説明

半導体レーザおよびその製造方法

【課題】水平電流注入型のシリコンレーザおよびゲルマニウムレーザにおいて、光出力を向上させることを目的とする。更に、活性層の元素にかかわらず、水平電流注入型レーザの光出力向上を図る。
【解決手段】水平電流注入型半導体レーザにおいて、活性層がシリコン薄膜またはゲルマニウム薄膜であり、コア層近傍に設けられているか、または、少なくとも一部がコア層内にあり、第一の端面の反射率が第二の端面の反射率以上であり、第一の端面でのコア層幅が0次モードのみしか存在し得ない最大コア幅より大きく、第二の端面でのコア層幅が0次モードのみしか存在し得ない最大コア幅以下であり、コア層の少なくとも一部に幅が光の伝搬方向に沿って変化する部位があり、当該コア層幅が変化する部位では0次モードの強度分布を有する光のみが放射することなく伝搬し、高次モードの強度分布を有する光は放射させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体レーザおよびその製造方法に関する。特に、活性層がシリコン薄膜またはゲルマニウム薄膜である水平電流注入型半導体レーザおよびその製造方法に関する。
【背景技術】
【0002】
近年、シリコンのチップ間やチップ内といった近距離の光配線をシリコンを用いた光学素子で実現しようとする、シリコン・フォトニクスと呼ばれる技術の研究が盛んになっている。これは、シリコン・フォトニクスが実現されれば、例えばLSIの更なる高密度高速化や低価格化が期待できるからである。
【0003】
シリコン・フォトニクスにおいて最もチャレンジングな課題の一つが光源となるレーザの開発である。なぜなら、バルク状態のシリコンやゲルマニウムは間接遷移半導体であるため、極めて発光効率が悪いからである。そこで、シリコンやゲルマニウムを高効率で発光させるために直接遷移半導体へ変貌させる方法が提案されている。例えば、特許文献1(特開2007−294628)および特許文献2(特開2008−205006)では(100)面を表面に持つ極薄単結晶シリコンに直接電極を接続させ、基板と水平方向にキャリアを注入する事によって、効率良く極薄単結晶シリコンを発光させる方法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2007−294628号公報
【特許文献2】特開2008−205006号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記の他にも、シリコンもしくはゲルマニウムを発光させてレーザとする方法は各所から提案されているが、シリコン・フォトニクスに適用するためには、いずれも光出力向上が課題となっている。
【0006】
そこで、本発明は、基板と水平方向にキャリアを注入する水平電流注入型のシリコンレーザおよびゲルマニウムレーザにおいて、光出力を向上させることを目的とする。更に、本発明は活性層の元素にかかわらず、水平電流注入型レーザの光出力向上も目的とする。
【0007】
すなわち、本発明の目的は、活性層がシリコンもしくはゲルマニウムである半導体レーザの光出力向上だけでなく、例えば活性層がIII/V型半導体である半導体レーザの光出力向上をも目的とする。
【課題を解決するための手段】
【0008】
本願において開示される半導体レーザの発明のうち、代表的なものの概要は以下の通りである。
【0009】
基板上に設けられた光を放出する活性層と、活性層の一端に電気的に接続された第1の導電型を有する第1電極と、活性層の他端に電気的に接続された第2の導電型を有する第2電極と、活性層上に誘電体を介して設けられ該光を導波するコア層とを備え、第1電極と第2電極との間に、活性層に対して基板表面と概ね平行となる水平方向に電流が注入され、該活性層から放出された光が第1の端面と第2の端面との間に設けられた共振器内で共振する半導体レーザにおいて、共振器内の第1の端面側におけるコア層の幅と、第2の端面側におけるコア層の幅とが異なることを特徴とする。
【0010】
または、基板上に設けられた光を放出する活性層と、活性層の一主面上に設けられた半導体層と、活性層に電気的に接続された第1の導電型を有する第1電極と、半導体層に電気的に接続された第2の導電型を有する第2電極と、第1電極から前記第1の導電型を有するキャリアが活性層に対して基板表面と概ね平行な方向に電流が注入され、第2電極から第2の導電型を有するキャリアが活性層に対して基板表面と概ね垂直な方向に電流が注入され、該活性層から放出された光が第1の端面と第2の端面との間に設けられた共振器内で共振する半導体レーザにおいて、共振器内の前記第1の端面側におけるコア層の幅と、第2の端面側におけるコア層の幅とが異なることを特徴とする。
【0011】
上記構成において、活性層がシリコン薄膜またはゲルマニウム薄膜であり、コア層近傍に設けられているか、または、少なくとも一部がコア層内にあり、第一の端面の反射率が第二の端面の反射率以上であり、第一の端面でのコア層幅が0次モードのみしか存在し得ない最大コア幅より大きく、第二の端面でのコア層幅が0次モードのみしか存在し得ない最大コア幅以下であり、コア層の少なくとも一部に幅が光の伝搬方向に沿って変化する部位があり、当該コア層幅が変化する部位では0次モードの強度分布を有する光のみが放射することなく伝搬し、高次モードの強度分布を有する光は放射することを特徴とする水平電流注入型半導体レーザを主たる特徴とする。
【発明の効果】
【0012】
本発明によれば水平電流注入型半導体レーザ、特にシリコンもしくはゲルマニウムを活性層に用いた水平電流注入型半導体レーザの光出力が向上する。
【図面の簡単な説明】
【0013】
【図1】本発明の第1の実施例の上面図。
【図2A】本発明の第1の実施例のバンド構造図。
【図2B】従来素子の断面図。
【図2C】本発明の第1の実施例の上面図。
【図2D】本発明の第1の実施例で活性層を拡大した時のバンド構造図。
【図2E】本発明の第1の実施例でコア層を拡大した時の断面図。
【図3A】垂直電流注入型素子でコア層が狭い場合の断面図。
【図3B】垂直電流注入型素子でコア層が広い場合の断面図。
【図3C】垂直電流注入型素子のバンド構造図。
【図4A】従来素子の断面図。
【図4B】本発明の第1の実施例の断面図。
【図5】本発明の第1の実施例の断面図。
【図6】本発明の第1の実施例の上面図。
【図7A】本発明の第1の実施例の作製方法を示す図。
【図7B】本発明の第1の実施例の作製方法を示す図。
【図7C】本発明の第1の実施例の作製方法を示す図。
【図7D】本発明の第1の実施例の作製方法を示す図。
【図7E】本発明の第1の実施例の作製方法を示す図。
【図8A】本発明の第2の実施例の上面図。
【図8B】本発明の第2の実施例の断面図。
【図9】本発明の第3の実施例の上面図。
【図10】本発明の第4の実施例の上面図。
【図11】本発明の第5の実施例の上面図。
【図12】本発明の第6の実施例の上面図。
【図13】本発明の第7の実施例の上面図。
【図14A】従来素子の断面図。
【図14B】従来素子の上面図。
【発明を実施するための形態】
【0014】
以下、本発明の実施例を図面に基づいて詳細に説明する。なお、本実施例で紹介する方法以外にも、材料や製造工程の組合せを変える等、多くの変更が可能である事は言うまでもない。
【0015】
以下に具体的な実施例について述べる。図面に記載された図は、必ずしも正確に縮尺を合せているわけではなく、論理が明確になるように重要な部分を強調して模式的に描画してある。
【0016】
以下に、シリコンもしくはゲルマニウム材料を用いた水平注入型レーザに関して実施例を詳述するが、例えばIII/V型化合物半導体材料を用いた水平注入型レーザにも本発明は適用できる。
まず、本実施例を説明する前に、従来例の構造を比較のために説明する。図14Aは、例えば特許文献1(特開2007−294628)に開示されている様な素子の基板に垂直な断面図である。本素子では、シリコン基板120の上に二酸化シリコン膜130、シリコン薄膜よりなる活性層110、二酸化シリコン膜180およびシリコン窒化膜よりなるコア層100が順に積層されており、その上に空気層190がある。また、シリコン薄膜よりなる活性層110はn型シリコンコンタクト層140およびp型シリコンコンタクト層150に両端が接合されている。
【0017】
更に、n型シリコンコンタクト層140およびp型シリコンコンタクト層150には、それぞれn型電極160およびp型電極170が設けられている。ここで、本素子の半導体レーザとしての動作は、n型電極160およびp型電極170より電子および正孔をそれぞれ注入して行われる。すなわち、n型電極160より注入された電子とp型電極170より注入された正孔とがシリコン薄膜よりなる活性層110で再結合して発光した光を、シリコン窒化膜よりなるコア層100で導波する。
【0018】
ここで、活性層とは、電流注入により光を発生させる層である。また、コア層とは、自らより屈折率の低いクラッド層に挟まれて、当該層中への導波光の閉じ込めが強い層である。本素子では、二酸化シリコン膜180および空気層190が、それぞれ下側および上側クラッド層となっている。図14Bは、本素子の上面図である。なお、ここでは簡単のため、空気層190および二酸化シリコン膜180は省略してある。
【0019】
本素子では、シリコン薄膜よりなる活性層110の幅およびシリコン窒化膜よりなるコア層100の幅は、それぞれWaおよびWcで一定である。また、シリコン薄膜よりなる活性層110およびシリコン窒化膜よりなるコア層100を有する領域の後および前に、それぞれシリコン窒化膜より形成した後端面側DBR(Distributed Bragg Reflector)領域200および前端面側DBR領域210を設けて共振器ミラーとしている。
【0020】
従って、本素子の共振器領域220の構成は、シリコン薄膜よりなる活性層110およびシリコン窒化膜よりなるコア層100を有する領域、後端面側DBR領域200および前端面側DBR領域210となる。本素子では、例えばシリコン窒化膜コアよりなる光回路部230を設けることで、チップ内もしくはチップ間の光配線用途に用いることができる。
【実施例1】
【0021】
次に、本発明の実施例1について説明する。本素子の基板に垂直な断面構造は、図14Aに示した従来例の素子の場合と同様である。
【0022】
図1に本実施例の素子の上面図を示す。図では左側を後端面、右側を前端面とした。本素子では、シリコン窒化膜よりなるコア層100の幅が、後端面側で広く前端面側で狭くなっており、後端面と前端面の間で徐々に変化している。ここで、後端面側のシリコン窒化膜よりなるコア層100の幅Wc(r)は0次モードのみしか存在し得ないカットオフコア幅Wcutoffより大きく、前端面側のシリコン窒化膜よりなるコア層100の幅Wc(f)はWcutoff以下となっている。本構造によれば、レーザ光出力を向上することが可能となる。以下に、その理由を説明する。
【0023】
本素子構造によりレーザ光出力を向上することが可能となる理由は2つある。第一は誘導放出光強度を増大して利得を向上できるからであり、第二は向上した利得を単一の導波モードの光に集中できるからである。以下、この2点に関し詳細に説明する。
【0024】
まず、誘導放出光強度を増大できる理由を以下説明する。
図2Aは、従来素子および本素子における、シリコン薄膜よりなる活性層110、n型シリコンコンタクト層140およびp型シリコンコンタクト層150の順方向バイアス時のバンド構造図である。本構造において、発光はn型シリコンコンタクト層140およびp型シリコンコンタクト層150からそれぞれ注入された電子400および正孔410がシリコン薄膜よりなる活性層110内で再結合して自然放出光420を発生させて生じる。この際の、電子400および正孔410がシリコン薄膜よりなる活性層110内で再結合して自然放出光420を発生させる効率は、Wa/(Vs*τ)に比例する。ここで、Waはシリコン薄膜よりなる活性層110の幅である。また、Vsは電子および正孔、すなわちキャリアの飽和速度であり、τはキャリアの寿命である。これは、本バンド構造では、n型シリコンコンタクト層140およびp型シリコンコンタクト層150より大きなバンドギャップを有するシリコン薄膜よりなる活性層110が挟まれた構造となっており、キャリアの閉じ込め構造が無いことによる。
【0025】
すなわち、キャリアは閉じ込め構造が無いため、再結合するまで最大でVs*τだけの距離を進み得、また、再結合する確率は進行距離に依らずに一定と考えられるので、キャリアが活性層内で再結合する確率は活性層幅Waを最大進行距離Vs*τで割った値になるのである。また、このためWaがVs*τより小さい場合には自然放出光強度はWa内で均一になる。
【0026】
図2Bおよび図2Cは、これを模式的に示したものである。図2Bは、図14Bに示した従来素子におけるA−A’断面の順バイアス時の様子である。簡単のため構造は、シリコン薄膜よりなる活性層110、n型シリコンコンタクト層140、p型シリコンコンタクト層150およびシリコン窒化膜よりなるコア層100のみを示した。活性層110内には、コンタクト層から注入されたキャリアが再結合して生じた自然放出光が均一に存在する。そして、この自然放出光420のうち、シリコン窒化膜よりなるコア層100による導波光440に重なった部分が誘導放出光430となる。レーザの利得はこの誘導放出光430の量に比例する。次に本実施例の場合を図2Cに示す。図2Cは、図1に示した実施例の素子におけるA−A’断面の順バイアス時の様子である。図より、本実施例ではコア層100の幅を広げることによって導波光440の分布を広げ、誘導放出光430が多くなっていることが分る。
【0027】
このため、本実施例の素子ではレーザの利得を向上させることが可能になるのである。なお、本発明では一般にコア層100の幅を活性層幅Wa以上にしても上記の効果は得られる。しかし、本実施例の構造では、コア層100の幅を活性層幅Wa以上にすると導波光がシリコンコンタクト層や電極にかかってしまい吸収され易い。従って、本実施例ではコア層100の幅を活性層幅Waより狭くしてある。また、更に、レーザの利得を増大するには、活性層幅Waおよびコア幅を広げれば良い。まず、活性層幅Waを広げることにより活性層内で発生する自然放出光強度を増加させることができる。これは、前述の理由により活性層幅WaがVs*τ以内では活性層内で発生する自然放出光強度は活性層幅Waに比例するからである。
【0028】
図2Dは、活性層幅WaをVs*τ程度に拡大した場合のバンド構造である。この場合には、図2Aに見られた様な再結合する前に反対側のコンタクト層に到達してしまうキャリアは無くなり、ほとんど全てのキャリアが活性層内で再結合して自然放出光420を放出する様になる。なお、ここでは便宜的に非発光再結合は無視して説明している。
【0029】
図2Eはこの場合の素子の断面図である。コア層100の幅を更に広げることによって、図2Cよりも大きな誘導放出光強度が得られることが分る。以上の様に、いずれの活性層幅においても、コア幅を広げることによってレーザの利得が向上できることが分る。
【0030】
なお、上記説明の様に本発明の効果は水平電流注入型半導体レーザで得られるものである。従って、垂直電流注入型である通常のIII/V型半導体を用いた半導体レーザでは、本効果は一般には得られない。しかし、III/V型半導体を用いた半導体レーザにおいても水平電流注入型を適用すれば、上記理由によりコア幅を広げることによってレーザの利得を向上でき、本効果を得ることができる。ここで、垂直電流注入型半導体レーザとは、半導体層の積層方向に沿ってキャリアを注入する型の半導体レーザである。垂直電流注入型半導体レーザで上記効果が得られない理由は、一般に水平方向に電流狭窄構造があること、および活性層とクラッド層が通常は同一であることによる。以下にこの詳細を説明する。なお、説明では簡単のため非発光再結合成分は無視する。
【0031】
まず、図3Aにコア幅が狭い場合の垂直電流注入型半導体レーザの層構造を示す。本レーザの層構造は、下から、p型クラッド層510、活性層110およびn型クラッド層500となっている。また、活性層110およびn型クラッド層500は電流狭窄層520により挟まれており、素子の上下にはそれぞれn電極160およびp電極170が設けられている。本構造では活性層110が同時にコア層としても機能する。これは、活性層110がクラッド層よりも屈折率が高く、厚みも十分であるためである。また、本構造では活性層が水平方向に電流狭窄されているので再結合は全て活性層幅内で発生する。また、活性層が同時にコア層となっているため、再結合で生じた自然放出光は全てコア層内の導波光440と重なり誘導放出光430となる。
【0032】
図3Bは、コア幅が広い場合の垂直電流注入型半導体レーザの層構造を示す。図3Aの場合と同様に自然放出光は全て誘導放出光430となる。この様に、水平方向に電流狭窄構造があること、および活性層とクラッド層が同一であることによって、通常の垂直電流注入型半導体レーザの光出力は注入電流が一定の場合コア幅に依らず一定となる。なお、III/V型半導体を用いた垂直電流注入型半導体レーザでは活性層を厚くしても、水平電流注入型半導体レーザでコア幅を広げた時に得られる効果は得られない。これはバンド構造に起因する。
【0033】
図3Cは、III/V型半導体を用いた垂直電流注入型半導体レーザのバンド構造である。図の水平方向は積層方向を示す。本構造では、活性層110のバンドギャップがクラッド層より小さくキャリアが活性層110に閉じ込められる構造となるため、活性層厚が少なくてもキャリアが反対側の極性を有するクラッド層に注入されにくい。このため、III/V型半導体を用いた垂直電流注入型半導体レーザでは電流が一定の場合、光出力はコア厚に依らず一定となる。以上より、III/V型半導体を用いた垂直電流注入型半導体レーザでは、光出力はコア層の形状を変えても、水平電流注入型半導体レーザにおいてコア幅を広げた場合に得られる様な効果は得られない。ただし、III/V型半導体を用いた半導体レーザにおいても、水平電流注入型を適用すると、コア幅を広げることによってレーザに利得を向上できることは前述の通りである。
【0034】
図2では、コア層と活性層が異なる層により形成されている水平電流注入型半導体レーザについてコア幅を広げることによって光出力を向上できることを説明したが、同一の層がコア層としても活性層としても機能する水平電流注入型半導体レーザにおいても同様の効果が得られる。以下この理由を説明する。
【0035】
図4Aは、活性層幅Waすなわちコア幅が狭い場合の、この様な素子の断面構造である。本素子では、活性層が同時にコア層としても機能するため、活性層で生じた自然放出光が全て導波光440と重なる。このため、全ての自然放出光が誘導放出光430となる。
【0036】
図4Bは、活性層幅Waすなわちコア幅Waが広い場合の、この様な素子の断面構造である。図ではWaはVs*τ程度としてある。この場合も活性層で生じた全ての自然放出光が誘導放出光430となるのは図4Aと同様である。しかし、図4BではWaに比例して自然放出光の生じる強度が強くなるため、結果として誘導放出光強度も強くなり、レーザの光出力が高くなる。この様に、同一の層がコア層としても活性層としても機能する水平電流注入型半導体レーザにおいてもコア幅を広げることによりレーザの光出力を向上することができる。
【0037】
また、電子もしくは正孔の一方のみしか活性層に水平注入されない素子においても、コア幅を広げることによってレーザ出力を向上させることができる。この様な素子としては、例えば非特許文献1(IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 15, NO. 3, MAY/JUNE 2009 pp.535-544)に記載されている様な素子が挙げられる。
【0038】
図5に、上述の電子もしくは正孔の一方のみしか活性層に水平注入されない素子の層構造の一例を示す。本素子の層構造は下から、シリコン基板120、二酸化シリコン膜130、シリコンよりなるコア層900、III/V半導体からなる活性層930およびIII/V半導体からなるp型クラッド層950となっている。また、シリコンよりなるコア層900は空気層920によって他のシリコン層910と分離されており、p型クラッド層950はIII/V半導体からなる電流狭窄層940によって両側から挟まれている。電子400は活性層930の上部に設けられた右側および左側のn型電極160から活性層930内を層に水平に進行する。正孔は、p型クラッド層950の上部に設けられたp型電極170から活性層930に垂直に注入される。
【0039】
しかし、こちらも活性層930内に注入された後は、電子と同様に層に水平に進行し、n型電極160に向かう。従って、本素子でも活性層内部でのキャリアの挙動は図2で説明した様な水平電流注入型半導体レーザと同様である。従って、キャリアの再結合で生じた自然放出光はコア幅が広がる程誘導放出光となる割合が高くなり、図2で説明した素子と同様にレーザ光出力が向上する。従って、本発明の対象となる水平電流注入型半導体レーザとは、n型電極とp型電極とが活性層の広がり方向において離れて配置されている素子と考えれば良い。
【0040】
以上の様に、水平電流注入型半導体レーザでは、コア層と活性層がそれぞれ別個の層により形成されている場合でも、また、一つの層が同時にコア層と活性層との機能を併せ持つ場合でも、コア層の幅を広げることによってレーザ出力を向上できることが分る。また、上記説明より、垂直電流注入型半導体レーザでもコア層と活性層がそれぞれ別個の層により形成されている場合であれば、コア層の幅を広げることによってレーザ出力を向上できる場合が有り得ることが分る。
【0041】
従って、本実施例による効果は、水平電流注入型半導体レーザにおいて、コア層と活性層がそれぞれ別個の層により形成されている場合、および、一つの層が同時にコア層と活性層との機能を併せ持つ場合のいずれに対しても得られる。また、本実施例による効果は、コア層と活性層がそれぞれ別個の層により形成されている垂直電流注入型半導体レーザについても得られる。
【0042】
次に、本実施例の構造が利得を単一の導波モードの光に集中できる理由を説明する。その前に、まず、利得を単一の導波モードの光に集中した場合にレーザ出力が向上する理由を説明する。ここで、コア幅が共振器全体に渡り一様に広い場合を考える。この場合、コア幅が広いことにより既に説明した様に誘導放出光強度が高くなるという利点がある。
【0043】
しかし、コア幅が広い場合には0次の導波固有モードの光だけでなく高次の固有モードの光も伝搬される様になり、そのそれぞれがレーザ発振し得る様になってしまうという欠点も生じる。ここで、複数のモードがレーザ発振することが欠点となる理由は、しきい値利得が増大してしまうからである。すなわち、レーザでは利得がしきい値利得を越えるまでは光出力が生じないため、複数のモードがレーザ発振する場合、光出力を得るまでにモード数分のしきい値利得に相当する利得が必要となるためである。
【0044】
従って、しきい値利得として消費される利得を最低限に抑えることがレーザ光出力を高めることになる。そのためには、利得を単一の導波モードの光に集中して単一モードのみを発振させれば良い。しきい値利得として消費される利得は1モード分のみで済むため、レーザ光出力を高めることができるのである。次に、本実施例の構造が利得を単一の導波モードの光に集中できる理由を説明する。
【0045】
図6は、本実施例の素子を伝搬する光の導波モードを説明する図である。まず、コア幅が広い後端面側では、伝搬し得る光の導波モードとしては0次の導波固有モード300および高次の導波固有モード310がある。しかし、コア幅がカットオフコア幅以下となる前端面側では、0次の導波固有モード300しか存在し得ない。従って、例え後端面側で0次に加えて高次の光強度分布を有する光の導波モードが生じても、高次モードは前端面に伝搬する際に放射してしまう。一方、0次モードは後端面側と前端面側でスポットサイズが異なるもののいずれの位置においても存在し得る。
【0046】
そこで、コア幅の変化を緩やかにしてスポットサイズ変換に伴う伝搬損失の増加を十分に抑制すれば、0次モードは共振器全体を低損失で伝搬し得る。このため、0次モードと高次モードとの間には大きな伝搬損失差が生じることになる。従って、本実施例の構造では光が共振するに従い0次モードしか共振器内に存在し得なくなる。このため、0次モードのみしかレーザ発振しなくなり、前述の理由によりレーザ出力を向上させることができるのである。ここで、本素子のスポットサイズ変換はコア幅がカットオフコア幅以上の範囲で行われるため、コア幅の変化率が大きくてもスポットサイズに伴う伝搬損失の増加は少ない。これは、コア幅がカットオフコア幅以上の場合はコア内への光の閉じ込めが強いため、光が放射されにくいためである。
【0047】
従って、スポットサイズ変換に伴う伝搬損失は一般のスポットサイズ拡大半導体レーザとは異なり、ほとんど無視できる程度である。一般のスポットサイズ拡大半導体レーザでは、スポットサイズ変換はシングルモードファイバとの間の光結合効率を高めるために行うものであり、コア幅がカットオフ幅以下の範囲で行われるため損失の増大を招いてしまうが、本発明ではこの損失増大は無視できるためレーザ光出力増大が可能となるのである。また、図ではコア幅の変化を直線としたが、曲線状に変化しても良い。
【0048】
この様に、本発明の素子では、コア幅が広い領域を有することにより利得を高め、更に、レーザ共振器内に高次モードのカットオフ機能を有することで単一モード発振を実現し、これらの効果によりレーザ光出力の向上を可能にするのである。
【0049】
次に、本実施例の素子の作製方法を図7Aから図7Eを用いて説明する。まず、図7Aに示す様に、シリコン基板120上に、二酸化シリコン膜130およびシリコン層600が設けられたSOI(Silicon On Insulator)基板において、シリコン層600を酸化し二酸化シリコン膜610を形成した後、シリコン窒化膜をエッチングより加工して得られた開口部を有するシリコン窒化膜マスク620を設ける。
【0050】
次に、図7Bに示す様に、シリコン窒化膜マスク620が開いている領域のシリコン層600を酸化し、シリコン薄膜よりなる活性層110を作製する。次に、図7Cに示す様にシリコン窒化膜マスク620を除き、インプラによりn型シリコンコンタクト層140およびp型シリコンコンタクト層150を作製する。次に、図7Dに示す様に、シリコン窒化膜よりなるコア層100を作製する。そして、図7Eに示す様に、n型シリコンコンタクト層140およびp型シリコンコンタクト層150上のシリコン層600を除き、n型電極160およびp型電極170を設ければ、本素子は完成する。
【0051】
なお、III/V型半導体を用いた水平電流注入型半導体レーザは、例えば非特許文献2(OPTICS EXPRESS, Vol.17, No.15, 20 July 2009, pp.12564-12570)記載の方法で作製できる。すなわち、エッチングおよび層厚制御を用いて活性層およびコンタクト層につながる半導体層を水平方向に順次形成すれば良い。
【実施例2】
【0052】
本実施例では、シリコン薄膜よりなる活性層110が基板面に対して垂直に配置されている素子の構造を開示する。本素子の上面図は、実施例1と同じであるので、ここでは基板に垂直な断面構造についてのみ説明する。
【0053】
図8Aは、本素子の上面図を示している。シリコン薄膜よりなる活性層110およびシリコン窒化膜よりなるコア層100の形状は実施例1と同様である。図では簡単のため電極その他は、実施例1と同様に省略してある。
【0054】
図8Aに示したA−A’における断面を図8Bに示す。本素子ではシリコン薄膜よりなる活性層110は、複数のシリコン薄膜を基板に垂直に立てたFin構造と呼ばれる構造で構成されている。図では、Fin構造におけるシリコン薄膜の間を二酸化シリコン膜180埋めて、その上にシリコン窒化膜よりなるコア層100を設けた構造を示したが、二酸化シリコン膜180は無くても良い。本構造によれば、シリコン薄膜よりなる活性層110と導波光との重なりを大きくでき、レーザ光出力を更に向上し得る。
【実施例3】
【0055】
図9に実施例3の上面図を示す。本素子の層構造は、実施例1と同じであるので、ここでは上面図のみ示す。図中で示すWaは、活性層110の幅、Wc(r)は、後端面側のコア層100の幅、Wc(f)は、前端面側のコア層100の幅をそれぞれ示す。本実施例では、活性層110、n型電極160およびp型電極170をコア幅の細い領域に設けない構造になっている。ここで、電極を設けた領域は電流注入領域800となり活性層110より利得が生じ、活性層および電極を設けない領域は非電流注入領域810となり利得が生じない。本構造によれば、コア幅の狭い領域で利得が無くなるため、高次のモードをより放射しやすくなる。このため、レーザ共振器の単一モード選択性が高まり、レーザ光出力を更に向上し得る。なお、活性層は電流注入が有る場合には利得媒体として光を発生するが、電流注入が無い場合は吸収媒体として光損失が発生する。従って、非電流注入領域を設けることの効果は、コア層と活性層が別個の層になっている本実施例の構造特有のものであり、同一の層がコア層としても活性層としても機能する通常のIII/V半導体を用いた垂直電流注入型半導体レーザでは得ることができない。
【実施例4】
【0056】
図10に実施例4の上面図を示す。図では簡単のため電極その他は省いている。また、本素子の層構造は、実施例1と同じであるので、ここでは上面図のみ示す。本実施例では、シリコン窒化膜よりなるコア層100が幅の狭い領域で曲線状の形状を有している。この曲線形状は0次の導波光モードは放射することなく伝搬し、高次の導波光モードは放射する曲率を有することが望ましい。本構造によれば、次のモードをより放射しやすくなる。このため、レーザ共振器の単一モード選択性が高まり、レーザ光出力を更に向上し得る。
【実施例5】
【0057】
図11に実施例5の上面図を示す。図では簡単のため電極その他は省いている。また、本素子の層構造は、実施例1と同じであるので、ここでは上面図のみ示す。本実施例では、シリコン窒化膜よりなるコア層100の幅をカットオフコア幅より更に大幅に低減する。これによって、単一モード性をより向上させ、レーザ光出力の更なる向上を図る。なお、本素子を共振器外でシリコン窒化膜よりなる光回路230と結合させる際には、光回路内において先端に向かって幅が狭まるテーパ領域を設けると良い。これは、通常光回路の幅は光閉じ込めを大きくして許容曲率半径を低減するために、カットオフコア幅もしくは、それより僅かだけしか狭くなっていないためである。
【0058】
そこで、コア幅Wをカットオフコア幅Wcutoffより大幅に狭くした本実施例と光学的に結合する場合には、テーパを導入することによって結合損失を低減することが望ましい。
【実施例6】
【0059】
図12に実施例6の上面図を示す。図では簡単のため電極その他は省いている。また、本素子の層構造は、実施例1と同じであるので、ここでは上面図のみ示す。これまでの実施例では、シリコン薄膜よりなる活性層110の幅は素子内で一定としていたが、必ずしも一定にする必要は無い。電気抵抗低減やLSI内でのレイアウトの最適化等の目的のために、活性層幅を共振器方向に変調しても良い。
【実施例7】
【0060】
図13に実施例7の上面図を示す。図では簡単のため電極その他は省いている。また、本素子の層構造は、実施例1と同じであるので、ここでは上面図のみ示す。これまでの実施例では、シリコン窒化膜よりなるコア層100の幅は全て前端面で狭くなる場合について説明してきた。
【0061】
しかし、本発明では、一般にコア層100の幅を狭めるのは前端面に限る必要は無い。確かに、コア幅を前端面で狭めておくと、電流の不均一分布等が生じるなどしてコア幅の広い領域で高次モードが生じてしまったとしても、前端面からレーザ光を取り出すまでに光強度分布を単一モード化し易いという利点はある。しかし、コア幅の広い光回路との結合を最適化する等のために、図13の様に前端面以外の場所で狭めても良い。
【0062】
また、上記の各実施例では、基板はシリコン基板、即ち、半導体材料からなる基板を用いて説明したが、基板として誘電体材料を適用することも可能である。誘電体材料を基板とした場合には、導波光が活性層へ強く閉じ込められ、誘導放出の生じる効率が、より高くなるという効果が期待できる。なお、誘電体を基板に用いたことにより、本願発明であるレーザー光出力を向上する効果、即ち、誘導放出光強度を増大して利得を向上する効果、および向上した利得を単一の導波モードの光に集中する効果が損なわれるものではない。
【符号の説明】
【0063】
100…コア層、
110…活性層、
120…シリコン基板、
130…二酸化シリコン膜、
140…n型シリコンコンタクト層、
150…p型シリコンコンタクト層、
160…n型電極、
170…p型電極、
180…二酸化シリコン膜、
190…空気層、
200…後端面側DBR領域、
210…前端面側DBR領域、
220…共振器領域、
230…光回路部、
400…電子、
410…正孔、
420…自然放出光、
430…誘導放出光、
440…導波光、
500…n型クラッド層、
510…p型クラッド層、
520…電流狭窄層、
600…シリコン層、
610…二酸化シリコン膜、
620…シリコン窒化膜マスク、
900…コア層、
910…シリコン層、
920…空気層、
930…活性層、
940…電流狭窄層、
950…p型クラッド層。

【特許請求の範囲】
【請求項1】
基板上に設けられた光を放出する活性層と、
前記活性層の一端に電気的に接続された第1の導電型を有する第1電極と、
前記活性層の他端に電気的に接続された第2の導電型を有する第2電極と、
前記活性層上に誘電体を介して設けられ前記光を導波するコア層と、を備え、
前記第1電極と前記第2電極のそれぞれから第1の導電型を有するキャリアと第2の導電型を有するキャリアが、前記活性層に対して前記基板表面と概ね平行となる水平方向に注入され、該活性層から放出された光が第1の端面と第2の端面との間に設けられた共振器内で共振し、前記第2の端面側から増幅された光が放出される半導体レーザにおいて、
前記コア層は、前記共振器内での光の共振方向に沿って異なる幅の領域を有することを特徴とする半導体レーザ。
【請求項2】
請求項1に記載の半導体レーザにおいて、
前記第1の端面と第2の端面との間の少なくとも一部領域におけるコア層の幅が、前記共振器内の前記第1の端面側におけるコア層の幅より狭いことを特徴とする半導体レーザ。
【請求項3】
請求項1に記載の半導体レーザにおいて、
前記第1の端面の反射率が、前記第2の端面の反射率以上に大きく、
前記第1の端面でのコア層の幅が、0次モードのみしか存在し得ない最大コア幅より大きく、
前記第2の端面でのコア層の幅が、0次モードのみしか存在し得ない最大コア幅以下であり、
前記コア層の少なくとも一部に該コア層の幅が光の伝搬方向に沿って変化する領域を有し、
該コア層の幅が変化する領域では、0次モードの強度分布を有する光のみが放射されることなく伝搬し、高次モードの強度分布を有する光は放射されることを特徴とする半導体レーザ。
【請求項4】
請求項1に記載の半導体レーザにおいて、
前記コア層の幅が最大ではない領域の少なくとも一部に、前記第1および第2の電極と前記活性層が設けられていないことを特徴とする第1の請求項記載の半導体レーザ。
【請求項5】
請求項1に記載の半導体レーザにおいて、
前記コア層の少なくとも一部が、前記基板面に対して水平な面内で曲線形状を有し、
該曲線形状が有する曲率は、0次モードの強度分布を有する光のみが放射されることなく伝搬し、高次モードの強度分布を有する光は放射されるように設定されていることを特徴とする第1の請求項記載の半導体レーザ。
【請求項6】
請求項1に記載の半導体レーザにおいて、
前記コア層は、前記活性層と異なる層より形成されていることを特徴とする第1の請求項記載の半導体レーザ。
【請求項7】
請求項1に記載の半導体レーザにおいて、
前記コア層は、前記活性層と同一の層により形成されていることを特徴とする第1の請求項記載の半導体レーザ。
【請求項8】
請求項1に記載の半導体レーザにおいて、
前記活性層がシリコン薄膜、またはゲルマニウム薄膜で構成され、
前記活性層は、前記コア層の近傍に設けられているか、または、前記活性層の少なくとも一部が前記コア層内に設けられていることを特徴とする半導体レーザ。
【請求項9】
請求項8に記載の半導体レーザにおいて、
前記活性層が、前記基板面に対して平行に広がって設けられていることを特徴とする半導体レーザ。
【請求項10】
請求項8に記載の半導体レーザにおいて、
前記活性層が、前記基板面に対して垂直方向に広がって設けられていることを特徴とする半導体レーザ。
【請求項11】
基板上に設けられた光を放出する活性層と、
前記活性層の一主面上に設けられた半導体層と、
前記活性層に電気的に接続された第1の導電型を有する第1電極と、
前記半導体層に電気的に接続された第2の導電型を有する第2電極と、
前記第1電極から前記第1の導電型を有するキャリアが前記活性層に対して前記基板表面と概ね平行な方向に電流が注入され、
前記第2電極から前記第2の導電型を有するキャリアが前記活性層に対して前記基板表面と概ね垂直な方向に電流が注入され、
該活性層から放出された光が第1の端面と第2の端面との間に設けられた共振器内で共振し、前記第2の端面側から増幅された光が放出される半導体レーザにおいて、
前記コア層は、前記共振器内での光の共振方向に沿って異なる幅の領域を有することを特徴とする半導体レーザ。
【請求項12】
基板上に、第1の絶縁体を介して半導体層に活性層を形成する工程と、
前記活性層の一端に接続されるように第1の導電型を有する第1コンタクト層と、前記活性層の他端に接続されるように前記第1の導電型と逆の導電型の第2の導電型を有する第2コンタクト層とを形成する工程と、
前記活性層上に、第2の絶縁体を介して誘電体を堆積する工程と、
前記誘電体をパターニングしてコア層を形成する工程と、
前記第1コンタクト層および前記第2コンタクト層上に前記第1の導電型および前記第2の導電型の電極を形成する工程とを有し、
前記コア層のパターニングにおいて、長手方向に沿って幅が変化するパターンを有するフォトマスクを用いることを特徴とする半導体レーザの製造方法。
【請求項13】
シリコン基板上に、二酸化シリコン膜およびシリコン層が設けられたSOI基板を準備する工程と、
前記シリコン層を酸化して二酸化シリコン膜を形成した後に、前記二酸化シリコン膜上にシリコン窒化膜を堆積する工程と、
該シリコン窒化膜にエッチングにより開口部を形成し、シリコン窒化膜マスクを形成する工程と、
前記シリコン窒化膜マスクの開口部で前記シリコン層が露出している領域を酸化し、シリコン薄膜よりなる活性層を形成する工程と、
前記シリコン窒化膜マスクを除去し、前記シリコン層に第1の導電型を有するシリコンコンタクト層および前記第1の導電型と逆の導電型である第2の導電型を有するシリコンコンタクト層を形成する工程と、
前記二酸化シリコン膜上にシリコン窒化膜を堆積し、該シリコン窒化膜のパターニングによりコア層を形成する工程と、
前記第1の導電型を有するシリコンコンタクト層および第2の導電型を有するシリコンコンタクト層上のシリコン層を除去し、第1の導電型および第2の導電型の電極を形成する工程を有し、
前記コア層のパターニングにおいて、長手方向に沿って幅が変化するパターンを有するフォトマスクを用いることを特徴とする半導体レーザの製造方法。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図2D】
image rotate

【図2E】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図7C】
image rotate

【図7D】
image rotate

【図7E】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14A】
image rotate

【図14B】
image rotate


【公開番号】特開2012−160524(P2012−160524A)
【公開日】平成24年8月23日(2012.8.23)
【国際特許分類】
【出願番号】特願2011−18084(P2011−18084)
【出願日】平成23年1月31日(2011.1.31)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】