説明

可変剛性を有する関節機構

【課題】ロボットアームに搭載可能で、耐久性が高く、弾性部材の劣化による影響を抑えることができる、可変剛性を有する関節機構を提供する。
【解決手段】アームが、前腕伝達機構42および前腕モデル3から成り、関節軸41aを中心として回転可能に、上腕2に設けられている。前腕伝達機構42は、長さ方向に沿った中央レール溝42dおよびサイドレール溝42eを有する。各溝42d,42eは、関節軸41aからモデルパイプ31の長さ方向に対して垂直方向に所定の距離をあけて設けられている。弾性部材43fが、線形性を有し、付勢力が常に関節軸41aに向くよう、関節軸41aを中心として回転可能に上腕2に設けられている。各弾性部材43fは、関節軸41aを中心として回転するとき、関節軸41a側の一端が各溝42d,42eに沿ってスライドし、他端と関節軸41aとの距離が一定に保持されるよう構成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、可変剛性を有する関節機構に関する。
【背景技術】
【0002】
従来のロボットアームでは、アクチュエータが直接アームに取り付いていたため、能動的あるいは受動的な衝撃力をアームが受けた場合、アクチュエータにもその衝撃力が伝播してしまい、アクチュエータの劣化や破損を引き起こすという問題があった。この問題を解決するため、アクチュエータとアームとの間に弾性要素を組み込んで、その衝撃力を弾性要素によって吸収させ、緩和させることが考えられる。しかしながら、ただ単に弾性要素を組み込んだのでは柔らかい関節になってしまい、荷物を運ぶというような力を強く入れる作業ができなくなる。また、柔らかい関節ゆえに、手先が振動的になり、細かい作業もできなくなる。
【0003】
また、ロボットは、力作業を行う場合には、高剛性であることが要求される。一方で、福祉や介護の現場では、人間との物理的な接触を伴うため、できるだけ低剛性であることが望ましい。このように、関節の剛性を任意に可変できることは、人間と物理的接触を伴う可能性のある福祉分野や介護分野のロボットにとって、必要性が大きい。このため、その実現により、ロボットが人間と円滑なコミュニケーションを取れるようになることが期待できる。また、ロボットが外界から衝撃力を受けるような作業において、その時に剛性を低くして発生する衝撃を緩和させ、ロボットを保護することもできる。
【0004】
そこで、ロボットの関節の剛性を変化させる方法として、ソフトウェア制御によるものや、機械要素の組み合わせや材料の特性を利用した機構によるものが提案されている。しかし、ソフトウェアによって剛性を変化させる場合、関節部に高減速比の減速器を持つ一般的なロボットでは、減速器内の高い摩擦力によって低剛性を実現することができない。また、力センサで外力を検出し、検出される力に応じて見かけ上の剛性を変化させる手法も一般的に行われているが、力センサで力を検出してからロボットを動作させるため時間遅れが生じ、瞬間的な衝撃力を緩和することはできない。
【0005】
そこで、減速器の出力側に可変剛性機構を設けることにより、ソフトウェア制御によらずとも、急激な衝撃に対処することができ、高剛性および低剛性の両方を実現することもできる。このようなものとして、剛性可変機構を有し、医療補助器具の一環として用いられる駆動装置(例えば、特許文献1参照)や、網目状外装チューブ部材内に棒状の弾性部材が内装され、引張りに対する剛性の調整が容易なばね装置(例えば、特許文献2参照)がある。
【0006】
【特許文献1】特開2004−105609号公報
【特許文献2】特開2004−169795号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1に記載の駆動装置は、膝関節リハビリ用であり、地面に設置して用いるため、機構の重量やサイズの制限を受けずに設計することができる。このため、ロボットアーム等の重量やサイズの制限を受ける機構に搭載することはできないという課題があった。また、特許文献2に記載のばね装置は、軽量化の面では優れているが、素材が柔軟体であるため、使用時間に対する劣化が著しく、耐久性に劣るという課題があった。特許文献1に記載の駆動装置および特許文献2に記載のばね装置は、非線形ばねを用いて剛性を可変にする機構となっているため、ばねの疲労による劣化が直接、非線形特性に影響し、結果として可変剛性の特性劣化として影響を及ぼすという課題もあった。
【0008】
本発明は、このような課題に着目してなされたもので、ロボットアームに搭載可能で、耐久性が高く、弾性部材の劣化による影響を抑えることができる、可変剛性を有する関節機構を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するために、本発明に係る可変剛性を有する関節機構は、支持部材とアームと弾性部材とを有し、前記アームは長さ方向に対して垂直な回転軸を中心として回転可能に前記支持部材に設けられ、前記弾性部材は線形性を有し、前記回転軸に向かう付勢力を前記アームに作用させるとともに、前記付勢力の向きと前記アームとの成す角度を変更可能に前記支持部材に設けられ、前記付勢力の向きと前記アームとの成す角度に応じて、前記付勢力の大きさが変化して前記回転軸の剛性が非線形に変化するよう構成されていることを、特徴とする。
【0010】
本発明に係る可変剛性を有する関節機構は、支持部材とアームと弾性部材とによる簡単な構成を有しているため、重量やサイズを小さくして、重量やサイズの制限を受けるロボットアーム等の関節機構として搭載することができる。弾性部材による回転軸に向かう付勢力の向きとアームとの成す角度に応じて、アームに作用する付勢力の大きさが変化して、回転軸の剛性が非線形に変化するよう構成されているため、回転軸すなわち関節の剛性を、高剛性から低剛性まで変化させることができる。
【0011】
ゴムのような非線形弾性部材では、入力に対する出力が非線形となるため、わずかな入力誤差や特性変化で、出力が大きく変化してしまう。これに対し、本発明に係る可変剛性を有する関節機構は、弾性部材が線形性を有しているため、入力誤差や特性変化に対して出力が線形に変化し、誤差の推定が容易である。また、弾性部材による付勢力のアームに作用する方向が変化することにより、回転軸すなわち関節の剛性を変化させるため、弾性部材の劣化による影響を抑えることができ、かつその影響の推定が容易である。弾性部材として、耐久性を有するコイルスプリングなどを使用することにより、耐久性を高めることができる。
【0012】
本発明に係る可変剛性を有する関節機構で、前記アームは長さ方向に沿ったガイド部を有し、前記ガイド部は前記回転軸から前記アームの長さ方向に対して垂直方向に所定の距離をあけて設けられ、前記弾性部材は圧縮バネから成り、圧縮方向が常に前記回転軸に向くよう前記回転軸を中心として回転可能に前記支持部材に設けられ、前記回転軸を中心として回転するとき、前記回転軸側の一端が前記ガイド部に沿ってスライドし、他端と前記回転軸との距離が一定に保持されるよう構成されていることが好ましい。この場合、弾性部材がアームに対して回転軸を中心として回転するとき、弾性部材の回転軸側の一端が、回転軸からアームの長さ方向に対して垂直方向に所定の距離をあけて設けられたガイド部に沿ってスライドして、弾性部材が伸縮する。これにより、アームに作用する付勢力の大きさが変化し、回転軸の剛性を非線形に変化させることができる。
【0013】
この場合の本発明に係る可変剛性を有する関節機構の原理を、図1を用いて説明する。
図1(a)に示すように、関節機構は、アームaと、線形性を有する圧縮バネから成る弾性部材cと、弾性部材cの変位を回転軸oを通る直線t上のみに限定する機構bと、弾性部材cの付勢力でアームaを押すスライダdとから成る。アームaおよび弾性部材cは、回転軸oを中心に回転することができる。弾性部材cは、機構bにより、圧縮方向が常に回転軸oに向いている。弾性部材cの回転軸o側の一端に設けられたスライダdは、機構bにより、アームaの長さ方向に沿ったガイド部に沿って、直線u上をスライドする。ガイド部は、アームa上の直線uに沿って、回転軸oからアームaの長さ方向に対して垂直方向に所定の距離をあけて設けられている。弾性部材cの他端は、機構bにより、回転軸oとの距離が一定に保持されている。
【0014】
機構b、弾性部材c、スライダdからなる機構を、以下ではスライダ式加圧機構と呼ぶ。スライダ式加圧機構にはアクチュエータが取り付けられており、そのアクチュエータは、スライダ式加圧機構を、回転軸oを中心に回転させることができる。このとき、機構bと回転軸oとの距離は、常に一定の長さLである。スライダ式加圧機構は、図1(a)に示すように、アームaと弾性部材cの変位方向である直線tとが直交する状態で、弾性部材cは自然長lになるように調整されている。
【0015】
ここで、Δθを、アームaにごく微小な力を受けたときの、回転軸oまわりのアームaの微小回転角、Δτを、その時のトルク変化分とする。図1(a)のように、アームaと弾性部材cの変位方向である直線tとが直交する状態では、アームaの回転軸oまわりの剛性(Δτ/Δθ)は0となる。ところが、図1(b)に示すように、アクチュエータによってスライダ式加圧機構に点oを中心としてφの回転変位を与えると、スライダdはガイド部に沿ってスライドして直線u上を移動し,弾性部材cをl−l’の長さだけ押し縮める。弾性部材cに変位が生じたことで、スライダdはアームaに対して力を加えることになる。よって、図1(c)に示すように、アームaの回転軸oまわりの剛性(Δτ/Δθ)は、スライダ式加圧機構の回転変位φに対して、理論上、0から無限大まで非線形に変化する。
【0016】
本発明に係る可変剛性を有する関節機構で、前記アームは前記ガイド部を1対有し、前記弾性部材は1対から成り、前記回転軸を中心としてそれぞれ独立に回転可能であり、前記回転軸を中心として回転するとき、それぞれ前記一端が各ガイド部に沿ってスライドするよう構成されていることが好ましい。この場合、支持部材に対する各弾性部材の回転角度を調整することにより、回転軸の剛性および支持部材に対するアームの位置を調整することができる。
【0017】
この場合の本発明に係る可変剛性を有する関節機構の原理を、図2を用いて説明する。
図1に示すように、スライダ式加圧機構を一つ用いただけでは、アクチュエータによってスライダ式加圧機構に回転変位−φを与えると、スライダdがアームaを加圧するため、アームaも−φだけ回転してしまう。したがって、アームaを所定の位置に固定するために、図2に示すように、もう一つスライダ式加圧機構を用いる。これらを、スライダ式加圧機構I、スライダ式加圧機構IIと呼ぶ。図2(a)に示すように、スライダ式加圧機構Iに回転変位φを、スライダ式加圧機構IIに回転変位−φを与えると、アームaは回転しない。図2(b)に示すように、アームaを回転軸oまわりに角度θだけ回転させたい場合は、スライダ式加圧機構Iに回転変位θ−φを、スライダ式加圧機構IIに回転変位θ+φを与えることができる。また、φの値を調整することで、アームaの回転軸oまわりの剛性を変化させることもできる。
【発明の効果】
【0018】
本発明によれば、ロボットアームに搭載可能で、耐久性が高く、弾性部材の劣化による影響を抑えることができる、可変剛性を有する関節機構を提供することができる。
【発明を実施するための最良の形態】
【0019】
以下、図面に基づき、本発明の実施の形態について説明する。
図3乃至図8は、本発明の実施の形態の可変剛性を有する関節機構を示している。
図3乃至図8に示すように、可変剛性を有する関節機構1は、ロボットアームの肘関節として製作されており、上腕2と前腕モデル3とスライダ式加圧機構4とアクチュエータ5とを有している。
【0020】
図3および図4に示すように、上腕2は、底板21と1対の側板22,23と上板24と関節板25とを有している。底板21は、矩形状に形成されている。各側板22,23は、それぞれ底板21の両側縁に、底板21に対して垂直に立ち上がるよう設けられている。上板24は、各側板22,23の前腕とは反対側の上端を連結するよう設けられている。関節板25は、各側板22,23の上板24より前腕側の上部を連結するよう設けられている。関節板25は、人間と同じ様に、腕を屈曲した際に上腕2に対して前腕が約135度曲げられるよう、前腕側で底板21向かって傾斜するよう取り付けられている。上腕2は、支持部材を成している。
【0021】
図3および図4に示すように、前腕モデル3は、円筒状のモデルパイプ31と、モデルパイプ31の一端に取り付けられた前腕用フランジ32と、前腕用フランジ32のモデルパイプ31とは反対側に設けられたフランジ固定具33とを有している。
【0022】
図5乃至図7に示すように、スライダ式加圧機構4は、スライダガイド機構41と前腕伝達機構42と2対のスライダ機構43とを有している。図6に示すように、スライダガイド機構41は、関節軸41aと1対のベアリング41bと1対の大プーリ41cと1対のスライダガイド41dと1対のジョイントブロック41eと2対のスプリングガイド41fとを有している。関節軸41aは、細長いシャフトから成っている。関節軸41aは、両端に、関節角度検出用のエンコーダを取り付けるためのカラー(図示せず)が取り付けられている。
【0023】
各ベアリング41bは、円筒状で、内部に関節軸41aが挿入されて、それぞれ関節軸41aの両端部に設けられている。各ベアリング41bは、関節軸41aの周りをスムーズに回転するようになっている。各大プーリ41cは、円盤状で、中心に関節軸41aが貫通している。各大プーリ41cは、それぞれ各ベアリング41bの内側に配置され、関節軸41aの周りをそれぞれ独立に回転可能になっている。各スライダガイド41dは、細長い矩形板状の側方部41gと、側方部41gの両端に、側方部41gに対して同じ側に垂直に伸びるよう設けられた1対の固定部41hとを有している。各スライダガイド41dは、側方部41gの中心に関節軸41aが貫通している。各スライダガイド41dは、各固定部41hを内側に向けて、それぞれ各大プーリ41cの内側に配置されている。各スライダガイド41dは、六角ボルトにより各大プーリ41cに固定されており、それぞれ各大プーリ41cと共に回転するようになっている。
【0024】
各ジョイントブロック41eは、直方体形状を成し、1対の対面に各スプリングガイド41fを挿入するための挿入孔(図示せず)を有している。各ジョイントブロック41eは、他の1対の対面の中心に関節軸41aが貫通している。各ジョイントブロック41eは、それぞれ各スライダガイド41dの内側に、各スライダガイド41dから所定の距離をあけて設けられている。各スプリングガイド41fは、細長い円柱状で、一端にフランジ部41iを有している。各スプリングガイド41fは、他端が各ジョイントブロック41eの挿入孔に挿入され、フランジ部41iが各スライダガイド41dの各固定部41hに固定されている。各スプリングガイド41fは、各ジョイントブロック41eの挿入孔に対し変位可能に、各ジョイントブロック41eに対して、ねじ等による固定は施されていない。各ジョイントブロック41eおよび各スプリングガイド41fは、それぞれ各スライダガイド41dと共に回転するようになっている。
【0025】
なお、各ジョイントブロック41eは、上下対のスプリングガイド41fが片持ちになるため、それを防ぐために設けられている。各ジョイントブロック41eは、あたかも上下のスプリングガイド41fが一つの軸で構成されているかのような、ポストとしての役割を果たしている。各ジョイントブロック41eは、関節軸41aが貫通しているため、各スプリングガイド41fが関節軸41aに干渉しないよう構成されている。
【0026】
図6に示すように、前腕伝達機構42は、中央伝達部42aと1対のサイド伝達部42b,42cとを有している。中央伝達部42aは、細長い立方体形状を成している。中央伝達部42aは、1対の側面の両側縁に沿って、長さ方向の中央部から一端部にかけて設けられた2対の中央レール溝42dを有している。各サイド伝達部42b,42cは、矩形枠状を成している。各サイド伝達部42b,42cは、中央伝達部42aの他の1対の側面の幅と同じ側面の幅を有している。各サイド伝達部42b,42cは、1つの側面が、それぞれ中央伝達部42aの他の1対の側面に固定されている。各サイド伝達部42b,42cは、中央伝達部42aの長さ方向の他端部が突出するよう、中央伝達部42aの各中央レール溝42dに対応する位置に固定されている。各サイド伝達部42b,42cは、両端面の外側の側縁に沿って、それぞれ1対のサイドレール溝42eを有している。
【0027】
前腕伝達機構42は、各サイド伝達部42b,42cの内部に、各ジョイントブロック41eが位置するよう配置されている。前腕伝達機構42は、中央伝達部42aおよび各サイド伝達部42b,42cに関節軸41aが貫通しており、各ジョイントブロック41eや各スプリングガイド41f等とは独立して回転可能になっている。図3および図4に示すように、前腕伝達機構42は、中央伝達部42aの長さ方向の他端部に、前腕モデル3のフランジ固定具33が固定されている。これにより、前腕伝達機構42は、前腕モデル3とともに回転するようになっている。
【0028】
図7に示すように、各スライダ機構43は、スライダ本体43aとスライダシャフト43bと1対のスライダサイド43cと1対のローラ43dと1対の止め輪43eと弾性部材43fとを有している。スライダ本体43aは、横方向に内部を貫通してスライダシャフト43bが取り付けられており、内部にスライダシャフト43bのためのベアリング(図示せず)が封入されている。スライダ本体43aは、スライダシャフト43bに平行なバネ設置面43gと、バネ設置面43gの中心を貫通するよう設けられたガイド貫通孔(図示せず)とを有している。各スライダサイド43cは、スライダシャフト43bが貫通しており、スライダ本体43a内部のベアリングのストッパーとして、スライダ本体43aの両側面に固定されている。
【0029】
各ローラ43dは、円柱状で、中心にスライダシャフト43bが貫通しており、スライダシャフト43bを回転軸として回転可能に、各スライダサイド43cの外側に設けられている。各ローラ43dは、弾性部材43fによる圧縮荷重に耐性のあるベアリング(図示せず)を有している。各止め輪43eは、円盤状で、中心にスライダシャフト43bが貫通している。各止め輪43eは、各ローラ43dがスライダシャフト43bから外れないよう押さえるために、各ローラ43dの外側に取り付けられている。
【0030】
弾性部材43fは、線形バネのコイルスプリングから成っている。弾性部材43fは、内部がガイド貫通孔に連通するよう、スライダ本体43aのバネ設置面43gに配置されている。図5および図7に示すように、各スライダ機構43は、弾性部材43fの内部およびガイド貫通孔にスプリングガイド41fが貫通するよう、スライダガイド機構41に取り付けられている。このとき、各スライダ機構43は、各ローラ43dがそれぞれ中央レール溝42dおよびサイドレール溝42eに位置し、各溝42d,42eに沿って直線移動可能になっている。各スライダ機構43は、各ジョイントブロック41eや各スプリングガイド41f等とともに回転するようになっている。
【0031】
これにより、スライダ式加圧機構4は、スライダガイド41dが、その回転運動のトルクをスライダ機構43に伝達するようになっている。スプリングガイド41fは、弾性部材43fの圧縮変形を直線的に行えるように補助するものである。スプリングガイド41fがない場合、弾性部材43fは直線的に変形圧縮せず、圧縮力に偏りが生じ、弾性部材43fの破損原因となるため、スプリングガイド41fの取り付けは必須である。
【0032】
図3に示すように、前腕モデル3およびスライダ式加圧機構4は、上腕2の関節板25より前腕側に、モデルパイプ31を前腕側に向けるようにして取り付けられている。スライダ式加圧機構4は、上腕2の各側板22,23の間に、関節軸41aの両端が各側板22,23から貫通するよう設けられている。スライダ式加圧機構4は、スライダガイド機構41の各ベアリング41bが転がり軸受として上腕2の各側板22,23に固定され、前腕伝達機構42、前腕モデル3、各ジョイントブロック41e、各スプリングガイド41f等が、関節軸41aを回転軸として、上腕2に対して回転可能になっている。
【0033】
図4に示すように、アクチュエータ5は、二基から成り、それぞれDCモータ51と減速機52と小プーリ53とを有している。小プーリ53は、減速機52の出力軸に取り付けられている。各アクチュエータ5は、上腕2の上板24と底板21との間に、小プーリ53がスライダ式加圧機構4の各大プーリ41cに対応する位置になるよう配置されている。各アクチュエータ5は、互いに反対向きで平行になるよう、上腕2の上板24と底板21に固定板54で固定されたアクチュエータマウント55に取り付けられている。
【0034】
アクチュエータ5は、小プーリ53と大プーリ41cとに巻き付けられたベルト(図示せず)により、その動力をスライダ式加圧機構4に伝達するようになっている。なお、大プーリ41cと小プーリ53とのプーリ比は2:1であり、アクチュエータ5からのトルクが、スライダ式加圧機構4で二倍になるよう構成されている。また、図3に示すように、ベルトによる動力の伝達のロスを防ぐため、テンションプーリとしての役割を持つアイドラ56が、上腕2の側板22,23にスライド可能に取り付けられている。アイドラ56は、ベルトが弛まない程度の張力を掛けるよう構成されている。
【0035】
図5に示すように、可変剛性を有する関節機構1では、アクチュエータ5からの動力がスライダガイド機構41に回転運動を与える。このとき、スライダ機構43は垂直状態の初期姿勢からスライダガイド機構41の回転力により前腕伝達機構42に対して傾斜した姿勢になる。さらに傾斜角が増大するにつれて、スライダ機構43の弾性部材43fのばね長が自然長より圧縮されていく。これにより、スライダ機構43が前腕伝達機構42に対して作用する力が大きくなる。つまり、スライダガイド機構41の回転角に対して、弾性部材43fに掛かる力が増大し、結果として前腕伝達機構42に作用する力が増大する。
【0036】
可変剛性を有する関節機構1では、各スライダ機構43が、スライダガイド機構41の回転運動を各ローラ43dにより直線運動に変換し、弾性部材43fによる圧縮荷重を各ローラ43dから前腕伝達機構42に伝達させる役割を担っている。各ローラ43dによる直線運動は、各ローラ43dがそれぞれ中央レール溝42dおよびサイドレール溝42eに沿って直線移動することにより、常に定常的である。前腕伝達機構42は、スライダ機構43から受ける力を中央レール溝42dおよびサイドレール溝42eにより伝達し、結果として前腕モデル3にその力を影響させる剛性の伝達部となっている。
【0037】
可変剛性を有する関節機構1では、前腕伝達機構42および前腕モデル3が、アームを成している。アームは、長さ方向に対して垂直な回転軸、すなわち関節軸41aを中心として回転可能に、支持部材である上腕2に設けられている。アームは、長さ方向に沿ったガイド部として、中央レール溝42dおよびサイドレール溝42eを有している。ガイド部は、関節軸41aからモデルパイプ31の長さ方向に対して垂直方向に所定の距離をあけて設けられている。
【0038】
弾性部材43fは、圧縮方向が常に関節軸41aに向くよう、関節軸41aを中心として回転可能に上腕2に設けられている。弾性部材43fは、関節軸41aを中心として回転するとき、各ローラ43dにより関節軸41a側の一端が中央レール溝42dおよびサイドレール溝42eに沿ってスライドし、スプリングガイド41fのフランジ部41iにより他端と関節軸41aとの距離が一定に保持されるよう構成されている。これにより、弾性部材43fは、関節軸41aに向かう付勢力を前腕伝達機構42に作用させるとともに、その付勢力の向きとモデルパイプ31との成す角度を変更可能になっている。また、付勢力の向きとモデルパイプ31との成す角度に応じて、その付勢力の大きさが変化して関節軸41aの剛性が非線形に変化するようになっている。
【0039】
次に、作用について説明する。
可変剛性を有する関節機構1は、比較的簡単な構成を有しているため、重量やサイズを小さくすることができ、重量やサイズの制限を受けるロボットアームの関節機構1として搭載することができる。弾性部材43fによる関節軸41aに向かう付勢力の向きとモデルパイプ31との成す角度に応じて、前腕伝達機構42に作用する付勢力の大きさが変化して、関節軸41aの剛性が非線形に変化するため、関節軸41aすなわち関節の剛性を、高剛性から低剛性まで変化させることができる。
【0040】
ゴムのような非線形弾性部材では、入力に対する出力が非線形となるため、わずかな入力誤差や特性変化で、出力が大きく変化してしまう。これに対し、可変剛性を有する関節機構1は、弾性部材43fが線形性を有しているため、入力誤差や特性変化に対して出力が線形に変化し、誤差の推定が容易である。また、弾性部材43fによる付勢力の前腕伝達機構42に作用する方向が変化することにより、関節軸41aすなわち関節の剛性を変化させるため、弾性部材43fの劣化による影響を抑えることができ、かつその影響の推定が容易である。弾性部材43fがコイルスプリングから成るため、耐久性が高い。
【0041】
可変剛性を有する関節機構1は、上腕2に対する各弾性部材43fの回転角度をアクチュエータ5で調整することにより、関節軸41aの剛性および上腕2に対するモデルパイプ31の位置(関節角度)の二出力を調整することができる。すなわち、可変剛性を有する関節機構1は、二基のアクチュエータ5を稼働させることにより、以下の三つの挙動を成すことができる。
【0042】
低剛性状態:二つの対向するスライダガイド41dが互いに同位相(同じ回転方向で同じ回転角度)の状態では関節軸41aの角度を変化させる、つまり前腕を動かす動作となり、関節剛性は低い状態である。
【0043】
高剛性状態:低剛性状態とは反対に、逆位相(互いの回転方向が逆で同じ回転角度)の状態では、関節軸41aの角度は変化しないが、スライダガイド41dの回転角が増大するにつれ、前腕伝達機構42に対してスライダ機構43の支持力が増大する。さらに、逆位相に差(回転角度の絶対値の差)が出るにつれて、前腕伝達機構42への付勢力が増大し、関節剛性が高剛性へと変化する。図8は、この時の状況を示している。しかし、この状態では、剛性を変化させるだけであり、関節角度は変化できない。
【0044】
剛性と関節角度とを変化させる状態:低剛性状態と高剛性状態とを組み合わせた場合、つまりある程度の剛性を有しながら、なおかつ関節角度を変化させて前腕(モデルパイプ31)を動かす場合、互いのスライダガイド41dの回転角度に差があれば実現できる。例として、前腕を水平状態(関節角度が0度)の時から90度だけ屈曲させ、なおかつ剛性も変化させるには、各スライダガイド41dの回転角を同じ方向に105度と75度とに設定する。この時、上腕2に対して前腕(モデルパイプ31)を90度曲げることができる。更に、各スライダガイド41dの角度差分は30度であるため、この角度差分が関節剛性として現れる。同様に、各スライダガイド41dが同じ回転方向で角度120度、60度だとすると、前腕は90度屈曲し、角度差分が60度であるため、先ほどの30度の時よりも剛性が高い状態になる。
【0045】
可変剛性を有する関節機構1は、ロボットの関節のみならず義足、義腕といった医療補助具への応用が期待される。医療補助具のユーザ側にとって、柔剛性を有する関節は、人間の関節に近いため親和性があり、実生活において利便性の向上が期待できる。
【図面の簡単な説明】
【0046】
【図1】本発明に係る可変剛性を有する関節機構の原理を示す原理図である。
【図2】本発明に係る可変剛性を有する関節機構の、スライダ式加圧機構を二つ用いたときの原理を示す原理図である。
【図3】本発明の実施の形態の可変剛性を有する関節機構を示す斜視図である。
【図4】図3に示す可変剛性を有する関節機構の、外装の一方の側板および上板を取り外した斜視図である。
【図5】図3に示す可変剛性を有する関節機構のスライダ式加圧機構を示す斜視図である。
【図6】図3に示す可変剛性を有する関節機構のスライダガイド機構および前腕伝達機構を示す斜視図である。
【図7】図3に示す可変剛性を有する関節機構のスライダ機構を示す斜視図である。
【図8】図3に示す可変剛性を有する関節機構の、高剛性状態のスライダ式加圧機構を示す側面図である。
【符号の説明】
【0047】
1 可変剛性を有する関節機構
2 上腕
21 底板
22,23 側板
24 上板
25 関節板
3 前腕モデル
31 モデルパイプ
32 前腕用フランジ
33 フランジ固定具
4 スライダ式加圧機構
41 スライダガイド機構
41a 関節軸
41b ベアリング
41c 大プーリ
41d スライダガイド
41e ジョイントブロック
41f スプリングガイド
42 前腕伝達機構
42a 中央伝達部
42b,42c サイド伝達部
42d 中央レール溝
42e サイドレール溝
43 スライダ機構
43a スライダ本体
43b スライダシャフト
43c スライダサイド
43d ローラ
43e 止め輪
43f 弾性部材
5 アクチュエータ
51 DCモータ
52 減速機
53 小プーリ
54 固定板
55 アクチュエータマウント
56 アイドラ



【特許請求の範囲】
【請求項1】
支持部材とアームと弾性部材とを有し、
前記アームは長さ方向に対して垂直な回転軸を中心として回転可能に前記支持部材に設けられ、
前記弾性部材は線形性を有し、前記回転軸に向かう付勢力を前記アームに作用させるとともに、前記付勢力の向きと前記アームとの成す角度を変更可能に前記支持部材に設けられ、前記付勢力の向きと前記アームとの成す角度に応じて、前記付勢力の大きさが変化して前記回転軸の剛性が非線形に変化するよう構成されていることを、
特徴とする可変剛性を有する関節機構。
【請求項2】
前記アームは長さ方向に沿ったガイド部を有し、前記ガイド部は前記回転軸から前記アームの長さ方向に対して垂直方向に所定の距離をあけて設けられ、
前記弾性部材は圧縮バネから成り、圧縮方向が常に前記回転軸に向くよう前記回転軸を中心として回転可能に前記支持部材に設けられ、前記回転軸を中心として回転するとき、前記回転軸側の一端が前記ガイド部に沿ってスライドし、他端と前記回転軸との距離が一定に保持されるよう構成されていることを、
特徴とする請求項1記載の可変剛性を有する関節機構。
【請求項3】
前記アームは前記ガイド部を1対有し、
前記弾性部材は1対から成り、前記回転軸を中心としてそれぞれ独立に回転可能であり、前記回転軸を中心として回転するとき、それぞれ前記一端が各ガイド部に沿ってスライドするよう構成されていることを、
特徴とする請求項2記載の可変剛性を有する関節機構。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2009−34774(P2009−34774A)
【公開日】平成21年2月19日(2009.2.19)
【国際特許分類】
【出願番号】特願2007−201464(P2007−201464)
【出願日】平成19年8月2日(2007.8.2)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成17年度、独立行政法人新エネルギー・産業技術総合開発機構、産業技術研究助成事業、産業再生法第30条の適用を受ける特許出願
【出願人】(504157024)国立大学法人東北大学 (2,297)
【Fターム(参考)】