説明

半導体単結晶の製造方法

【課題】結晶の成長方向に対して不純物濃度のばらつきが少なく、高品質な半導体単結晶を再現性よく得ることのできる半導体単結晶の製造方法を提供する。
【解決手段】ルツボ6内に、不純物を添加した半導体融液5を収容し、この半導体融液5をルツボ6の底部に形成された種結晶配置部に配置した種結晶10と接触させた状態で、ルツボ6を回転させながら、種結晶10側から上方に向けて徐々に固化させる半導体単結晶の製造方法において、結晶成長の進行に伴ってルツボ6の回転速度を徐々に遅くするものである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体融液を原料とする半導体単結晶の製造方法に係り、特に、結晶成長方向に沿って不純物濃度を均一に制御するための半導体単結晶の製造方法に関するものである。
【背景技術】
【0002】
これまでに、III−V族化合物半導体結晶などの製造方法として、半導体融液をルツボなどの容器に収容し、半導体融液の一端に種結晶を接触させた状態で種結晶側から他端に向けて徐々に固化させることにより単結晶を成長させる結晶成長技術が多数開発され、実用に供されてきた。
【0003】
例えば、縦型のルツボに半導体融液を収容し、その下端に種結晶を配して、下方から上方へ向けて結晶を成長させる、いわゆる縦型成長法としては、垂直ブリッジマン(Vertical Bridgman:VB)法、垂直温度勾配凝固(Vertical Gradient Freeze:VGF)法、垂直帯溶融凝固(Vertical Zone Melt:VZM)法などが知られている。
【0004】
VB法、VGF法に関しては、非特許文献1に詳しく解説が記載されている。また、特許文献1〜4などにもその応用技術が記載されている。
【0005】
例えば、特許文献1には原料となる半導体融液を収容する容器と、容器の周囲に配置した温度勾配炉と、温度勾配炉を容器に対して相対的に移動する手段とを有し、容器の一端から固化成長させる単結晶の製造装置において、容器の壁内にB23を含有させたBN(Boron Nitride)製容器を用いた単結晶の製造装置が記載されている。
【0006】
また、特許文献3に記載の単結晶製造装置によれば、使用時にBN製容器の壁面から徐々にB23が染み出してB23膜でルツボの壁面が覆われるので、原料となる半導体融液とルツボ表面の凹凸壁面とが接触することにより生じる結晶核の発生を防止できる。
【0007】
【特許文献1】特許第2585415号公報
【特許文献2】特許第2664085号公報
【特許文献3】特許第2850581号公報
【特許文献4】特許第3391503号公報
【非特許文献1】干川圭吾著「アドバンストエレクトロニクス I−4 バルク結晶成長技術」培風館、1994年5月版、p.222−241
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、上述した従来の化合物半導体結晶の製造技術では、ドーピングした不純物の偏析効果により、結晶内部で結晶成長方向に沿って不純物濃度が大きく変化してしまうという問題があった。
【0009】
不純物濃度のばらつきは、結晶基板の電気特性のばらつきとなるため、最終的に結晶基板を使って製造されるデバイスの特性ばらつきにつながってしまう。また、偏析による不純物の過度な凝縮は、結晶成長中の多結晶発生の原因となる場合もある。
【0010】
そこで、本発明の目的は、上記課題を解決し、結晶の成長方向に対して不純物濃度のばらつきが少なく、高品質な半導体単結晶を再現性よく得ることのできる半導体単結晶の製造方法を提供することにある。
【課題を解決するための手段】
【0011】
本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、ルツボ内に、ドーパントとしての不純物を添加した半導体融液を収容し、この半導体融液を前記ルツボの底部に形成された種結晶配置部に配置した種結晶と接触させた状態で、前記ルツボを回転させながら、前記種結晶側から上方に向けて徐々に半導体融液を固化させる半導体単結晶の製造方法において、結晶成長の進行に伴って前記ルツボの回転速度を徐々に遅くする半導体単結晶の製造方法である。
【0012】
請求項2の発明は、結晶成長の進行に伴って前記ルツボの回転速度を徐々に遅くすると共に、結晶成長速度を徐々に遅くする請求項1に記載の半導体単結晶の製造方法である。
【0013】
請求項3の発明は、前記ルツボの直径が160mm、長さが300mmであり、前記ルツボの回転速度を成長開始時の20rpmから成長終了時の1rpmまで、結晶成長の進行に伴って0.25rpm/hの割合で徐々に遅くする請求項1または2に記載の半導体単結晶の製造方法である。
【発明の効果】
【0014】
本発明によれば、単結晶の成長方向に対し、ドープした不純物濃度の変化を小さく抑えることができ、その結果、電気特性の揃った結晶基板を歩留まりよく製造することができる。
【発明を実施するための最良の形態】
【0015】
以下、本発明の好適な一実施の形態を添付図面にしたがって説明する。
【0016】
本発明者は、上述した結晶成長方向に沿って不純物濃度が不均一となる問題を解決すべく種々検討した結果、不純物の実効偏析係数が成長境界層厚さの関数であることに着目し、ドープしたい不純物の平衡偏析係数に合わせて結晶の成長境界層厚さを成長中に次第に連続的または段階的に変化させていく方法を考案した。
【0017】
結晶に取り込まれる不純物の濃度Csは、次式(1)で表される。
【0018】
s=ke0(1−g)ke-1 ・・・(1)
ここで、keは実効偏析係数、C0は半導体融液の初期の不純物濃度、gは結晶の固化率(初期の半導体融液重量と固化した結晶の重量との比を表す値)である。
【0019】
さらに、実効偏析係数keは、次式(2)で表される。
【0020】
e=k0/(k0+(1−k0)・exp(−R・d/D)) ・・・(2)
ここで、k0は平衡偏析係数、Rは結晶成長速度、Dは不純物の半導体融液中の拡散係数、dは界面近傍の半導体融液中の成長境界層の厚さである。
【0021】
式(2)から分かる通り、不純物の実効偏析係数keは、結晶成長速度Rならびに成長境界層厚さdの関数となっており、結晶成長速度Rが遅いほど、また成長境界層厚さdが薄いほど実効偏析係数keは平衡偏析係数k0に近づく。逆に結晶成長速度Rが速くなれば、また成長境界層厚さdが厚くなれば実効偏析係数keは1に近づく。
【0022】
また、式(1)から分かる通り、結晶に取り込まれる不純物は結晶の固化率gの関数で表され、ke>1の場合は、固化率gが大きくなるほど不純物濃度は低下する。逆にke<1の場合は、固化率gが大きくなるほど不純物濃度は増加する。
【0023】
不純物の偏析の影響をなくすには、実効偏析係数keは1に近いほどよいが、実際には有限の結晶成長速度R、成長境界層厚さdを取らざるを得ない以上、keは1と平衡偏析係数k0の間の値を取る。
【0024】
ここで、本発明者は、結晶成長速度Rならびに成長境界層厚さdは、結晶成長中、常に一定の値を保たなければならないことはないはずであると考え、不純物偏析を緩和するという観点で、結晶成長中の結晶成長速度Rならびに成長境界層厚さdがどうあるべきかを検討した。
【0025】
結晶成長の初期の段階では、結晶の体積が少なく、逆に半導体融液の体積が大きい。この時は、結晶中の温度勾配が大きくなりやすく、結晶欠陥も発生しやすい。また、半導体融液の対流による温度変動が生じやすく、結晶を通して放熱する熱流が安定しにくい。
【0026】
このため、結晶成長速度Rを安定に維持して、結晶に加わる歪を抑制する必要がある。また、半導体融液の温度変動を抑えるためには、ルツボ回転などの手法を用いて対流を抑制した方が結晶成長が安定しやすい。その結果、成長境界層厚さdはある程度厚くならざるを得ない。
【0027】
しかし、結晶成長が進行して、結晶の体積が増加し、半導体融液の体積が減少してくれば、成長も安定してくるため、必ずしも結晶成長開始当初の結晶成長速度Rならびに成長境界層厚さdを一定に保つ必要はない。
【0028】
翻って不純物の濃度分布を考えると、結晶中の長手方向(結晶成長方向)の不純物濃度分布は、成長初期の不純物濃度と解離の少ない結晶領域が長く続くほどよい。
【0029】
しかし実際は、偏析のために結晶の後端に行くにしたがって、成長初期の不純物濃度から大きく外れてきてしまう。結晶中の不純物濃度分布は、初期の半導体融液中の不純物濃度C0と不純物の実効偏析係数keにしたがって決まるわけだが、結晶成長中に実効偏析係数keを変化させることができれば、少しでも成長初期の不純物濃度と解離の少ない結晶領域を長く成長させることができるはずである。
【0030】
そのためには、偏析による成長初期の不純物濃度との解離の大きい領域をなるべく結晶の後端部に持ってくる方がよく、そのためには、成長中に実効偏析係数keの値を、平衡偏析係数k0に近づけるようにすればよい。
【0031】
以上の関係から、不純物をドープして結晶成長を行う場合は、結晶の固化率gが大きくなるにつれて実効偏析係数keが平衡偏析係数k0に近づくように、結晶成長速度Rを徐々に遅くする、または成長境界層厚さdを徐々に薄くすることで、不純物の偏析の影響を緩和することができるのである。
【0032】
さて、本発明の実施の形態に係る半導体単結晶の製造方法およびこの製造方法で用いる結晶成長炉を説明する。
【0033】
まず、半導体単結晶の製造に用いる結晶成長炉の一例を説明する。図1は、本発明で用いる結晶成長炉の断面模式図である。
【0034】
結晶成長炉1は、成長する化合物半導体結晶の原料を収容する容器としてのルツボ6と、ルツボ6を収容するルツボ収容容器としてのサセプタ7と、サセプタ7を保持するサセプタ支持部材8と、ルツボ6を側面から加熱する複数の外周加熱部としての外周加熱ヒータ3とを備える。外周加熱ヒータ3は、図示例では、炉内に上下に配置された4つの外周加熱ヒータ3a,3b,3c,3dから構成されている。
【0035】
さらに、結晶成長炉1は、複数の外周加熱ヒータ3が発する熱の結晶成長炉1の外部への伝熱を防止する複数の断熱材2と、上部の外周加熱ヒータ3a 3bと下部の外周加熱ヒータ3c,3dとの間に設けられる断熱材4と、これら断熱材4と、これら断熱材2,4などを外部から覆うチャンバー11とを備える。
【0036】
ルツボ6は、円筒体状の直胴部と、直胴部の下端に接続して設けられ、下方に向かって漸次縮径して形成された円錐筒体状の傾斜部と、傾斜部に接続して設けられ、化合物半導体結晶の種結晶10を収容する種結晶配置部としての有底円筒体状の細径部とからなる。
【0037】
ルツボ6の直胴部は、一例として、直径160mm、長さ300mmの円筒である。ルツボ6は、熱分解窒化ホウ素(Pyrolytic Boron Nitride:pBN)から形成される。また、ルツボ6は石英から形成することもできる。
【0038】
すなわち、ルツボ6は、細径部を底部に有すると共に、直胴部の上端にルツボ開口部を有する。ルツボ6は、細径部に種結晶10を収容すると共に、ルツボ開口部から導入された化合物半導体結晶の原料と必要に応じてp型用またはn型用の所定のドーパントとを所定量ずつ収容する。化合物半導体結晶の原料には、成長する化合物半導体の多結晶を用いる。また、ルツボ6には、B23などの液体封止剤9をさらに収容してもよい。
【0039】
サセプタ7はグラファイトから形成され、ルツボ6を保持して収容する。また、サセプタ支持部材8は、結晶成長炉1内で昇降および回転ができるように設けられている。そして、サセプタ支持部材8の上にサセプタ7が搭載されて保持される。
【0040】
この場合に、サセプタ7下部がサセプタ支持部材8に接触して、サセプタ支持部材8の上にサセプタ7が搭載される。これにより、結晶成長中にルツボ6内の温度分布を緩やかに、かつ、一定に保ってルツボ6を回転させることができる。
【0041】
結晶成長炉1の上部から下部へ向かう方向に沿って配置される複数の外周加熱ヒータ3(3a,3b,3c,3d)は、サセプタ7の周囲を囲むように結晶成長炉1の内部の所定の高さの位置にそれぞれ配置される。複数の外周加熱ヒータ3の設定温度は、結晶成長炉1の上部から下部へ向かう方向に沿って順次、低下するように設定される。
【0042】
外周加熱ヒータ3は、一例として、グラファイトなどの材料から形成される抵抗加熱ヒータで構成される。また、外周加熱ヒータ3は、炭化ケイ素(SiC)ヒータ、赤外線加熱ヒータ、RFコイルで加熱した発熱体を2次ヒータとして用いるヒータなどで構成することもできる。
【0043】
断熱材2は、複数の外周加熱ヒータ3の外側を包囲して設けられる。断熱材2を設けることにより、複数の外周加熱ヒータ3が発した熱を、ルツボ6に効率的に伝熱させることができる。一方、断熱材4は、上部の外周加熱ヒータ3a,3bと下部の外周加熱ヒータ3c,3dとの間に所定の温度差を確保するために配置されるが、設置が必ず必要というわけではない。
【0044】
断熱材2は、一例として、グラファイトの成型材から構成される。また、断熱材2は、アルミナ材、グラスウール、耐火レンガなどで構成することもできる。
【0045】
チャンバー11は、ルツボ6と、ルツボ6を収容するサセプタ7と、サセプタ7を保持するサセプタ支持部材8と、複数の外周加熱ヒータ3と、断熱材2および断熱材4とを密閉する。結晶成長炉1は、チャンバー11内の雰囲気を所定のガス雰囲気に設定する機構と、チャンバー11内の圧力を一定値に保つガス圧制御機構とを有する。
【0046】
結晶成長炉1は、VGF法で化合物半導体結晶の単結晶を成長する。すなわち、結晶成長炉1は、外周加熱ヒータ3の加熱により、ルツボ6内に収容したドーパントを含む原料を所定の温度で融解した半導体融液5を、ルツボ6の底部に設置された種結晶10と接触させた状態で、種結晶10側のルツボ6の下端を、ルツボ6の上端(ルツボ開口部側)よりも低温に保持しつつ、半導体融液5の温度を降下させる。ルツボ6内では融解した化合物半導体の原料の半導体融液5が細径部の種結晶10と接触して単結晶の成長を開始し、種結晶10側から結晶成長炉1の上方に向かって半導体融液5が徐々に固化し、化合物半導体の単結晶が成長していく。結晶成長炉1で成長する化合物半導体結晶は、一例として、III−V族化合物半導体であるGaAsの単結晶である。
【0047】
また、結晶成長炉1において、化合物半導体の半導体融液5が大気圧以上の解離圧を有する場合、チャンバー11を圧力容器とすることもできる。チャンバー11を圧力容器とすることにより、化合物半導体の半導体融液5が大気圧以上の解離圧を有する場合であっても、液体封止剤9を用いると同時に、チャンバー内を解離圧以上の圧力に設定することにより、半導体融液5の解離を防止して化合物半導体の単結晶を成長させることができる。
【0048】
また、ルツボ6の全体を石英などから形成されたアンプルに封入することもできる。そして、ルツボ6を封入したアンプルを結晶成長炉1内の所定の位置に設置して、化合物半導体の単結晶を成長することもできる。
【0049】
また、結晶成長炉1においては、複数の外周加熱ヒータ3の設定温度を所定の速度で徐々に低下させて、ルツボ6内の温度を低下させ、ルツボ6内の半導体融液5から単結晶を成長させているが、結晶の製造方法はこれに限られない。例えば、サセプタ支持部材8を回転させながら徐々に降下させることにより単結晶を成長させてもよい。
【0050】
上述の結晶成長炉1では、GaAsの単結晶だけではなく、他のIII−V族化合物半導体結晶を成長することもできる。例えば、結晶成長炉1を用いて、InP、InAs、GaSb、またはInSbなどの化合物半導体の単結晶を成長することができる。また、結晶成長炉1を用いてAlGaAs、InGaAsまたはInGaPなどのIII−V族化合物半導体結晶の三元混晶結晶、若しくは、AlGaInPなどのIII−V族化合物半導体結晶の四元混晶結晶の成長にも応用が可能である。
【0051】
また、結晶成長炉1を用いて、ZnSe、CdTeなどのII−VI族化合物半導体結晶、または、Si、GeなどのIV族半導体結晶の成長をすることもできる。さらに、結晶成長炉1を用いて、化合物半導体結晶または半導体単結晶ではない材料の結晶である、金属結晶、酸化物結晶、フッ化物結晶などの結晶を成長させることもできる。
【0052】
次に、本実施の形態に係る半導体単結晶の製造方法を説明する。
【0053】
本実施の形態に係る半導体単結晶の製造方法は、半導体融液5内の対流を抑制することで成長境界層厚さdが増加する現象を利用し、ドーパントとしての不純物を添加した半導体融液5を凝固させて半導体単結晶を成長させる結晶成長中にルツボ6を回転させて、半導体融液5に遠心力を付加することで半導体融液5の自然対流を抑制すると共に、結晶成長の進行に伴って(結晶の固化率gの増加に伴って)、実効偏析係数keが平衡偏析係数k0に近づくように、ルツボ6の回転数を徐々に遅くすることで自然対流の影響を徐々に開放して結晶成長方向に沿う不純物濃度の均一化を図る方法である。
【0054】
例えば、上述した直径160mmのルツボ6の場合には、ルツボ6の回転速度を成長開始時の20rpmから成長終了時の1rpmまで、結晶成長の進行に伴って0.25rpm/hの割合で徐々に遅くするとよい。
【0055】
半導体単結晶の製造方法によれば、結晶成長中にルツボ6を回転させて、半導体融液5に遠心力を付加することで半導体融液5の自然対流を抑制すると共に、結晶成長の進行に伴って(結晶の固化率gの増加に伴って)、実効偏析係数keが平衡偏析係数k0に近づくように、ルツボ6の回転数を徐々に遅くするため、単結晶の成長方向に対し、ドープした不純物濃度の変化を小さく抑えることができ、その結果、電気特性の揃った結晶基板を歩留まりよく製造することができる。
【0056】
また、ドーパントとしての不純物を添加した半導体融液5を凝固させて半導体単結晶を成長させる半導体単結晶の製造方法において、結晶成長の進行に伴って(結晶の固化率gの増加に伴って)、実効偏析係数keが平衡偏析係数k0に近づくようにするためには、結晶成長速度を徐々に遅くすることも有効である。
【0057】
そこで、これを上述の実施の形態、すなわち、結晶成長中にルツボ6を回転させ、結晶成長の進行に伴って、ルツボ6の回転速度を徐々に遅くする方法と組み合わせて、不純物を添加した半導体融液5を凝固させて半導体単結晶を成長させる際に、半導体融液5に遠心力を付加して半導体融液5の自然対流を抑制し、結晶成長の進行に伴って(結晶の固化率gの増加に伴って)、ルツボの回転数を遅くしていくと同時に、結晶成長速度を徐々に遅くして(或いは半導体融液5の温度降下速度を徐々に小さくして)、結晶成長方向に沿う不純物濃度の均一化を図ることもできる。
【0058】
本発明において、半導体融液5に加わる遠心力をなくし、半導体融液5の対流の影響を最も大きくするためには、ルツボ6の回転を完全に止めてしまえばよいが、そうすると、半導体融液5内の温度分布の軸対称性が崩れて結晶成長が安定しなくなったり、結晶の電気特性の分布が乱れるなどの別の問題が生じてしまうため、ルツボ6の回転は完全に止めてしまわない方がよい。
【0059】
本発明は、成長される結晶が、II−VI族またはIII−V族の化合物半導体結晶、特に、GaAsの単結晶である場合に適用すると効果的である。
【0060】
例えば、GaAsの結晶成長に適用する場合、不純物としては、Si、S、Se、Mg、Zn、Cd、In、Ge、Sn、Sb、Te、Cr、Mn、Fe、C、Al、P、Beなどが挙げられる。
【0061】
本発明は、縦型ボート法(VB法、VGF法など)に適用されることが望ましい。引上げ法(CZ法、LEC法)、カイロポーラス法などの結晶製造方法にも適用は可能であるが、これらの結晶成長においては、半導体融液5中に結晶回転に伴う強制対流が生じるため、ルツボ回転で生じる遠心力で半導体融液5中の対流を制御することが難しく、本発明の効果が得られにくい。
【実施例】
【0062】
(実施例1)
実施例1では、上述した結晶成長炉1を用いて、VGF法により、SiをドープしたGaAsの単結晶成長を行った。
【0063】
ルツボ6は、その直胴部の直径160mm、直胴部の長さ300mmのpBN製のものを用い、まず、ルツボ6の細径部にGaAsの種結晶10を収納した。続いて、予め合成した塊状のGaAs多結晶をルツボ6内に24000g充填した。次に、ドーパント(不純物)としてシリコンを7.2g、液体封止剤9としてB23を400gルツボ6内に装填した。
【0064】
次に、このルツボ6を、グラファイト製のサセプタ7に収容した。さらに、このサセプタ7を、サセプタ支持部材8上に搭載した。次に、結晶成長炉1を密閉して、結晶成長炉1内を窒素ガスでガス置換した。これにより、結晶成長炉1内のガス雰囲気は、窒素ガス雰囲気となった。
【0065】
続いて、ルツボ6の回転を開始した。ルツボ6の回転は、サセプタ支持部材8を回転させて行い、ルツボ6の回転速度は20rpmに設定した。また、複数の外周加熱ヒータ3に通電して、ルツボ6の加熱を開始した。ルツボ6の加熱の開始後、所定時間ルツボ6を加熱し続けることにより、ルツボ6内のGaAs多結晶を完全に融解して半導体融液5とした。
【0066】
ルツボ6を加熱する工程で、チャンバー内の雰囲気ガスの体積は膨張する。そこで、チャンバー内の圧力が0.5MPaを超えないように、チャンバー内の圧力を制御した。すなわち、本実施例1においては、チャンバー内の圧力が結晶成長中も常に0.5MPaに保持されるように、自動的かつ連続的にチャンバー内のガス圧を制御した。
【0067】
ルツボ6内のGaAs多結晶を融解させる過程において、ルツボ6内に添加されたB23は、GaAs多結晶が融解するより早く軟化した。軟化したB23は、透明な水飴状になって半導体融液5の表面を覆った。これにより、GaAsの分解によるAsの揮発を抑制できた。
【0068】
続いて、複数の外周加熱ヒータ3の設定温度を、結晶成長炉1の上から下に行くにつれて低下する温度に設定した。
【0069】
具体的には、4基の外周加熱ヒータ3のうち最上部に配置されている外周加熱ヒータ3aの設定温度を1290℃に設定し、その下に配置されている外周加熱ヒータ3bの設定温度を1260℃に設定した。さらに、断熱材4の下に配置されている外周加熱ヒータ3cの設定温度を1150℃、最下段に配置されている外周加熱ヒータ3dの設定温度を1050℃に設定した。このようにヒータ温度を設定した後、半導体融液5の温度が安定するまで2時間保持した。
【0070】
複数の外周加熱ヒータ3の位置に対するルツボ6の位置は、予め結晶成長炉1内に熱電対を挿入して計測した温度分布に基づいて決定した。具体的には、ルツボ6を保持している間に種結晶10が融解して消失することを防止すべく、GaAsの融点である1238℃の等温線が、種結晶10の上端部分にかかるようにルツボ6を配置した。
【0071】
結晶成長炉1内の温度が安定した後、各外周加熱ヒータ3の設定温度を、0.5K/hの速度で降下させ、この一定の温度降下速度を保ち、約3日かけて最上部の外周加熱ヒータ3aの設定温度が1250℃になるまで冷却した。また、各外周加熱ヒータ3の設定温度の降下開始と合わせてルツボ6の回転数を減少させ始め、回転数が1rpmになるまで0.25rpm/hの割合で回転数を徐々に減少させた。
【0072】
その後、1rpmでルツボ6を回転させたまま、各外周加熱ヒータ3の温度降下を停止し、そこからさらに、各外周加熱ヒータ3の温度が全て950℃になるように24時間かけて徐冷し、次いで、各外周加熱ヒータ3の温度が400℃になるまで、−20℃/hの速度で各外周加熱ヒータ3の温度を低下させた。続いて、ルツボ6の回転を止め、各外周加熱ヒータ3の通電を停止して、ルツボ6を室温まで冷却した。ルツボ6を室温まで冷却した後、結晶成長炉1からルツボ6を取り出し、B23(液体封止剤9)を除去して成長結晶を取り出した。その結果、成長結晶が全長にわたってGaAsの単結晶であることが確認された。
【0073】
上述の工程で、連続して20回の結晶成長を実施した。その結果、いずれの結晶成長においても、全長がGaAsの単結晶である結晶を得ることができた。
【0074】
(比較例1)
上述の実施例1と比較するための比較例1として、実施例1と同一の第一の結晶成長炉1を用いVGF法により、SiをドープしたGaAsの単結晶成長を行った。
【0075】
この比較例1における結晶成長作業の手順は、上述の実施例1と同じである。実施例1と比較例1とが異なるのは、ルツボ6の回転数である。比較例1においては、結晶成長開始から成長結晶の冷却が完了するまでの間、ルツボ6の回転数を20rpmのままとして定速で回転させた。
【0076】
比較例1においても、ルツボ6を室温まで冷却した後、ルツボ6内の成長結晶を取り出して調べたところ、全長にわたってGaAsの単結晶であることが確認された。
【0077】
(実施例1と比較例1の比較)
実施例1と比較例1とを比較するため、上述の実施例1の工程で得られた20本のGaAs単結晶の内の1本を選択した。そして、選択した1本のGaAs単結晶の直胴部分に該当する部分をスライスして、(100)面を有する略円形状の複数のウェハを切り出した。次に、切り出したウェハから固化率が0.1おきに該当する位置のウェハを抜き出し、その中央部分のシリコン濃度をSIMS(Secondary Ion Mass Spectrometry)で測定した。
【0078】
また、同様に、上述の比較例1の工程で得られたGaAs単結晶1本を選択し、そのGaAs単結晶の直胴部分に該当する部分をスライスして、(100)面を有する略円形状の複数のウェハを切り出し、切り出したウェハから固化率が0.1おきに該当する位置のウェハを抜き出し、その中央部分のシリコン濃度をSIMSで測定した。
【0079】
図2に、上述の実施例1および比較例1で成長したGaAs単結晶における、シリコン濃度の結晶長手方向の分布をSIMSで測定した結果を示す。
【0080】
比較例1で成長させたGaAs単結晶では、通常のシリコンの偏析現象に倣い、シリコン濃度の結晶長手方向の分布は、結晶の後端に行くにしたがって高濃度になっていた。
【0081】
すなわち、固化率が0.1の位置ではシリコン濃度は1.01×1018cm-3であったものが、固化率が0.9の位置ではシリコン濃度は6.16×1018cm-3まで高くなっており、その差は5.15×1018cm-3であった。
【0082】
これに対し、実施例1においては、シリコン濃度の結晶長手方向の分布は、比較例1に比べて変化の度合いが若干緩やかで、固化率が0.1の位置ではシリコン濃度に差はないが、固化率が0.9の位置ではシリコン濃度は6.01×1018cm-3までしか高くなっておらず、その差は5.00×1018cm-3であった。
【0083】
実施例1と比較例1で、シリコン濃度の値を比較すると、それほど大きな差はないように見えるが、仮に良品基板のキャリア濃度の仕様(許容範囲)を(2.0±1.0)×1018cm-3とすると、実施例1では歩留まりが68.6%であるのに対し、比較例1では歩留まりが65.7%となってしまい、これは、1本の結晶インゴットから得られる良品基板の枚数に10枚近い開きが出ることを意味している、したがって、十分に有意な差が見られると言える。
【0084】
良品基板のキャリア濃度の仕様は、基板の使用条件によって左右される性格のものであるため、その範囲を限定することはできず、したがって本発明の効果も数値で表すことは難しいが、偏析の影響を緩和して、結晶成長の初期と後期での不純物濃度分布の差を低減する効果があることは間違いない。
【0085】
(実施例2)
実施例2では、上述した実施例1と同一の第一の結晶成長炉1を用いVGF法により、SiをドープしたGaAsの単結晶成長を行った。
【0086】
この実施例2における結晶成長作業の手順は、上述の実施例1と基本的に同じである。実施例2と実施例1とが異なるのは、成長中に結晶成長速度を変化させた点である。実施例2では、半導体融液5を形成し、結晶成長炉1内の温度が安定した後、各外周加熱ヒータ3の設定温度を、0.6K/hの速度で降下させた。
【0087】
そして、その状態で6時間放置後、各外周加熱ヒータ3の設定温度の降下速度を0.6K/hから0.008K/hの割合でゆっくりと落としていき、最終的に50時間かけて0.2K/hの降下速度にまで下げて、そのまま6時間放置した。その結果、最上部の外周加熱ヒータ3aの設定温度は、約1265℃まで下がった。
【0088】
また、ルツボ6の回転数を、実施例1と同様に、各外周加熱ヒータ3の設定温度の降下開始と合わせて減少させ始め、回転数が1rpmになるまで0.25rpm/hの割合で徐々に減少させた。
【0089】
上述の操作により、結晶成長速度、すなわち、結晶と半導体融液の界面の移動速度は、成長開始当初は約4mm/hであったものが、ヒータ温度の降下速度の低下につれて徐々に遅くなり、最終的には約1.5mm/hまで低下した。
【0090】
その後、各外周加熱ヒータ3の温度降下を停止し、そこからさらに、全ての外周加熱ヒータ3の温度が950℃になるように24時間かけて徐冷し、次いで、各外周加熱ヒータ3の温度が400℃になるまで、−20℃/hの速度で各外周加熱ヒータ3の温度を低下させた。続いて、各外周加熱ヒータ3の通電を停止して、ルツボ6を室温まで冷却した。
【0091】
室温まで冷却して取り出した結晶を観察することにより、本実施例で得られたGaAs結晶も、全長にわたって単結晶となっていることが確認された。この結晶中のSi濃度を、実施例1と同様の方法で測定し、比較例1の結果と並べたものを図3に示す。
【0092】
実施例2においては、シリコン濃度の結晶長手方向の分布は、実施例1に比べて変化の度合いがさらに緩やかで、固化率が0.1の位置ではシリコン濃度は1.01×1018cm-3であったものが、固化率が0.9の位置ではシリコン濃度は5.78×1018cm-3まで高くなっており、その差は4.77×1018cm-3であった。
【0093】
このように、本発明の半導体単結晶の製造方法によれば、成長した結晶の頭部と尾部の不純物濃度差を小さくすることができる。これにより、成長結晶をスライスして形成される複数の半導体基板間での電気的特性、光学的特性、および機械的特性などのばらつきが低減する。また、良品基板の取得率が向上し、原料を効率良く使うことができ、製造コストの低減にもつながる。
【0094】
上述の実施例では、偏析係数が1よりも小さい不純物を添加した場合の例を述べたが、偏析係数が1よりも大きい不純物を添加した場合にも適用が可能である。
【図面の簡単な説明】
【0095】
【図1】本発明で用いた結晶成長炉の断面模式図である。
【図2】本発明および従来技術で作製したGaAs単結晶における、シリコン濃度の結晶長手方向の分布を示す図である。
【図3】本発明の他の実施の形態および従来技術で作製したGaAs単結晶における、シリコン濃度の結晶長手方向の分布を示す図である。
【符号の説明】
【0096】
1 結晶成長炉
2,4 断熱材
3 外周加熱ヒータ
5 半導体融液
6 ルツボ
7 サセプタ
8 サセプタ支持部材
9 液体封止剤
10 種結晶
11 チャンバー

【特許請求の範囲】
【請求項1】
ルツボ内に、ドーパントとしての不純物を添加した半導体融液を収容し、この半導体融液を前記ルツボの底部に形成された種結晶配置部に配置した種結晶と接触させた状態で、前記ルツボを回転させながら、前記種結晶側から上方に向けて徐々に半導体融液を固化させる半導体単結晶の製造方法において、
結晶成長の進行に伴って前記ルツボの回転速度を徐々に遅くすることを特徴とする半導体単結晶の製造方法。
【請求項2】
結晶成長の進行に伴って前記ルツボの回転速度を徐々に遅くすると共に、結晶成長速度を徐々に遅くする請求項1に記載の半導体単結晶の製造方法。
【請求項3】
前記ルツボの直径が160mm、長さが300mmであり、前記ルツボの回転速度を成長開始時の20rpmから成長終了時の1rpmまで、結晶成長の進行に伴って0.25rpm/hの割合で徐々に遅くする請求項1または2に記載の半導体単結晶の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2010−30847(P2010−30847A)
【公開日】平成22年2月12日(2010.2.12)
【国際特許分類】
【出願番号】特願2008−195829(P2008−195829)
【出願日】平成20年7月30日(2008.7.30)
【出願人】(000005120)日立電線株式会社 (3,358)
【Fターム(参考)】