押出しされたフィルムは、水冷されたキャスティングホイールの上のウエブに押出され、テンタでフィルムを連続的に延伸することによって、製作された。固有粘度0.48dl/gのポリエチレンナフタレート(PEN)(フェノール60重量%/ジクロロベンゼン40重量%)が、1つの押出機によって1時間当り79ポンド(36kg)の速度で排出され、固有粘度0.58dl/gの70/15/15 coPEN(2,6NDC約70mol%およびDMI約15mol%)が、別の押出機によって1時間当り86ポンド(39kg)の速度で排出された。フィードブロックは、フィードブロック全体にわたるPBLとして作用するcoPENの2つの外層を備えたPENとcoPEN70/15/15が交互である層を209層形成した。層厚には近似線形勾配が、材料ごとに最も薄い層に対する最も厚い層の比が約1.30となるように、フィードブロックによって形成された。フィードブロックの後で、第3の押出機が同様の70/15/15 coPENを対称なPBLとして、1時間当り約136ポンド(62kg)で排出された。材料ストリームは、マルチプライヤ比約1.25の非対称な2倍マルチプライヤ(米国特許第5,094,788号および米国特許第5,094,793号)を通過した。マルチプライヤ比は、大きなコンジットで形成される層の平均層厚を小さなコンジットで形成される平均層厚で除した値で定義される。第1のマルチプライヤの後、別の対称なPBLには第3の押出機からさらに供給される1時間当り約82ポンド(37kg)が追加された。次いで、材料ストリームは、マルチプライヤ比約1.5の第2の非対称な2倍マルチプライヤを通過した。次に、材料ストリームがフィルムダイを通過し、温度約16℃の注入水を利用して水冷されたキャスティングホイールの上に送出される。光学層は、フィルムのキャスティングホイールから空気側まで概して単調に減少する厚さ分布を展開した。最も厚い光学層は、キャスティングホイールに最も近い。全溶融工程装置は、約555°F(290℃)で維持される。
【0032】
全延伸はテンタで行われた。フィルムは約20秒間、約315°F(157℃)に予熱され、1秒当り約25%の速度で延伸比約6.1まで横断方向に延伸された。完成したフィルムは、約155ミクロンの最終的な厚さであった。この偏光フィルムの消光スペクトルは図2に示されている。最も短い波長で消光が極端に損失することに留意されたい。400と425nmとの間で「a」とラベル付けされた狭い消光ピークは、725と810nmとの間の第1次ピークを形成している層から発生する第1次ピークであることが示された。フィルムからパケット4を除去し、「b」消光ピークを形成している層の除去によって「a」ピークがなくなることに着目した結果、この考察に達した。また、上述したようにパケット4の除去によって,420nmで同様のことを行うと、ピーク「c」が残った。要するに、400から600nmまでのこのフィルムの光学消光は、きわめて弱い。
【0033】
実施例3
空気側の薄層が中間の厚さのPBLである場合
約831層からなる同時押出しされたフィルムは、水冷されたキャスティングホイールの上のウエブに押出され、テンタでフィルムを連続的に延伸することによって、製作された。固有粘度0.48dl/gのポリエチレンナフタレート(PEN)(フェノール60重量%/ジクロロベンゼン40重量%)が、1つの押出機によって1時間当り76ポンド(34kg)の速度で排出され、固有粘度0.58dl/gの70/15/15 coPEN(2,6NDC約70mol%およびDMI約15mol%)が、別の押出機によって1時間当り89ポンド(40kg)の速度で排出された。フィードブロックは、フィードブロック全体にわたるPBLとして作用するcoPENの2つの外層を備えたPENとcoPEN70/15/15が交互である層を209層形成した。層厚には近似線形勾配が、材料ごとに最も薄い層に対する最も厚い層の比が約1.30となるように、フィードブロックによって形成された。フィードブロックの後で、第3の押出機が同様の70/15/15 coPENを対称なPBLとして、1時間当り約66ポンド(30kg)で排出された。材料ストリームは、マルチプライヤ比約1.25の非対称な2倍マルチプライヤ(米国特許第5,094,788号および米国特許第5,094,793号)を通過した。マルチプライヤ比は、大きなコンジットで形成される層の平均層厚を小さなコンジットで形成される平均層厚で除した値で定義される。第1のマルチプライヤの後、別の対称なPBLには第3の押出機からさらに供給される1時間当り約83ポンド(37kg)が追加された。次いで、材料ストリームは、マルチプライヤ比約1.5の第2の非対称な2倍マルチプライヤを通過した。次に、材料ストリームがフィルムダイを通過し、温度約16℃の注入水を利用して水冷されたキャスティングホイールの上に送出される。光学層は、フィルムのキャスティングホイールから空気側まで概して単調に減少する厚さ分布を展開した。最も厚い光学層は、キャスティングホイールに最も近い。全溶融工程装置は、約555°F(290℃)で維持される。
【0034】
全延伸はテンタで行われた。フィルムは約20秒間、約316°F(158℃)に予熱され、1秒当り約25%の速度で延伸比約6.1まで横断方向に延伸された。完成したフィルムは、約127ミクロンの最終的な厚さであった。このフィルムのスペクトルは図3に示されている。図2のように最も厚いPBLではそれほどでもないが、大きなスペクトル洩れがスペクトルの青色の境界全体に現れている。
【0035】
実施例4
ホイール側の薄層が中間のPBLである場合
約833層からなる同時押出しされたフィルムは、水冷されたキャスティングホイールの上のウエブに押出され、テンタでフィルムを連続的に延伸することによって、製作された。固有粘度0.48dl/gのポリエチレンナフタレート(PEN)(フェノール60重量%/ジクロロベンゼン40重量%)が、1つの押出機によって1時間当り92ポンド(42kg)の速度で排出され、固有粘度0.58dl/gの70/15/15 coPEN(2,6NDC約70mol%およびDMI約15mol%)が、別の押出機によって1時間当り105ポンド(48kg)の速度で排出された。フィードブロックは、フィードブロック全体にわたるPBLとして作用するcoPENの2つの外層を備えたPENとcoPEN70/15/15が交互である層を209層形成した。層厚には近似線形勾配が、材料ごとに最も薄い層に対する最も厚い層の比が約1.30となるように、フィードブロックによって形成された。フィードブロックの後で、第3の押出機が同様の70/15/15 coPENを対称なPBLとして、1時間当り約79ポンド(36kg)で排出された。材料ストリームは、マルチプライヤ比約1.25の非対称な2倍マルチプライヤ(米国特許第5,094,788号および米国特許第5,094,793号)を通過した。マルチプライヤ比は、大きなコンジットで形成される層の平均層厚を小さなコンジットで形成される平均層厚で除した値で定義される。第1のマルチプライヤの後、別の対称なPBLには第3の押出機からさらに供給される1時間当り約78ポンド(35kg)が追加された。次いで、材料ストリームは、マルチプライヤ比約1.5の第2の非対称な2倍マルチプライヤを通過した。次に、材料ストリームがフィルムダイを通過し、温度約8℃の注入水を利用して水冷されたキャスティングホイールの上に送出される。光学層は、フィルムのキャスティングホイールから空気側まで概して単調に増大する厚さ分布を展開した。最も薄い光学層は、キャスティングホイールに最も近い。全溶融工程装置は、約555°F(290℃)で維持される。
【0036】
全延伸はテンタで行われた。フィルムは約20秒間、約315°F(157℃)に予熱され、1秒当り約25%の速度で延伸比約6.1まで横断方向に延伸された。完成したフィルムは、約120ミクロンの最終的な厚さであった。このフィルムのスペクトルは図4に示されている。425nmおよび470nmの消光ピークがより長い波長のピークの最小透過に匹敵することに留意されたい。500nm付近の大きなスペクトル洩れは、透過型電子顕微鏡分析からそれらの波長に同調される厚さを有する不適切な層の分布によるものであることがわかった。同様のスペクトル洩れは、図3の460nmと500nmとの間でも確認される。図3および図4を比較すると、図4の400から650nmの消光の方が際立ってよいことがわかる。
【0037】
実施例5
2次ピークのない薄いPBLの場合
約833層からなる同時押出しされたフィルムは、水冷されたキャスティングホイールの上のウエブに押出され、テンタでフィルムを連続的に延伸することによって、製作された。固有粘度0.48dl/gのポリエチレンナフタレート(PEN)(フェノール60重量%/ジクロロベンゼン40重量%)が、1つの押出機によって1時間当り92.5ポンド(42kg)の速度で排出され、固有粘度0.58dl/gの70/15/15 coPEN(2,6NDC約70mol%およびDMI約15mol%)が、別の押出機によって1時間当り104.5ポンド(47.5kg)の速度で排出された。フィードブロックは、フィードブロック全体にわたるPBLとして作用するcoPENの2つの外層を備えたPENとcoPEN 70/15/15が交互である層を209層形成した。層厚には近似線形勾配が、材料ごとに最も薄い層に対する最も厚い層の比が約1.30となるように、フィードブロックによって形成された。フィードブロックの後で、第3の押出機が同様の70/15/15 coPENを対称なPBLとして、1時間当り約25ポンド(11kg)で排出された。材料ストリームは、マルチプライヤ比約1.25の非対称な2倍マルチプライヤ(米国特許第5,094,788号および米国特許第5,094,793号)を通過した。マルチプライヤ比は、大きなコンジットで形成される層の平均層厚を小さなコンジットで形成される平均層厚で除した値で定義される。第1のマルチプライヤの後、別の対称なPBLには第3の押出機からさらに供給される1時間当り約25ポンド(11kg)が追加された。次いで、材料ストリームは、マルチプライヤ比約1.5の第2の非対称な2倍マルチプライヤを通過した。次に、材料ストリームがフィルムダイを通過し、温度約8℃の注入水を利用して水冷されたキャスティングホイールの上に送出される。光学層は、フィルムのキャスティングホイールから空気側まで概して単調に増大する厚さ分布を展開した。最も薄い光学層は、キャスティングホイールに最も近い。全溶融工程装置は、約555°F(290℃)で維持される。
【0038】
全延伸はテンタで行われた。フィルムは約20秒間、約320°F(160℃)に予熱され、1秒当り約25%の速度で延伸比約6.1まで横断方向に延伸された。完成したフィルムは、約84ミクロンの最終的な厚さであった。次いで、赤外線に同調する最も厚い光学層を含むパケット4のみを残して、3つの薄い方の光学層パケットがフィルムから除去された。図5では、パケット4から得られたスペクトルの青色領域に第2次消光ピークがみられないことに留意されたい。
【0039】
実施例6
第2次ピークを誘発する厚いPBLの場合
約833層からなる同時押出しされたフィルムは、水冷されたキャスティングホイールの上のウエブに押出され、テンタでフィルムを連続的に延伸することによって、製作された。固有粘度0.48dl/gのポリエチレンナフタレート(PEN)(フェノール60重量%/ジクロロベンゼン40重量%)が、1つの押出機によって1時間当り92.5ポンド(42kg)の速度で排出され、固有粘度0.58dl/gの70/15/15 coPEN(2,6NDC約70mol%およびDMI約15mol%)が、別の押出機によって1時間当り104.5ポンド(47.5kg)の速度で排出された。フィードブロックは、フィードブロック全体にわたるPBLとして作用するcoPENの2つの外層を備えたPENとcoPEN 70/15/15が交互である層を209層形成した。層厚には近似線形勾配が、材料ごとに最も薄い層に対する最も厚い層の比が約1.30となるように、フィードブロックによって形成された。フィードブロックの後で、第3の押出機が同様の70/15/15 coPENを対称なPBLとして、1時間当り約78ポンド(45kg)で排出された。材料ストリームは、マルチプライヤ比約1.25の非対称な2倍マルチプライヤ(米国特許第5,094,788号および米国特許第5,094,793号)を通過した。マルチプライヤ比は、大きなコンジットで形成される層の平均層厚を小さなコンジットで形成される平均層厚で除した値で定義される。第1のマルチプライヤの後、別の対称なPBLには第3の押出機からさらに供給される1時間当り約118ポンドが追加された。次いで、材料ストリームは、マルチプライヤ比約1.5の第2の非対称な2倍マルチプライヤを通過した。次に、材料ストリームがフィルムダイを通過し、温度約8℃の注入水を利用して水冷されたキャスティングホイールの上に送出される。光学層は、フィルムのキャスティングホイールから空気側まで概して単調に増大する厚さ分布を展開した。最も薄い光学層は、キャスティングホイールに最も近い。全溶融工程装置は、約555°F(290℃)で維持される。
【0040】
全延伸はテンタで行われた。フィルムは約20秒間、約320°F(160℃)に予熱され、1秒当り約25%の速度で延伸比約6.1まで横断方向に延伸された。完成したフィルムは、約133ミクロンの最終的な厚さであった。次いで、赤外線に同調する最も厚い光学層を含むパケット4のみを残して、3つの薄い方の光学層パケットがフィルムから除去された。図6では、パケット4から得られたスペクトルの青色領域に大きな第2次消光ピークがみられることに留意されたい。工程における唯一の差は、例(図5)に比べてこのサンプルは、この例では水冷したキャスティングホイールからかなり離れたパケット4であるPBLが厚かったことである。両方の例(4および5)は、対称な方形波屈折率分布を持つように押出されたが、図6は、1つ以上の層の材料の歪みを誘発する結晶化から得られたフィルムの光学素子に関してこの対称性を維持する場合には、キャスティングホイールからの距離が重要であることを示している。
【0041】
図のデータから、一般に、最も薄い層がキャスティングホイール面に最も近い位置に流延される必要があり、層間拡散の影響に対して耐性のある厚い方の層がホイール面から距離を隔てた位置に流延されうる。所与の界面の幅に関して、界面の幅が厚い方の層より薄い方の層の合計層厚の割合がはるかに大きいため、薄い方の層は相互拡散の影響を浮けやすい。したがって、特定の用途が低い反射パワーを有する薄い方の層を必要としない限り、薄い方の層は、厚い方の層より迅速に冷却される必要がある。
【0042】
表1は、キャストウエブのための絶対的なPBLおよび光学パケットの厚さを与える。図および実施例のデータとこの情報の相関に関して、キャスティングホイール面から最も薄いPEN/coPEN層の対の好ましい距離が決定されうる。たとえば、実施例1の最も薄い層は、キャスティングホイールからおよそ70ミクロンであり、1つのPBL(PBL#1)の厚さ分だけキャスティングホイールから離れている。これらの層によって与えられた光学消光は、厚い方の層によって与えられる消光と同じ大きさであり、許容しうる。実施例2および3では、これらの距離はそれぞれ875ミクロンおよび718ミクロンとなり、実施例1よるはるかに大きい。これらの距離は大きすぎるため、400から500nmの波長レンジで実施例1の偏光子の消光値を実現することができる。ホイール面から461ミクロンの距離で流延された実施例2のパケット3の最も薄い層でさえ、図2で見られるように、600nm付近に相当の光の透過が見とめられる。一般に、最も薄い光学層がキャスティング面の約400ミクロン以内に流延される場合に、最良の結果が得られることがわかった。
【0043】
実施例5および6のパケット4の層の光レスポンスも、キャスティングホイール面からPEN/coPENの望ましい最小距離に関する情報を提供する。実施例5では、これらの層は、ホイール面から419ミクロンの中間距離にあり、その光学特性に対する相互拡散の悪影響はない。実施例6は、これらの同じ層が643ミクロンの平均距離にあり、強い第2次反射ピークを形成することを示す。厚さの1/2または1/3を占める第3の層は、上述したように比例して大きくなる非対称性を有し、第1次ピークにはるかに低い反射率を提供すると思われる。全体のPEN/coPEN積層の吸光度は1パーセント程度に過ぎないため、ここの反射率は1−Tによって与えられると仮定する。ここでTは透過率である。したがって、キャスティングホイールから650ミクロンのキャスティング距離は、大きすぎると判断される。 実施例5から、400ミクロンの距離は光の反射パワーの損失を防ぐために、光学層を十分に迅速に冷却することができるように思われる。もちろん、この最小距離は、相互拡散工程に適応可能な滞留時間の関数であり、押出し率および被覆率のほかフィードブロックの細部にも対応可能である。この滞留時間を増大指せる状態がこの最小距離を減少させ、逆も同様である。
【0044】
厚い方のフィルムは、機械的な強度、処理のたやすさ、顧客の要件などのためによく必要とされる。必要とされるフィルムの厚さが、光学層の合計より大きい場合には、フィルムの厚さはPBLの厚さを増大させることによって増大させうる。さらに、最も薄い層をキャスティングホイール面までさらに近づくことができるようにするために、内部のPBLが外部のPBL(すなわちスキン層)より厚くされうる。しかし、キャストウエブの総厚が400ミクロンを超える場合には、すべての光学層、特に最も薄い層を確実に急速に冷却するよう注意を払わなければならない。
【0045】
本発明のさまざまな修正は、本発明の範囲から逸脱することなく行われうる。たとえば、本発明は頻繁に、2つの樹脂からなる交互の層を有する樹脂ストリームに関して述べてきたが、当業者は、本発明が2つ以上の樹脂を有する多層系に等しく応用可能であることを評価するであろう。したがって、本発明の先行する詳細は、例証にすぎず、それに限定されるものではなく、本発明の範囲は、添付の請求の範囲によってのみ定められるべきものとする。

【特許請求の範囲】
【請求項1】
多層光学フィルムを形成するための方法であって、第1および第2の樹脂を提供するステップと、前記第1および前記第2の樹脂を、複数の層を備え第1および第2の主面を有する樹脂ストリームに押出すステップであって、前記樹脂ストリームにおいて、前記複数の層のうち少なくとも何層かは前記第1の樹脂を含み、前記複数の層のうち少なくとも何層かは前記第2の樹脂を含み、kミクロン未満の層厚を有し、かつ前記第1の面の400ミクロン以内に配置される層の数がmであり、kミクロン未満の層厚を有し、かつ前記第2の面の400ミクロン以内に配置される層の数がnであり、mnであり、k10であるステップと、 前記第1の面がキャスティング面に接触するように前記キャスティング面に対して前記樹脂ストリームを流延するステップと、を含む方法。
【請求項2】
多層光学フィルムを形成するための方法であって、第1および第2の樹脂を提供するステップと、前記第1および前記第2の樹脂を、複数の層をなし第1および第2の主面を有する樹脂ストリームに押出すステップであって、前記樹脂ストリームにおいて、前記複数の層のうち少なくとも何層かは前記第1の樹脂を含み、前記複数の層のうち少なくとも何層かは前記第2の樹脂を含み、前記複数の層のうち少なくとも何層かはk10であるkミクロン未満の層厚を有する第1の層タイプであり、前記第1の層タイプの層の少なくとも何層かは前記第1の面の400ミクロン以内に配置され、前記第1の層タイプの層の少なくとも何層かは前記第2の面の400ミクロン以内に配置されるステップと、前記第1の主面がキャスティング面に対し流延され、前記第2の主面がキャスティング面に対して流延されるように前記樹脂ストリームを流延するステップと、を含む方法。
【請求項3】
多層光学フィルムを形成するための方法であって、第1および第2の樹脂を提供するステップと、前記第1および前記第2の樹脂を、複数の層をなし第1および第2の主面を有する樹脂ストリームに押出すステップであって、前記樹脂ストリームにおいて、前記複数の層のうち少なくとも何層かは前記第1の樹脂を含み、前記複数の層のうち少なくとも何層かは前記第2の樹脂を含み、少なくとも1つの部材を有し、かつkミクロン未満の層厚を有する層からなり、そして前記第1の面の400ミクロン以内に配置される第1の装置は、k10であるkミクロン未満の層厚を有する層からなりかつ前記第2の面の400ミクロン以内に配置される第2の装置と少なくとも同数の部材を備え、第1の装置の中間の層厚が第2の装置の中間の層厚ほど大きくないステップと、前記第1の面がキャスティング面に接触するように前記キャスティング面に対して前記樹脂ストリームを流延するステップと、を含む方法。
【請求項4】
k=10である請求項1乃至3のいずれか1項に記載の方法。
【請求項5】
k=2である請求項1乃至3のいずれか1項に記載の方法。
【請求項6】
k=0.5である請求項1乃至3のいずれか1項に記載の方法。
【請求項7】
前記第1および第2の樹脂の少なくとも1つがポリエステルを含む請求項1乃至6のいずれか1項に記載の方法。
【請求項8】
前記ポリエステルが芳香族ジカルホン酸およびそのエステルからなる群から選択される第1の単量体から得られる請求項7に記載の方法。
【請求項9】
前記第1の単量体がナフタレンジカルボン酸である請求項8に記載の方法。
【請求項10】
前記第2の樹脂がナフタレンジカルボン酸、イソフタル酸、テレフタル酸およびそれらのエステルからなる群から選択される第2の単量体から得られる重合体を含む請求項1乃至9のいずれか1項に記載の方法。
【請求項11】
前記第2の単量体がナフタレンジカルボン酸およびイソフタル酸の共重合体である請求項10に記載の方法。
【請求項12】
前記第2の面がキャスティング面に対して流延されない請求項1または3に記載の方法。
【請求項13】
前記樹脂ストリームが周囲温度未満に冷却される少なくとも1つのキャスティング面に対し流延される請求項1乃至12のいずれか1項に記載の方法。
【請求項14】
前記樹脂ストリームが対称方形波屈折率分布を有する請求項1乃至13のいずれか1項に記載の方法。
【請求項15】
前記樹脂ストリームが少なくとも1つの境界層によって互いから隔てられた複数の層パケットを含み、各層パケットにおける前記層の前記厚さは前記層の厚さの方向に基本的に単調に変化する請求項1乃至14のいずれか1項に記載の方法。
【請求項16】
前記樹脂ストリームが複数の光学層を含み、前記光学層が前記第1の面から前記第2の面まで基本的に単調に増大する層の厚さ分布を呈する請求項1乃至15のいずれか1項に記載の方法。
【請求項17】
前記樹脂ストリームが少なくとも約270℃まで加熱され、前記樹脂ストリームが約20℃未満の温度を有する冷却液を用いて冷却された少なくとも1つのキャスティング面に対して流延される請求項1乃至16のいずれか1項に記載の方法。
【請求項18】
さらに、流延樹脂ストリームを延伸するステップを含む請求項1乃至17のいずれか1項に記載の方法。
【請求項19】
kミクロン未満の層厚を有する層の実質的にすべてが、前記第1の面の400ミクロン以内に配置される請求項1に記載の方法。
【請求項20】
第1の層タイプの層の実質的にすべてが、少なくとも1つのキャスティング面の約400ミクロン以内に配置される請求項2に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−252357(P2012−252357A)
【公開日】平成24年12月20日(2012.12.20)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−182564(P2012−182564)
【出願日】平成24年8月21日(2012.8.21)
【分割の表示】特願2010−2183(P2010−2183)の分割
【原出願日】平成10年6月24日(1998.6.24)
【出願人】(590000422)スリーエム カンパニー (144)
【Fターム(参考)】