説明

分光方法

多次元分光方法は制御可能な励起光源パラメータを有し、サンプルの振動モードを励起し、その一方で前記パラメータを制御しサンプルから反射された信号を生成し、ホモダイン検出により信号を検出し、反射された信号からサンプルのスペクトルを獲得する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分光方法に関し、特に多次元の分光方法に関する。
【背景技術】
【0002】
2以上のレベルのシステムの結合を検査する方法として分光方法はよく知られている。1つの既知の方法は2次元核磁気分光方法(2D−NMR)である。このようなシステムの1例は文献(Friebolin “Basic one- and two-dimensional NMR spectroscopy ”1993年4 月)に記載されている。NMRはよく知られているように外部磁界による磁気核の相互作用に依存している。NMRスペクトル中の混雑したデータを広げるために2D−NMRが開発された。典型的な2D−NMR方式では、サンプルは遅延期間により分離された第1と第2の励起パルスを与えられる。サンプル内の相互作用のために、特にスピン間の結合のために、第2の励起パルスから得られた情報は余分の次元を与える第1の励起パルスから得られた情報とは異なっている。フーリエ変換が各励起パルスからの時間スペクトルに適用されて各周波数スペクトルが得られる。その周波数スペクトルは直交軸でプロットされて表面を形成する。その表面のピークはサンプル内の相互作用に関する付加的な情報を提供する。
【0003】
2D−NMRプロットは分子構造を決定し、溶液中の成分を識別するための特有の特性の特徴(フィンガープリント)を与える。化学、生物学その他の規律における分子の複雑な混合物の解析のために非常に多数の応用がある。しかしながら、2D−NMRは感度が低く、検出は典型的に1015乃至1018程度の分子に制限される。さらに、2D−NMRは時間ドメインで限定された分解能しか与えることができない。
【0004】
別の従来知られている分光方法では、2D−NMR分光方法で使用されたのと類似した技術が2D振動または赤外線(IR)分光方法で採用され、そこでは原子または分子の振動モードが励起される。そのような既知の技術はいわゆる“ポンプ・プローブ”技術であり、文献(Woutersen 等J.Phys.Chem.B104, 11316-11320, 2000)に記載されている。さらに2D−IRポンプ・プローブ実験が行なわれ、それについては例えば文献(Hamm等Proc.Nat.Acad.Sci.96, 2036. 1999年)に記載されている。
【0005】
従来知られている2D−IRシステムによれば、第1に、ポンプパルスにプローブパルスが後続し結果的な周波数スペクトルが各軸にプロットされてサンプル中の振動−振動相互作用についての情報を表している表面を提供している。結合された2レベル量子システムの数学的記述は本質的に同一であるので、解析原理および2D−NMR中で使用される技術派同様に2D−IR分光分析に適用可能である。しかしながら、検出は入力レーザ雑音により厳しく制限され、その結果、サンプルからの付加的な不所望の非共振背景信号の伝送から生じる大きな背景信号状態で非常に小さい変化を示している。
【0006】
不所望の背景信号を生じることなく、全周波数で所定の複合化学的サンプルの時間的結果のフィンガープリントを可能にする分子相互作用の時間スケールにダウンするように高い時間的分解能と組合わせて高品質の出力信号を提供する技術は存在していない。
【0007】
前述した分光技術に加えて、レーザ誘起蛍光(LIF)、分散蛍光励起(DFE)、共振強調多数光子イオン化(REMPI)、光電子分光分析(PES)のような多数の既知の技術が存在し、それらは気相で分子の振動を検出するために可視レーザ光の強力な電子吸収を行う利点がある。しかしながら、これらの技術は濃縮された相で振動を解析することはできず、小さい分子にしか適用できない。
【0008】
ラーマン分光分析は濃縮された相で振動を解析できる別の可視レーザ技術である。可視ビームはサンプルから散乱され、その散乱された光の波長の小さい変化が測定される。これらの変化は直接振動転移に対応している。ラーマン分光分析は濃縮された相中の構造および組成に対しては非常に強力な技術であるが、1次元であり、サンプルが濃縮されなければ非常に有効ではない。それは周波数が近赤外線に近付く振動を検出するためには適していない。
【発明の開示】
【発明が解決しようとする課題】
【0009】
共振ラーマン分光は、可視ビームを電子的共振付近に同調することにより散乱した信号を増加させて通常のラーマン分光分析の感度の問題を改善する。散乱を刺激するために付加的な可視ビームがCARS(コヒーレントなアンチストークスラーマン散乱)を与える。CARSは共振または“プレ共振”で行なわれることができる。共振CARSおよびラーマンは2次元の技術であるが特に共振のときに共に感度を制限する非共振背景の問題の影響を受ける。
【0010】
2次元分光分析技術の別の特徴によれば、有用な出力信号を生成するために、使用されるサンプルは高品質でなければならない。例えば、正確な結果を生成するためには凹凸のない完全に平坦なサンプル層を設けることが必要である。そのような高品質のサンプルの処理は高価で時間がかかり、それ故、その技術が行なわれるサンプルの数および範囲に制限が生じる。
【課題を解決するための手段】
【0011】
本発明は特許請求の範囲に記載されている。次元分光方法は反射モードで行なわれるから、これは発生されている不所望な非共振背景信号の問題を解決する。振動モードの励起に加えてサンプルの電子的モードの励起は強調された出力信号を提供し、また、3次元スペクトルを発生するために使用されることができる。サンプルを直接基板上に付着させてそれを乾燥させることにより通常のサンプル付着方法よりも時間および費用が効率的となり、さらに高品質の分光画像を生成することが可能になる。
【発明を実施するための最良の形態】
【0012】
本発明を添付図面を参照にして、例示された本発明の実施形態について説明する。
概説すると、本発明は例えば赤外線励起光源により励起されたシステム中の原子または分子の振動モードに依存する分光方法に関する。システム中の振動間の相互作用は2次元以上の多次元情報を適切な励起手段により得ることを可能にする。本発明は反射モード分光方法によるものであり、特に多重化されたホモダイン反射分光方法を使用する。その結果として、透過モードで発生される不所望な非共振背景信号中に埋設されることのない強力な出力信号が生成されることができる。さらに、またはその代わりに、本発明は可視の共振強調に依存し、特に、例えば可視の励起光源により励起されることによりシステム中の原子または分子内の電子的共振に依存する。その結果、3次元情報を適切な励起手段により得ることができる。さらに、本発明では分光のための処理が行なわれる表面上に原子または分子のサンプルを滴状に付着させる技術に関する。その場合、その表面は吸着性の基体であってもよい。その結果、サンプル処理のコストも時間も従来の多次元分光方法よりも効率的となる。
【0013】
図1を参照すると、概略的に示されている装置は、サンプル10と、典型的に赤外線帯域で放射するレーザ12, 18を含む励起光源と、検出器14とを有している。同調可能なレーザ12, 18は例えばそれぞれ波長/波数3164cm-1(ω1 )および2253cm-1(ω2 )のビームを放射し、それはサンプル10の分子構造の1以上の振動モードを励起し、周波数の同調により、或いは可変時間遅延を与えることにより多次元データを得ることが可能になる。第3のビームが第3のレーザ16により発生されて出力を生成し、または実効的に散乱された入力ビームの形態で読出され、サンプル10の構造との相互作用により周波数シフトされる(および厳密には第4のビームとして生成される)。第3のビームの周波数(ω3 )は可視領域にあることが好ましく、可変であってもよく、或いは以下詳細に説明するように、例えば795mmに固定されてもよい。検出された信号は典型的に可視であり、或いは例えば740mmの電磁スペクトルの近赤外線部分にあり1eVより小さくない光子エネルギを含んでいる。
【0014】
本発明はサンプル10の1以上の振動モードを励起するために同調可能なレーザ12と18を使用してここで説明されているが、当業者はこの用語がサンプル10内の振動コヒーレンスの励起を含むことを認識するであろう。
【0015】
多次元データを得るために、サンプルは時間ドメインで間隔を隔てられた連続ビームにより励起される。この方法は時間的に間隔をおいたパルスによる周波数ドメイン技術を使用する。しかしながら、任意の適当な多次元分光技術が採用可能であり、例えば全部時間ドメイン実験を使用して、または他の非線形励起方式を使用して適用可能である。同様に任意の数の次元が時間ドメイン中の付加的なパルスにより、或いは周波数ドメイン中の付加的な周波数により得ることができる。
【0016】
付加的に不所望な信号を発生することなく強力な出力信号を生成するために、反射方式が使用される。伝統的な2D分光方法では、反射された信号は非常に弱く正確な検出が困難であるために反射方式は使用されていない。それ故透過方式が使用され、それにおいては出力信号はサンプルを通過し、さらにサンプルがその上に付着される材料、例えばガラスを通過する。その結果、付加的な非共振の背景信号が生成されて所望の共振出力信号と共にガラスを通って伝送される。
【0017】
本発明の好ましい実施形態では、反射信号は4波混合(FWM)により生成される。4波混合は、周波数(ω4 )で振動する非線形偏光を誘起するとき十分な強度のフィールドの3回の変化が偏光可能な媒体中で生じる。
ω4 =ω1 ±ω2 ±ω3 (1)
以下さらに詳細に説明するように、ω1 とω2 は赤外線領域であることが好ましく、各レーザ12, 18はサンプル10の分離した振動共振に同調される。第3のレーザ16は周波数ω3 のビームを生成し、それは可視領域であることが好ましい。ω3 が可視領域であるならばω4 もまた可視領域にあることが可能であり、簡単な光子カウント方法により検出可能にされる。
【0018】
前述の偏光はフィールドを生成し、それもまた周波数ω4 で振動する。実際にω4 を生成するために使用されるフィールドはサブナノ秒のレーザパルスである。式(1)中の異なった符号は種々の周波数ω4 を生成し、レーザパルス(パルス整合)または出力信号の空間的分散間の導入角度により選択されることができる。
【0019】
4波混合は、1以上のレーザフィールドが調査されたサンプル10の電子的共振または振動共振特性を通して周波数ωlaser に同調されるとき分光状態になる。偏光は共振の周囲で非常に大きくなり、4波混合は次式のように増加する。
【数1】

【0020】
ここで、Aは定数であり、ωres は共振周波数であり、Γは励起された偏光の寿命 時間である。
【0021】
本発明は、好ましい実施形態では文献Phys.Rev.Lett.2000,84(7)の1411〜1414頁に記載されているWei ZhaoおよびJohn C.Wright の二重振動増強4波混合(DOVE−FWM)を使用する。DOVE−FWMはω1 とω2 がサンプル内の結合された振動,v1 ,v2 ,v3 による共振であるとき発生する。この場合に信号は次式のように増加する。
【数2】

【0022】
信号はここでは共振項の積であり、したがって式(2)の共振項の和よりも大きい。信号をω1 とω2 の全ての組合せに対してマップすることにより数学的に調査された結合された振動の2Dマップが得られる。
【0023】
生成された反射されたビームはそれ故任意の入力ビームに対して異なった周波数ω4 であり、強力な信号がDOVE−FWMにより生成され、それ故、容易に検出される。さらに検出された信号はサンプル内のみを進行し、付加的な非共振信号が含まれているバルクを通らないため、透過方式分光方法に関連する付加的な非共振信号が生じない。
【0024】
別の実施形態では、ここで参考文献とされているMuller等の文献(J.Phys.Chem.B.106,3715〜3723頁)に記載されているタイプの多重化はサンプルおよびそれらを囲むスペクトル部分中の赤外線転移を同時に励起する超高速パルスにより生成された赤外線中の広帯域パルスの使用によって達成された。ビームの入射角度の適切な選択によって、入力周波数に対応する特有の方向が得られる。その結果、出力信号は空間中において全ての空間的情報を含む光線のコーンであり検出器14はこの場合には電荷結合装置(CCD)のような2次元アレイ検出器であることができて、それは空間的ディメンションに符号化されたスペクトル情報を捕捉する。再度、スペクトルの分解能の改善を得るために付加的な次元がパルス中の時間的遅延または詳細に前述したようなサンプルにより生成されたスペクトルに関する詳細な情報のような周波数変化のいずれかにより導入される。
【0025】
当業者は本発明が多重化を含むことが可能であるがそれが必要な実施形態ではないことを認識するであろう。
【0026】
本発明は反射モード分光方法について説明されたが、当業者は、反射がサンプルの表面に限定されるものではなく、それ故、この技術はまたエバネセントモード分光方法を含むものであることを認識するであろう。生成された反射信号の性質は入力ビームの侵入の深さに応じて変化する。侵入の深さを決定するファクターには、第3の周波数の入力ビームの入射角度およびフィールドの極性が含まれる。
【0027】
本発明の1実施形態によれば、チヨッパが2つの同調可能なレーザ12, 18の1つからの信号を周期的に阻止するために使用されてもよい。ただ1つのレーザ12または18が使用されるとき、信号出力は合計周波数生成(SFG)のような既知の2次の非線形技術にしたがって表面反射のみに対応する。1つのレーザ12または18が阻止されるとき得られる結果は、エバネセントモードの効果が観察されていることを確実にするために、両方のレーザ12, 18が付勢されるときのものから減算されることができる。
【0028】
本発明はホモダイン分光方法に関して説明されたが、当業者はある実施形態がヘテロダイン分光方法に対して実施することができることを認識するであろう。定義として、本発明に含まれる全ての分光方法は以下のようにその強度が規定できる信号を放射する。
I=(ELO2 +(EHO2 +(ELO×EHO)cosφ (4)
ここで、EHOはサンプルからのホモダイン信号であり、ELOは局部発振器フィールドである。2つのフィールドは同じ周波数であるが、固定された位相差φを有している。標準的なホモダイン検出方式では、局部発振器フィールドは存在せず、強度は単にホモダイン項(EHO2 であり、それはサンプルの濃度により2次関数で変化する。ヘテロダイン検出方式では、分離した局部発振器が生成され、当業者に明らかな任意の既知の方法により操作され、それ故、交差項が式を支配するように形成されることができる。出力フィールドはその後サンプル濃縮中で線形にされる。これは、サンプルの濃縮が低く、より強い出力信号を生成することが望ましい実施形態出使用されることができる。
【0029】
本発明の設定はユーザがレーザ12, 18を同調してスペクトル領域を容易に変化させることを可能にすることが認識されるであろう。高品質の出力を生成するために、レーザビームは良好な空間的品質を有する必要があり、パルスは同期されなければならない。さらに、ビーム角度はサンプルに収斂するように選択されなければならないが、それらは全て当業者には明らかであり、ここでは詳しい説明はしない。従来の2次元IR方法に比較して、本発明はレーザビームの位相制御が不要である利点を有している。
【0030】
図2を参照すると、本発明のさらに別の実施形態が示されており、ω1 とω2 はDOVE−FWMを与えるように選択されることができ、その後ω3 は励起周波数ωe の電子的共振点付近に同調される。同調可能なIRレーザ12, 18と同調可能な可視レーザ16はパルス22, 28, 26を生成し、それらはサンプルにビームを収斂させるために一連の空間的フィルタと収束レンズと反射鏡とにより遅延されてもよい。反射された信号はその後フィルタまたは格子24を通過して検出器14に供給される。
【0031】
電子的共振がω1 とω2 の振動のプローブに結合されている場合には、さらに多重倍の増強が式3の両項に対して行なわれる。この技術は電子/振動結合の3次元マップを与える。例えば、DOVE−IRの場合は次の式(5)のようになる。
【数3】

【0032】
ω1 とω2 のプローブの振動が電子的状態に結合されないならば、電子的増強は式(2)で与えられ、それ故式(5)の場合よりも弱くなる。
【0033】
レーザパルス間の遅延は非共振または単独の共振信号を抑制し、関係する種々の可能なFWM信号を選択する。この方法はさらに文献(John Wright ;J Chem.Phys,2001,266,177〜195 頁)に記載しされている。2次元以上振動分光方法で使用するための可視レーザ光の強力な電子吸収を利用しながら、強力な出力信号を提供し、非共振の背景雑音を最小にする既存の技術は従来存在していない。
【0034】
実施形態に関連して反射方式について説明されたが、可視共振の強調が透過方式で実施されることも可能であることは当業者には明らかであろう。
【0035】
本発明はさらに、多次元分光方法のための準備として表面上にサンプルを滴状に付着させる方法を提供する。この目的に対して、表面は平坦であることが好ましく、ガラスまたは任意のその他の材料で形成される。特定の実施形態では、表面はTiO2 のような吸収性の基板で構成されることができる。サンプルの表面上への滴下は当業者によく知られているようにピペットを使用するか、またはその他の適当な方法を使用して行なわれることができる。好ましい付着方法はサンプル10の粘性を含む幾つかのファクターにしたがって変化することが認識されるであろう。サンプル10が表面上へ滴下されると、過剰のサンプルが蒸発して除去されることができるような適当な長さの時間そのまま放置される必要がある。その時間の長さは検査するサンプル10の特性に応じて変化する。サンプル10が十分に乾燥されると、それは図1または2に示されたような適当な装置中に挿入され、分光分析が行われる。
【0036】
ここでは反射方式について説明されたが、このサンプル付着方法はまた透過方式でも実施可能であることは当業者には明らかであろう。その方法は従来のような高価で時間のかかるサンプル処理技術を使用することなく、高品質のものを得るために実行されることができる。使用されるサンプルの性質は広範囲で変化されることができ、プラスティック、塗料、食品サンプル、薄膜、水溶性蛋白質およびペプチドのような材料が含まれてもよい。
【0037】
本発明はある範囲の応用で実施されることができ、特に、多次元光学的分光測定、直接または間接の、振動/振動結合が適している任意の分野で、光の2以上の可変周波数を使用して、或いは分子の識別および/または構造を検査するために時間遅延を使用して実施されることができる。
【0038】
当業者には、適当な特定のコンポーネントおよび技術が本発明の実施に採用可能であることが認識されるであろう。典型的に、赤外線の1以上の同調可能なレーザ光源および紫外線、可視光、または赤外線の1以上の別の同調可能なレーザ光源が採用され、任意の適当なレーザが使用可能であり、任意の他の適当な励起光源が使用可能である。さらに、固定されたまたは同調可能な周波数のビームもまた上記のように2つの赤外線励起ビームの場合に含まれてもよい。その代わりにFWM実験のための商用サブナノ秒レーザシステムが3つの同調可能なビームを含む単一のレーザシード光源から別々の周波数を発生するために使用されることができる。
【0039】
サンプルおよび溶媒は任意の適当なタイプのものでよく、その組成はシステムを同調させるために気相および液相/溶液相を含む適当な相において制御される。任意の適切な検出器、例えばCCDその他の2次元IR分光技術で知られている検出器が採用される。
【0040】
レーザ12, 18により発生される励起波長の範囲は一般的には前述したように赤外線であるが、解析されるべき構造の振動モードを励起するために必要な適当な波長にすることができる。同様に第3のレーザ16により発生される波長は一般的には前述したように可視光線であるが、解析されるべき構造の電子的共振モードを励起するために必要な適当な波長にすることができる。前述の議論は原理的に2次元または3次元解析に関するものであるが、任意の次元数が入力励起のパラメータ、例えば周波数、パルスの時間遅延/数またはその他の任意の適当なパラメータの適切な変化により導入されることができる。
【0041】
4波混合について説明したが、その代わりに3波混合のような他のモードも実施されることが可能であり、その場合には出力は近赤外線領域である。
【図面の簡単な説明】
【0042】
【図1】本発明による分光方法を実行する装置を示す概略図。
【図2】本発明の別の実施形態による二重振動および単一の電子増強分光実験を行う装置を示す概略図。

【特許請求の範囲】
【請求項1】
制御可能な励起光源パラメータを有する多次元分光方法において、
前記制御可能なパラメータを制御してサンプルの振動モードを励起し、
サンプルからホモダイン反射信号を生成し、
そのホモダイン反射信号からサンプルのスペクトルを獲得する多次元分光方法。
【請求項2】
前記ホモダイン反射信号は4波混合または3波混合によって生成される請求項1記載の方法。
【請求項3】
制御可能な励起光源パラメータを有する分光方法において、
前記制御可能なパラメータを制御してサンプルの振動モードを励起し、
出力信号を生成し、
さらに、制御可能なパラメータを制御することにより前記出力信号を増強させてサンプルの電子モードを励起してサンプルの振動スペクトルを獲得する分光方法。
【請求項4】
得られた振動スペクトルは2以上のスペクトル次元である請求項3記載の方法。
【請求項5】
基板上にサンプルを付着させ、それを乾燥させ、制御可能なパラメータを制御してサンプルの振動または電子的モードを励起し、サンプルのスペクトルを獲得する多次元分光方法。
【請求項6】
前記基板は吸着性材料で構成されている請求項5記載の方法。
【請求項7】
さらに、制御可能なパラメータを制御してサンプルの電子モードを励起し、サンプルのスペクトルを獲得することによって前記ホモダイン反射信号を増強させる請求項1記載の方法。
【請求項8】
さらに、基板上にサンプルを付着させ、それを乾燥させるステップを含んでいる請求項1記載の方法。
【請求項9】
サンプルの励起は、スペクトルを得るために時間ドメインと周波数ドメインの少なくとも一方で変化する請求項1乃至8のいずれか1項記載の方法。
【請求項10】
制御可能なパラメータは、外部励起光源ビームの周波数、位相または振幅の少なくとも一つを含んでいる請求項1乃至9のいずれか1項記載の方法。
【請求項11】
さらに、励起ビームを使用する振動モードを囲むスペクトル部分を励起し、広帯域励起光源によりサンプル中の広帯域ローカル振動フィールドを生成し、空間的に解像可能な出力ビームを検出する請求項1,3,5のいずれか1項記載の方法。
【請求項12】
サンプルの振動モードを励起し、サンプルからホモダイン反射信号を生成し、そのホモダイン反射信号からサンプルのスペクトルを獲得するように構成されている励起光源を具備している分光装置。
【請求項13】
サンプルの振動モードを励起して出力信号を生成するように構成されている励起光源を備え、さらにサンプルの電子モードを励起し、出力信号を増強させ、サンプルのスペクトルを獲得するように構成されている励起光源を具備している分光装置。
【請求項14】
基板上に付着されたサンプルと、サンプルの振動モードまたは電子モードを励起してサンプルのスペクトルを獲得するように構成された励起光源を具備している分光装置。
【請求項15】
請求項1乃至11のいずれか1項記載の方法の各ステップを実行するように構成されている請求項12乃至14のいずれか1項記載の分光方法。
【請求項16】
サンプルの振動モードの励起は、サンプル内にコヒーレントな振動の誘起を含んでいる請求項1乃至15のいずれか1項記載の方法または装置。
【請求項17】
制御可能な励起光源パラメータを有する多次元分光方法において、
前記制御可能なパラメータを制御してサンプルの振動モードを励起し、
サンプルからホモダイン反射信号を生成し、
前記ホモダイン反射信号からサンプルのスペクトルを獲得する方法。
【請求項18】
サンプルの振動モードを励起し、 サンプルから反射信号を生成し、前記反射信号からサンプルのスペクトルを獲得するように構成されている励起光源を具備している分光装置。

【図1】
image rotate

【図2】
image rotate


【公表番号】特表2008−541125(P2008−541125A)
【公表日】平成20年11月20日(2008.11.20)
【国際特許分類】
【出願番号】特願2008−511796(P2008−511796)
【出願日】平成18年5月19日(2006.5.19)
【国際出願番号】PCT/GB2006/001870
【国際公開番号】WO2006/123172
【国際公開日】平成18年11月23日(2006.11.23)
【出願人】(505167543)インペリアル・イノベ−ションズ・リミテッド (23)
【Fターム(参考)】