説明

再生信号の最尤復号方法、光ディスク装置、集積回路および光ディスク

【課題】理想的なPR等化レベルからずれた状態で、光ディスクの記録条件を最適な条件に調整することができる再生方法を提供する。
【解決手段】光ディスクの最適な記録条件に合致するβ指定値を取得し、β指定値から所定の変換式により最尤復号の信号期待値を算出する。算出した信号期待値を最尤復号回路に設定することにより、β指定値に近いほど再生エラーレート、あるいは信号品質評価指標値が良好となり、光ディスクの最適な記録条件になるように調整することが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ディスクに記録されたデジタル情報を最尤復号方式によって再生する技術に関する。
【背景技術】
【0002】
近年、光ディスクの高密度化により、記録マークの最短マーク長が光学的な分解能の限界に近づき、符号間干渉の増大およびSNR(Signal Noise Rate)の劣化がより顕著となり、信号処理方法として、PRML(Partial Response Maximum Likelihood)方式等を用いることが一般的になりつつある。
【0003】
PRML方式は、パーシャルレスポンス(PR)と最尤復号(ML)とを組み合わせた技術であり、既知の符号間干渉が起こることを前提に再生波形から最も確からしい信号系列を選択する方式である。このため、従来のレベル判定方式よりも復号性能が向上することが知られている(例えば、非特許文献1)。
【0004】
記録媒体から再生された信号は、波形等化器やデジタルフィルタなどを用いて所定の周波数特性を持つようにパーシャルレスポンス等化された後、ビタビ復号などを用いて最も確からしい状態遷移列を選択することによって対応した2値化データに復号される。一般に、時刻kまでの状態Sn( nは状態数)に至る状態遷移の確からしさを表す量Lは式(1)で定義される。
【0005】
【数1】

【0006】
式(1)において、yiは時刻iにおける再生信号の値、Eiは期待される理想的な再生信号の値である。最尤復号方式では、式(1)で求められる確からしさをあらわす量Lが最小となるような状態遷移列が選択され、対応した2値化データに復号する(例えば、特許文献1)。
【0007】
また、記録条件の変動、記録再生時のフォーカスサーボやトラッキングサーボの変動などによって生じる再生信号のアシンメトリーやレベル変動に対して、式(1)でもとめられる値Lが大きくなってしまい、復号性能を劣化してしまうことがある。これに対し、信号レベルyiの変化に応じて、期待値レベルEiを追従制御し、復号性能を改善するという適応的な最尤復号も提案されている(例えば、特許文献2)。
【0008】
光ディスクの高密度化がさらに進むと、符号間干渉およびSNR劣化がさらに問題となる。再生性能を維持するためには、PRML方式を高次の方式にすることで対応可能と非特許文献1に記載されている。例えば、12cmの光ディスクの記録層1層当たりの記録容量が25GBの場合では、PR(1,2,2,1)ML方式を採用することで、再生性能を維持することができたが、1層当たりの記録容量が33.3GBの場合では、PR(1,2,2,2,1)ML方式を採用する必要があることが説明されている。このように、光ディスクの高密度化に比例して、高次のPRML方式を採用する傾向は続くと予想される。
【特許文献1】特開2003−141823号公報
【特許文献2】特開平10−261272号公報
【非特許文献1】図解 ブルーレイディスク読本 オーム社
【発明の開示】
【発明が解決しようとする課題】
【0009】
しかしながら、再生時の性能が高い高次のPRML方式を採用し、再生した2値化データのエラーレートが小さくなるように、あるいは特許文献1に記載されている再生信号品質の評価指標の値が小さくなるように記録調整(特に記録マークのエッジ位置調整)を行った場合、光ディスクの記録密度によっては、光ディスクの記録性能を十分に発揮できる記録を行うこと(SNRが最大となる記録条件で記録すること)が出来ず、再生時のマージンを減少させていた。例えば、PR(1,2,2,2,1)ML方式の再生信号処理で最適となる記録調整を行った場合、短い記録マークである2T(Tはチャネル幅(チャネルクロックの周期))マークおよび3Tマークのサイズが非常に小さくなり、光ディスクの本来の最適記録条件から大きくずれてしまい、繰り返し記録の特性や経年劣化特性が低くなってしまうという課題があった。
【0010】
また、前述の適応的な最尤復号を用いれば、理想的なPR(1,2,2,2,1)に対応した期待値レベルとはずれた状態になる記録を行っても2値化データのエラーレートを小さくすることが可能であるが、理想的なPR(1,2,2,2,1)に対応した期待値レベルからずれた量が大きくても小さくても同様にエラーレートが小さくなってしまうため、異なる光ディスク装置間での記録条件を一致させることが困難となり、最悪の場合、一枚の光ディスクにおいて記録されている条件が様々に変化し、再生する際に変動が大きくなってしまい、適応的に制御する応答性を非常に高くする必要があり、安定性を欠いてしまうという課題があった。
【課題を解決するための手段】
【0011】
前記課題を解決するため、本発明の最尤復号方法は、光ディスクのトラックにマークとスペースで記録された情報を再生した再生信号のサンプリング信号から最も確からしいデジタル情報を復号する最尤復号方法であって、所定の期間における前記再生信号のサンプリング信号列に対し、各デジタル情報列に対応した再生信号のサンプリング信号の期待値列との差を検出し、差が最小となるデジタル情報列を前記再生信号の復号結果として選択する最尤復号ステップと、前記再生信号のエネルギー中心と、最長マークと最長スペースの振幅の中心との比を示す指標値の期待値を指定する指標値指定ステップと、前記指標値の期待値に応じて前記最尤復号ステップで用いるサンプリング信号の各期待値を算出する算出ステップとから構成され、前記最尤復号ステップでは、前記算出ステップで算出したサンプリング信号の各期待値を用いることを特徴とする。
【0012】
また、前記最尤復号ステップは、ビタビ復号であってもよい。
【0013】
また、前記再生信号のサンプリング信号のエネルギー中心レベルを検出し、検出したエネルギー中心レベルが前記最尤復号ステップの処理の中心レベルになるように前記サンプリング信号のDCレベルを制御するDC制御ステップをさらに有してもよい。
【0014】
また、前記再生信号のサンプリング信号が所定の周波数特性を持つように等化するパーシャルレスポンス等化ステップをさらに有し、パーシャルレスポンス等化ステップの出力信号が前記最尤復号ステップに入力してもよい。
【0015】
また、前記パーシャルレスポンス等化ステップの等化特性は、PR(1,2,2,2,1)等化としてもよい。
【0016】
また、前記最尤復号ステップで用いるサンプリング信号の期待値は、PR(1,2,2,2,1)等化に対応した9レベルの値としてもよい。
【0017】
また、前記光ディスクに記録された情報は1−7変調方式に従って記録され、PR(1,2,2,2,1)等化では16種類のパターンが存在し、前記最尤復号ステップで用いるサンプリング信号の期待値は、前記16種類のパターンに対応した値であってもよい。
【0018】
本発明の光ディスク装置は、光ディスクのトラックにマークとスペースで記録された情報を再生する光ディスク装置であって、前記光ディスクに対してレーザを照射し、反射光の光量に応じた再生信号を出力する光ヘッドと、前記再生信号から再生クロックを生成する再生クロック生成回路と、前記再生信号を前記再生クロックでサンプリングしたサンプリング信号を出力するA/D変換回路と、前記サンプリング信号から最も確からしいデジタル情報を復号する最尤復号回路とを備えており、前記最尤復号回路は、所定の期間における前記サンプリング信号列に対し、各デジタル情報列に対応した再生信号のサンプリング信号の期待値列との差を検出し、差が最小となるデジタル情報列を前記再生信号の復号結果として選択する復号回路と、前記再生信号のエネルギー中心と、最長マークと最長スペースの振幅の中心との比を示す指標値の期待値を指定する指標値指定回路と、前記指標値の期待値に応じて前記最尤復号ステップで用いるサンプリング信号の各期待値を算出する算出回路とから構成され、前記復号回路では、前記算出回路で算出したサンプリング信号の各期待値を用いることを特徴とする。
【0019】
また、前記復号回路は、ビタビ復号回路であってもよい。
【0020】
また、前記再生信号のサンプリング信号のエネルギー中心レベルを検出し、検出したエネルギー中心レベルが前記復号回路の処理の中心レベルになるように前記サンプリング信号のDCレベルを制御するDC制御回路をさらに有してもよい。
【0021】
また、前記再生信号のサンプリング信号が所定の周波数特性を持つように等化するパーシャルレスポンス等化回路をさらに有し、パーシャルレスポンス等化回路の出力信号が前記復号回路に入力してもよい。
【0022】
また、前記パーシャルレスポンス等化回路の等化特性は、PR(1,2,2,2,1)等化としてもよい。
【0023】
また、前記最尤復号回路で用いるサンプリング信号の期待値は、PR(1,2,2,2,1)等化に対応した9レベルの値としてもよい。
【0024】
また、前記光ディスクに記録された情報は1−7変調方式に従って記録され、PR(1,2,2,2,1)等化では16種類のパターンが存在し、前記最尤復号回路で用いるサンプリング信号の期待値は、前記16種類のパターンに対応した値としてもよい。
【0025】
また、前記光ディスクにはあらかじめ前記指標値の期待値の情報が記録されており、前記指標値指定回路は取得した期待値の情報を指標値の期待値としてもよい。
【0026】
本発明の集積回路は、光ディスクのトラックにマークとスペースで記録された情報を再生した再生信号を復号する集積回路であって、前記再生信号から再生クロックを生成する再生クロック生成回路と、前記再生信号を前記再生クロックでサンプリングしたサンプリング信号を出力するA/D変換回路と、前記サンプリング信号から最も確からしいデジタル情報を復号する最尤復号回路とを備えており、前記最尤復号回路は、所定の期間における前記サンプリング信号列に対し、各デジタル情報列に対応した再生信号のサンプリング信号の期待値列との差を検出し、差が最小となるデジタル情報列を前記再生信号の復号結果として選択する復号回路と、前記再生信号のエネルギー中心と、最長マークと最長スペースの振幅の中心との比を示す指標値の期待値を指定する指標値指定回路と、前記指標値の期待値に応じて前記最尤復号ステップで用いるサンプリング信号の各期待値を算出する算出回路とから構成され、前記復号回路では、前記算出回路で算出したサンプリング信号の各期待値を用いることを特徴とする。
【0027】
本発明の光ディスクは、トラックにマークとスペースで記録された情報を再生する際に、所定の期間における再生信号のサンプリング信号列に対し、各デジタル情報列に対応した再生信号のサンプリング信号の期待値列との差を検出し、差が最小となるデジタル情報列を前記再生信号の復号結果として選択する最尤復号方式によりデジタル情報が復号される、光ディスクであって、前記最尤復号で用いるサンプリング信号の各期待値の情報があらかじめ記録されていることを特徴とする。
【0028】
また、あらかじめ記録されている前記各期待値の情報は、PR(1,2,2,2,1)等化に対応した9レベルの値であってもよい。
【0029】
また、前記光ディスクに記録される情報は1−7変調方式に従って記録され、PR(1,2,2,2,1)等化では16種類のパターンが存在し、あらかじめ記録されている前記各期待値の情報は、前記16種類のパターンに対応した値であってもよい。
【0030】
また、あらかじめ記録されている前記各期待値の情報は、トラックのウォブリングにより記録されていてもよい。
【0031】
また、あらかじめ記録されている前記各期待値の情報は、トラック上のマークとスペースにより記録されていてもよい。
【0032】
また、あらかじめ記録されている前記各期待値の情報は、BCA(Burst Cutting Area)に記録されていてもよい。
【0033】
また、トラックに照射するレーザの波長がλ、レーザをトラックに集光する対物レンズの開口数がNA、トラック上に記録される最短マーク長がTmおよび最短スペース長がTsであり、(Tm+Ts)<λ/(2NA)となってもよい。
【0034】
また、前記レーザの波長λが400nmから410nmであってもよい。
【0035】
また、前記対物レンズの開口数NAが0.84から0.86であってもよい。
【0036】
また、前記最短マーク長Tmと最短スペース長Tsを加算した長さTm+Tsが、238.2nm未満であってもよい。
【発明の効果】
【0037】
本発明によれば、光ディスクの記録性能を十分に発揮できるような記録マークの位置やサイズの記録条件の目標を決定し、目標通りに記録した記録マークを再生した際の再生信号のエネルギー中心と、最長マークと最長スペースの再生信号の振幅の中心との比(β値)を求め、このβ値に基づいて最尤復号に用いる期待される理想的な再生信号の値Eiを算出し、算出した期待値Eiを用いて最尤復号を行う。ここで、最尤復号した2値化データのエラーレートが小さくなるように、あるいは特許文献1に記載されている再生信号品質の評価指標の値が小さくなるように記録条件の調整を行うことにより、光ディスクの記録性能を十分に発揮できるよう調整を行うことが可能となる。
【0038】
また、上述のように記録調整を行って記録すれば、記録した光ディスク装置とは別の光ディスク装置で当該光ディスクを再生する際において、再生の互換性能の確保が容易となる。
【0039】
また、あらかじめピットにより情報が記録されている再生専用の光ディスク(ROMディスク)の再生においても、当該光ディスクの再生信号に対応したβ値の情報を取得し、取得したβ値に基づいて最尤復号に用いる期待される理想的な再生信号の値Eiを算出して、最尤復号に適用することにより、低いエラーレートで安定した再生性能を確保することが可能となる。
【発明を実施するための最良の形態】
【0040】
以下、本発明に係る最尤復号方法、光ディスク装置、光ディスクの実施形態について説明する。
【0041】
(実施の形態1)
図1は、本発明の実施の形態1における光ディスク装置の構成を示すブロック図である。
【0042】
光ディスク装置118は、光ディスク100からデータを再生し、光ディスク100にデータを記録することが可能である。なお、データの記録をする機能は必須ではなく、光ディスク装置118は、再生専用の光ディスクプレーヤーであってもよい。このときは、後述する光ディスク装置118のデータ変調回路114、記録補償回路115、レーザ制御回路116は不要である。
【0043】
光ディスク100の物理的構成を図10に示す。円盤状の光ディスク1には、例えばスパイラル状に多数のトラック2が形成されており、各トラック2には細かく分けられた多数のセクタが形成されている。なお、各トラック2には予め定められたサイズのブロック3を単位としてデータが記録される。また、トラック2は、蛇行して形成されており、蛇行の周波数あるいは位相の変調により各ブロック3毎に対応したアドレス値が記録されている。
【0044】
光ディスク装置118は、光ヘッド101、モータ102、サーボ回路103、A/D変換回路104、DC制御回路105、PLL回路106、PR等化フィルタ107、ビタビ復号回路108、データ復調回路109、品質評価回路110、ディスク情報再生回路111、CPU112、データ変調回路114、記録補償回路115、レーザ制御回路116を備えている。
【0045】
サーボ回路103、A/D変換回路104、DC制御回路105、PLL回路106、PR等化フィルタ107、ビタビ復号回路108、データ復調回路109、品質評価回路110、ディスク情報再生回路111、CPU112、データ変調回路114、記録補償回路115、レーザ制御回路116は、1つのチップ回路(光ディスクコントローラ)117として実装されている。なお、これらの全てが1チップ化されていなくてもよい。例えば、サーボ回路103は含まれなくてもよい。または、レーザ制御回路116を光ヘッド101内に組み込んでもよい。さらに、これらを1チップ化せずに個々の回路として別々に設けてもよい。上述の光ディスク100は光ディスク装置118から取り外し可能であるため、光ディスク装置118の必須の構成要素ではないことに留意されたい。
【0046】
光ヘッド101は、光ディスク100に光ビームを照射し、トラックを走査しながら光ディスク100からの反射光量を検出して反射光量に応じた電気信号(再生信号)を出力する。いずれも図示されないが、光ヘッド101には、光ビームを放射する光源と、光ビームを集束させるレンズと、光ディスク100の情報記録層で反射した光ビームを受けて、再生信号を出力する受光部が設けられている。
【0047】
モータ102は、光ディスク100を指定された回転数で回転させる。
【0048】
サーボ回路103は、光ヘッド101からの再生信号から光ビームのトラックへの集光状態に応じたサーボエラー信号を生成抽出し、サーボエラー信号を用いて、光ヘッド101のトラックにおける光ヘッド101からの光ビームの集光状態、トラックの走査状態が最適な状態になるように制御を行う。また、光ビームを照射する光ディスク100上の半径位置(たとえばトラック位置)およびモータ102の回転数を最適に制御する。
【0049】
A/D変換回路104は、光ヘッド101からの再生信号からトラック上に記録されたマーク/スペースに応じたデータ再生信号を再生クロックでサンプリングしたサンプリング信号を出力する。
【0050】
DC制御回路105は、サンプリング信号のエネルギー中心レベルを検出し、エネルギー中心レベルが以降の処理回路のゼロレベル(信号処理の中心レベル)になるようにサンプリング信号のDCレベルを制御する。図2は、DC制御回路の構成を示すブロック図である。DC制御回路105は、加算回路200、加算器と遅延回路からなる積分回路201、ゲイン回路202から構成される。加算回路200は、入力されたサンプリング信号から検出したエネルギー中心レベルを減算することにより、エネルギー中心がゼロレベルとなるようにDCオフセット成分を除去するものである。積分回路201は、DC制御後のサンプリング信号の値を積算することにより、エネルギー中心レベルを検出する。ゲイン回路202は、積分回路201により検出されたエネルギー中心レベルを、加算器200に入力するDC制御レベルへとフィードバックする応答性を決めるものである。データ再生信号が有する周波数成分まで影響があってはならないため、通常1000分の1より小さい値とするのが望ましい。
【0051】
PLL回路106は、DC制御後のサンプリング信号を用いて、データ再生信号のチャネル周波数に同期した再生クロックを生成する。再生クロックは、A/D変換回路104でのサンプリング、DC制御回路105、PR等化フィルタ107、ビタビ復号回路108、データ復調回路109のデジタル回路を処理クロックとしても用いられる。なお、再生信号に同期した再生クロックを生成してA/D変換回路104でサンプリングする構成としたが、これに限定されるものではない。例えば、A/D変換回路104では再生クロックよりも高い周波数でサンプリングし、その後、デジタルフィルタなどによりサンプリング信号をチャネル周波数に同期したデジタル信号に変換するITR(Interpolated Timing Recoverly)方式によるPLL回路であってもよい。
【0052】
PR等化フィルタ107は、光ディスク100の記録密度に応じて発生する符号間干渉に適した周波数特性を持つように、DC制御後のサンプリング信号に対してPR等化処理を行うデジタルフィルタである。例えば、図9(A)に示すように、従来の記録密度(情報記録層1層あたり25GB)のBDの場合、レーザ波長904は405nm、対物レンズ903の開口数(Numerical Aperture;NA)は0.85、トラック900に記録される最短記録マーク2T902の長さは149nmであり、この場合、PR(1,2,2,1)等化が最も適している。また、図9(B)に示すように、さらに記録密度を高めて情報記録層1層あたり33.4GBとした場合、トラック900に記録される最短記録マーク2T906の長さは111.5nmとなり、この場合、PR(1,2,2,2,1)等化が最も適している。以後、PR(1,2,2,2,1)等化を例として説明する。なお、PR等化フィルタ107は、係数が固定のデジタルフィルタであってもよいし、PR(1,2,2,2,1)の周波数特性に近くなるように適応的に係数を制御する適応デジタルフィルタであってもよい。
【0053】
ビタビ復号回路108は、前述の通り、PR等化フィルタ107の出力信号に対し、式(1)で求められる信号期待値との差の2乗の累積値Lが最小となるような状態遷移列が選択され、対応した2値化データに復号する。PR(1,2,2,2,1)MLの場合における信号期待値に関して、図3と図4を用いて説明する。図3は、5T分の2値化データのビットパターン300に対する信号期待値のレベル302を示している。例えばBDの場合、1−7変調方式であるため最短マーク/スペースの長さは2Tとなり、5T分のビットパターン300は全部で32通りあるが、このうち1Tが含まれるものを除去すれば図3の状態301に示すように16通りのパターンに絞られる。これらの16通りのビットパターン300に対し、PR(1,2,2,2,1)の周波数特性で畳込むと0から8の9レベルとなり、信号期待値302はこれら9レベルを中心レベル4を0として−4から+4の値としたものである。図4は、図3で求めたビットパターン300と信号期待値302に基づいて、2Tから9Tまでの理想的な再生信号を示している。信号400は2T波形、信号401は3T波形、信号402は4T波形、信号403は5T波形、信号404は6T波形、信号405は7T波形、信号406は8T波形、信号407は9T波形である。信号レベル408は信号期待値レベル+4、信号レベル409は信号期待値レベル+3、信号レベル410は信号期待値レベル+2、信号レベル411は信号期待値レベル+1、信号レベル412は信号期待値レベル0(中心レベル)、信号レベル413は信号期待値レベル−1、信号レベル414は信号期待値レベル−2、信号レベル415は信号期待値レベル−3、信号レベル416は信号期待値レベル−4である。ここで、信号振幅を−0.5から+0.5とすると、各信号期待値レベルの間隔は0.125ずつとなる。ビタビ復号回路108では、通常は図4に示すとおり、−0.5から+0.5まで0.125間隔の9レベルの信号期待値を用いて最尤復号処理を行う。
【0054】
データ復調回路109は、ビタビ復号回路108により復号された2値化データを1−7PP変調方式に従って復調し、再生データを出力する。
【0055】
品質評価回路110は、例えば特許文献1に記載されているように、再生信号の品質を示す評価指標値を算出する回路である。
【0056】
ディスク情報再生回路111は、光ヘッド101からの再生信号から、光ディスク100に予め記録されているアドレス情報やディスクコントロール情報を再生する。
【0057】
データ変調回路114は、光ディスク100のトラック上の所定のブロックに記録データを記録するときに、記録データを1−7PP変調方式に従って変調した変調信号を出力する。
【0058】
記録補償回路115は、光ディスク100のトラックに適切に記録マークが形成されるように、変調信号から、記録マークのエッジ位置のタイミングや記録パワーの高低を制御する記録補償信号を生成する。
【0059】
レーザ制御回路116は、記録補償信号に応じて、光ヘッド101による光ビームの照射パワーを制御する。これにより、光ディスク100のトラック上に記録マークが形成される。
【0060】
CPU112は、ディスク情報再生回路111で再生されたアドレス情報を得て、サーボ回路103に指示してデータの記録および再生を行うブロックを検索し、検索したブロック位置において各回路に対して記録動作、再生動作の指示を出す。これにより、各回路は、行おうとしている記録動作または再生動作に適合した光ビームの照射パワーで、光ヘッド101が光ビームを照射するよう制御する。
【0061】
また、CPU112は、ディスク情報再生回路111で再生されたディスクコントロール情報に含まれるβ指定値を取得し、取得したβ値に基づいてビタビ復号回路108の各信号期待値を設定する、期待値算出処理113を含んでいる。図7に、期待値算出処理113の処理工程を示す。まずステップ700において、サーボ回路103およびディスク情報再生回路111に指示を出して、ディスクコントロール情報の記録されたトラックを検索し、ディスクコントロール情報を再生する。ステップ701で、再生したディスクコントロール情報から、所定のフォーマットにしたがってβ指定値を抽出する。次にステップ702において、β指定値を基に所定の計算式に従って、ビタビ復号回路108で用いる各信号期待値を算出する。ステップ703で、算出した各信号期待値をビタビ復号回路108に対して設定する。以上の後、ステップ704において、サーボ回路103とディスク情報再生回路111に指示を出して、データを再生するトラックを検索し、データを再生する。なお、信号期待値を算出する処理をCPU112が行うとしているが、この算出処理は、ビタビ復号回路108あるいはディスク情報再生回路111によって行われてもよい。
【0062】
次に、図5と図6を参照しながら、期待値算出処理113におけるステップ702の信号期待値の算出方法を説明する。
【0063】
図5は、データ再生信号の波形を示している。ここでデータ再生信号500は、DC制御回路105によりエネルギー中心がゼロレベルになるように制御されるため、再生信号エネルギー中心レベル501はゼロレベルになっている。データ再生信号500の最大振幅レベル502をA、最小振幅レベル503をBとしたとき、β値は、(A+B)/(A−B)×100として定義される値である。例えば、Aが+0.45、Bが−0.55の場合、β値は10%となる。
【0064】
図6は、β値に対し、PR等化フィルタ107によりサンプリング信号にPR等化を施した後の出力信号において、前述した図3および図4に示す信号の各9レベルが、均等間隔の理想的な状態からずれてしまう関係を示している。信号レベル600は信号期待値レベル+4、信号レベル601は信号期待値レベル+3、信号レベル602は信号期待値レベル+2、信号レベル603は信号期待値レベル+1、信号レベル604は信号期待値レベル0(中心レベル)、信号レベル605は信号期待値レベル−1、信号レベル606は信号期待値レベル−2、信号レベル607は信号期待値レベル−3、信号レベル608は信号期待値レベル−4に相当する。信号振幅を−0.5から+0.5とした場合、β値が0%では理想的な0.125間隔の均等レベルである。エネルギー中心がゼロレベルになるように制御した状態では、中心レベルの信号レベル604は、β値が大きくなるとレベルが下がり、β値が小さくなるとレベルが上がるようにずれていく特徴を持つ。他のレベルについては、β値が大きくなると、中心レベルより上の各レベルの間隔が広がり、下の各レベルの間隔が狭まる。逆に、β値が小さくなると、中心レベルより上の各レベルの間隔が狭まり、下の各レベルの間隔が広がるようにずれていく特徴を持つ。以上より、各レベルの値がβ値に応じて変化する関係を、例えば、Vn=Pn・β+Qnのような一次式で近似することができる。ここで、nは−4から+4の各レベル、Vnはレベルnの信号期待値、Pnはレベルnのβ値に対する傾きを示す係数、βはβ値、Qnはレベルnのβ値が0%のときの信号期待値を表している。この関係式を用いて、取得したβ指定値から各レベルの信号期待値を算出することができる。
【0065】
なお、関係を一次式としたが、二次以上の多項式近似であってもよい。
【0066】
また、β値が0%のときの信号期待値Qnを理想的な0.125間隔の均等レベルとしたが、情報記録層1層あたり33.4GBという高密度記録においては、2T、3Tといった短いマークの振幅が非常に小さく、PR等化フィルタ107の出力信号として均等レベルにまで至らないこともあり、このような場合は、例えばβ値が0%のときの3T信号の振幅を示す信号期待値Q+2とQ-2をそれぞれ+0.250、−0.250ではなく、+0.220、−0.220としてもよい。
【0067】
また、例えば一次式の関係とした場合、係数Pnについて実験的に次のような範囲になることが分かっている。
−0.526<P-4<−0.283
−0.158<P-3<−0.085
+0.072<P-2<+0.133
+0.005<P-1<+0.009
+0.183<P0<+0.138
−0.005<P+1<+0.005
+0.087<P+2<+0.162
−0.236<P+3<−0.127
−0.380<P+4<−0.706
【0068】
以上により、光ディスク100の繰り返し記録の特性や経年劣化特性が最大限に発揮できる最適記録条件として指定されたβ指定値を取得し、β指定値に応じてビタビ復号回路108における信号期待値を算出して設定した状態で、光ディスク100に記録し、そして再生して品質評価回路110による品質指標値を参照し、品質指標値が小さくなるように記録補償回路115における記録マークのエッジ位置のタイミングと記録パワーの高低、レーザ制御回路116における光ビームの照射パワーを適切に調整することにより、光ディスク100の最適記録条件で記録することが可能となる。
【0069】
なお、信号期待値を9レベルで設定するとしたが、これに限定されるものではない。例えば、PR(1,2,2,2,1)の場合では、図3に示す状態301の16パターンそれぞれに対して設定してもよいし、変化が出やすい2T、3Tに関連する信号レベルを状態301毎に分けて、他の信号レベルはそれぞれまとめて設定してもよい。
【0070】
なお、光ディスク装置118は、CPU112、データ復調回路109、データ変調回路114、ディスク情報再生回路111を含む構成としたが、これに限定されるものではない。例えば、CPU112、データ復調回路109、データ変調回路114、ディスク情報再生回路111がなく、別にホストコンピュータが接続されている光ディスク評価装置であってもよい。
【0071】
(実施の形態2)
図8は、本発明の実施の形態2における光ディスクの領域構成を示す。
【0072】
光ディスク800は、情報記録層を含む。情報記録層に記録マークを形成することによって、光ディスク800にデータが記録される。光ディスク800には、トラックが同心円状に形成されている。
【0073】
光ディスク800は、BCA(Burst Cutting Area)領域810と、リードイン領域820と、ユーザー領域830と、リードアウト領域840とを含む。
【0074】
BCA領域810は、予めバーコード状の信号が記録されており、ディスク1枚ごとに異なるメディア識別用の固有の番号や、著作権情報や、ディスク特性情報が含まれる。このディスク特性情報には、情報記録層の層数やアドレス管理方法の識別情報が含まれている。上記ディスク特性情報として、たとえば情報記録層の層数そのものを表す情報、許可層数に応じた所定のビット情報、記録密度に関する情報が含まれている。記録密度に関する情報としては、例えば、光ディスクの記録容量を示す情報、チャネルビット長(記録線密度)を示す情報が挙げられる。
【0075】
また、この記録密度に関する情報の格納位置は、再生専用型ディスクの場合、BCA領域、および/または、記録データ(凹凸ピット)の内部(データに付加されるデータアドレスとして記録)などが考えられる。追記型又は書換型の記録型ディスクの場合は、BCA領域、および/または、PIC領域、および/または、ウォブル(ウォブルに重畳される副情報として記録)などが考えられる。
【0076】
ユーザー領域830は、ユーザーが任意のデータを記録し得るように構成されている。ユーザー領域830には、例えば、ユーザーデータが記録される。ユーザーデータには、例えば、オーディオデータおよびビジュアル(ビデオ)データが含まれる。
【0077】
リードイン領域820は、ユーザー領域830とは異なって、ユーザーが任意のデータを記録し得るようには構成されていない。リードイン領域820は、PIC(Permanent Information and Control data)領域821とOPC(Optimum Power Calibration)領域822とINFO領域823を含む。
【0078】
PIC領域821には、ディスク特性情報が含まれる。このディスク特性情報には、たとえば上記で説明した、情報記録層の層数、アドレス管理方法の識別情報、アクセスパラメータが記録されている。アクセスパラメータは、例えば、光ディスク800に複数の記録マークを形成/消去するためのレーザパワーに関するパラメータ、および複数の記録マークを記録するための記録パルス幅に関するパラメータである。
【0079】
光ディスク800には、繰り返し記録の特性や経年劣化特性が最大限に発揮できる最適記録条件で記録した状態を再生するときの最尤復号に用いる信号期待値レベルの各値が、BCA領域、および/または、PIC領域に記録されている。この値を取得し、前述の実施の形態1に示すように、最尤復号の信号期待値レベルとして設定することにより、最適な状態で再生することが可能となる。
【0080】
なお、本実施形態においては、BCA領域810およびPIC領域821のいずれにも最尤復号に用いる信号期待値レベルの各値を含むディスク特性情報が格納されているとした。しかしながらこれは例であり、この例には限られない。たとえばBCA領域,PIC領域,記録データの内部,ウォブルのいずれか、これらの任意の2以上領域などでもよい。なお、同じディスク特性情報が複数箇所に分けて記録されれば、いずれかから読み出すことができる。よってディスク特性情報の信頼性を確保することが可能となる。また、ディスクの種類が未知であっても、光ディスク装置は、予め位置決めされたそれらの領域にディスク特性情報を格納しておくことで、確実にそのディスクの情報記録層の層数などを知ることができる。
【0081】
なお、複数の情報記録層が存在する場合、ディスク特性情報が配置される情報記録層(基準層)は、例えば、光ヘッドから最も距離が遠い位置にある層、換言すれば、レーザ光が入射する側の表面から最も深い位置の層であっても構わない。
【0082】
なお、最尤復号に用いる信号期待値レベルの各値をディスク特性情報に含むとしたが、これに限定されるものではない。例えば、各信号期待値レベルの間隔であってもよいし、β指定値から各信号期待値レベルを求める計算式の係数であってもよい。
【0083】
なお、上述の実施の形態について、最尤復号(ビタビ復号回路108)の信号期待値を変更することとしたが、信号期待値を変更可能な範囲を定めてもよい。例えば、図11(A)は、PR(1,2,2,2,1)ML方式の場合において、最尤復号で誤る可能性が比較的高くなるユークリッド距離が小さい2つのビットパターンに対応する理想的な信号波形の例を示している。この2つの信号波形の場合、ユークリッド距離の2乗が14となる。図11(B)は、この2つのビットパターンにおいて、β値が−10%として算出した信号期待値を用いた場合の信号波形の例を示している。このとき、ユークリッド距離の2乗は13.71となり、元の14に対し約2%小さく、復号誤りしやすい側へと変化している。図12は、上記のビットパターンにおけるβ値に対するユークリッド距離の2乗の値の変化を示している。ユークリッド距離の2乗が大きいほど復号誤りに対する余裕が大きくなるため、例えば、β指定値(あるいは対応する信号期待値)の範囲を−15%以上と定めてもよい。
【0084】
また最後に、本発明の光ディスクの一例として、BD(ブルーレイディスク)について、簡単に補足説明をする。ブルーレイディスクの主な光学定数と物理フォーマットについては、「ブルーレイディスク読本」(オーム社出版)やブルーレイアソシエーションのホームページ(http://www.blu-raydisc.com/)に掲載されているホワイトペーパに開示されている。
【0085】
BDでは、波長405nm(誤差範囲の許容値を±5nmとすれば、400〜410nm)のレーザ光およびNA=0.85(誤差範囲の許容値を±0.01とすれば、0.84〜0.86)の対物レンズを用いる。トラックピッチは0.32μmであり、チャネルクロック周波数はBD標準転送レート(1X)において66MHz(66.000Mbit/s)であり、BD4xの転送レートでは264MHz(264.000Mbit/s)、BD6xの転送レートでは396MHz(396.000Mbit/s)、BD8Xの転送レートでは528MHz(528.000Mbit/s)である。標準線速度(基準線速度、1X)は4.917m/secである。
【0086】
保護層(カバー層)の厚みに関しては、開口数を上げ焦点距離が短くなるのに伴い、またチルトによるスポット歪みの影響を抑えられるよう、DVDの0.6mmに対して、より薄い保護層、例えば媒体の総厚み1.2mm程度のうち、保護層の厚みを10〜200μm(より具体的には、1.1mm程度の基板に、単層ディスクならば0.1mm程度の透明保護層、二層ディスクならば0.075mm程度の保護層に0.025mm程度の中間層(SpacerLayer)としてもよい。三層以上のディスクならば保護層及び/又は中間層の厚みはさらに薄くなる。
【産業上の利用可能性】
【0087】
本発明は、光ディスクの記録密度の高密度化において有用であり、大容量な光ディスクおよびその再生方法、光ディスク装置、集積回路に利用できる。
【図面の簡単な説明】
【0088】
【図1】実施形態1による光ディスク装置の構成を示すブロック図である。
【図2】光ディスク装置のDC制御回路の構成を示すブロック図である。
【図3】PR(1,2,2,2,1)の場合のビットパターンに対する最尤復号の信号期待値を示す図である。
【図4】PR(1,2,2,2,1)の場合の理想的な等化処理を施した再生信号の信号レベルを示す図である。
【図5】データ再生信号のβ値を示す図である。
【図6】β値と最尤復号の信号期待値との関係の例を示す図である。
【図7】β指定値から最尤復号の信号期待値を求める工程を示す図である。
【図8】実施形態2による光ディスクの領域構成を示す図である。
【図9】(A)は従来の記録密度のBDの例を示す図であり、(B)は、BDよりも高い記録密度の高密度ディスクの例を示す図である。
【図10】光ディスクの物理的構成を示す図である。
【図11】(A)はユークリッド距離の2乗が14となる2つのビットパターンの理想波形であり、(B)はβ値が−15%となった場合の波形の例を示す図である。
【図12】2つのビットパターンのユークリッド距離の2乗とβ値との関係の例を示す図である。
【符号の説明】
【0089】
100、800、1 光ディスク
101 光ヘッド
102 モータ
118 光ディスク装置
200 加算回路
201 積分回路
202 ゲイン回路
500 データ再生信号
900、2 トラック
901、902、905、906 記録マーク
3 ブロック

【特許請求の範囲】
【請求項1】
光ディスクのトラックにマークとスペースで記録された情報を再生した再生信号のサンプリング信号から最も確からしいデジタル情報を復号する最尤復号方法であって、
所定の期間における前記再生信号のサンプリング信号列に対し、各デジタル情報列に対応した再生信号のサンプリング信号の期待値列との差を検出し、差が最小となるデジタル情報列を前記再生信号の復号結果として選択する最尤復号ステップと、
前記再生信号のエネルギー中心と、最長マークと最長スペースの振幅の中心との比を示す指標値の期待値を指定する指標値指定ステップと、
前記指標値の期待値に応じて前記最尤復号ステップで用いるサンプリング信号の各期待値を算出する算出ステップと
から構成され、
前記最尤復号ステップでは、前記算出ステップで算出したサンプリング信号の各期待値を用いることを特徴とする最尤復号方法。
【請求項2】
前記最尤復号ステップは、ビタビ復号であることを特徴とする請求項1に記載の最尤復号方法。
【請求項3】
前記再生信号のサンプリング信号のエネルギー中心レベルを検出し、検出したエネルギー中心レベルが前記最尤復号ステップの処理の中心レベルになるように前記サンプリング信号のDCレベルを制御するDC制御ステップをさらに有することを特徴とする請求項1に記載の最尤復号方法。
【請求項4】
前記再生信号のサンプリング信号が所定の周波数特性を持つように等化するパーシャルレスポンス等化ステップをさらに有し、パーシャルレスポンス等化ステップの出力信号が前記最尤復号ステップに入力されることを特徴とする請求項1に記載の最尤復号方法。
【請求項5】
前記パーシャルレスポンス等化ステップの等化特性は、PR(1,2,2,2,1)等化であることを特徴とする請求項4に記載の最尤復号方法。
【請求項6】
前記最尤復号ステップで用いるサンプリング信号の期待値は、PR(1,2,2,2,1)等化に対応した9レベルの値であることを特徴とする請求項5に記載の最尤復号方法。
【請求項7】
前記光ディスクに記録された情報は1−7変調方式に従って記録され、PR(1,2,2,2,1)等化では16種類のパターンが存在し、前記最尤復号ステップで用いるサンプリング信号の期待値は、前記16種類のパターンに対応した値であることを特徴とする請求項5に記載の最尤復号方法。
【請求項8】
光ディスクのトラックにマークとスペースで記録された情報を再生する光ディスク装置であって、
前記光ディスクに対してレーザを照射し、反射光の光量に応じた再生信号を出力する光ヘッドと、
前記再生信号から再生クロックを生成する再生クロック生成回路と、
前記再生信号を前記再生クロックでサンプリングしたサンプリング信号を出力するA/D変換回路と、
前記サンプリング信号から最も確からしいデジタル情報を復号する最尤復号回路と
を備えており、
前記最尤復号回路は、
所定の期間における前記サンプリング信号列に対し、各デジタル情報列に対応した再生信号のサンプリング信号の期待値列との差を検出し、差が最小となるデジタル情報列を前記再生信号の復号結果として選択する復号回路と、
前記再生信号のエネルギー中心と、最長マークと最長スペースの振幅の中心との比を示す指標値の期待値を指定する指標値指定回路と、
前記指標値の期待値に応じて前記最尤復号ステップで用いるサンプリング信号の各期待値を算出する算出回路と
から構成され、
前記復号回路では、前記算出回路で算出したサンプリング信号の各期待値を用いることを特徴とする光ディスク装置。
【請求項9】
前記復号回路は、ビタビ復号回路であることを特徴とする請求項8に記載の光ディスク装置。
【請求項10】
前記再生信号のサンプリング信号のエネルギー中心レベルを検出し、検出したエネルギー中心レベルが前記復号回路の処理の中心レベルになるように前記サンプリング信号のDCレベルを制御するDC制御回路をさらに有することを特徴とする請求項8に記載の光ディスク装置。
【請求項11】
前記再生信号のサンプリング信号が所定の周波数特性を持つように等化するパーシャルレスポンス等化回路をさらに有し、パーシャルレスポンス等化回路の出力信号が前記復号回路に入力されることを特徴とする請求項8に記載の光ディスク装置。
【請求項12】
前記パーシャルレスポンス等化回路の等化特性は、PR(1,2,2,2,1)等化であることを特徴とする請求項11に記載の光ディスク装置。
【請求項13】
前記最尤復号回路で用いるサンプリング信号の期待値は、PR(1,2,2,2,1)等化に対応した9レベルの値であることを特徴とする請求項12に記載の光ディスク装置。
【請求項14】
前記光ディスクに記録された情報は1−7変調方式に従って記録され、PR(1,2,2,2,1)等化では16種類のパターンが存在し、前記最尤復号回路で用いるサンプリング信号の期待値は、前記16種類のパターンに対応した値であることを特徴とする請求項12に記載の光ディスク装置。
【請求項15】
前記光ディスクにはあらかじめ前記指標値の期待値の情報が記録されており、前記指標値指定回路は取得した期待値の情報を指標値の期待値とすることを特徴とする請求項8に記載の光ディスク装置。
【請求項16】
光ディスクのトラックにマークとスペースで記録された情報を再生した再生信号を復号する集積回路であって、
前記再生信号から再生クロックを生成する再生クロック生成回路と、
前記再生信号を前記再生クロックでサンプリングしたサンプリング信号を出力するA/D変換回路と、
前記サンプリング信号から最も確からしいデジタル情報を復号する最尤復号回路と
を備えており、
前記最尤復号回路は、
所定の期間における前記サンプリング信号列に対し、各デジタル情報列に対応した再生信号のサンプリング信号の期待値列との差を検出し、差が最小となるデジタル情報列を前記再生信号の復号結果として選択する復号回路と、
前記再生信号のエネルギー中心と、最長マークと最長スペースの振幅の中心との比を示す指標値の期待値を指定する指標値指定回路と、
前記指標値の期待値に応じて前記最尤復号ステップで用いるサンプリング信号の各期待値を算出する算出回路と
から構成され、
前記復号回路では、前記算出回路で算出したサンプリング信号の各期待値を用いることを特徴とする集積回路。
【請求項17】
トラックにマークとスペースで記録された情報を再生する際に、所定の期間における再生信号のサンプリング信号列に対し、各デジタル情報列に対応した再生信号のサンプリング信号の期待値列との差を検出し、差が最小となるデジタル情報列を前記再生信号の復号結果として選択する最尤復号方式によりデジタル情報が復号される、光ディスクであって、
前記最尤復号で用いるサンプリング信号の各期待値の情報があらかじめ記録されていることを特徴とする光ディスク。
【請求項18】
あらかじめ記録されている前記各期待値の情報は、PR(1,2,2,2,1)等化に対応した9レベルの値であることを特徴とする請求項17に記載の光ディスク。
【請求項19】
前記光ディスクに記録される情報は1−7変調方式に従って記録され、PR(1,2,2,2,1)等化では16種類のパターンが存在し、あらかじめ記録されている前記各期待値の情報は、前記16種類のパターンに対応した値であることを特徴とする請求項17に記載の光ディスク。
【請求項20】
あらかじめ記録されている前記各期待値の情報は、トラックのウォブリングにより記録されていることを特徴とする請求項17に記載の光ディスク。
【請求項21】
あらかじめ記録されている前記各期待値の情報は、トラック上のマークとスペースにより記録されていることを特徴とする請求項17に記載の光ディスク。
【請求項22】
あらかじめ記録されている前記各期待値の情報は、BCA(Burst Cutting Area)に記録されていることを特徴とする請求項17に記載の光ディスク。
【請求項23】
トラックに照射するレーザの波長がλ、レーザをトラックに集光する対物レンズの開口数がNA、トラック上に記録される最短マーク長がTmおよび最短スペース長がTsであり、(Tm+Ts)<λ/(2NA)となる、請求項17に記載の光ディスク。
【請求項24】
前記レーザの波長λが400nmから410nmである、請求項23に記載の光ディスク。
【請求項25】
前記対物レンズの開口数NAが0.84から0.86である、請求項23に記載の光ディスク。
【請求項26】
前記最短マーク長Tmと最短スペース長Tsを加算した長さTm+Tsが、238.2nm未満である、請求項23に記載の光ディスク。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2010−140519(P2010−140519A)
【公開日】平成22年6月24日(2010.6.24)
【国際特許分類】
【出願番号】特願2008−313117(P2008−313117)
【出願日】平成20年12月9日(2008.12.9)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】