説明

可撓性シースカテーテル

本発明は、心房細動の治療のための装置、及び方法を提供する。1実施例では、可撓性シースカテーテルは近端部、及び遠端部を有する細長いカテーテル本体をふくみ、遠端部は種々のスティフネスを有する複数の可撓セグメントを含む遠先端領域を有する。複合曲線、又はらせん曲線に従って遠先端領域を曲げる舵取り機構を提供するために、ハンドル部分がカテーテル本体の近端部に配置できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、心房細動を治療するための方法、及び装置に関し、更に詳細には、心臓の内部へのアブレーション器具、薬物、又は流体のアクセス、及びデリバリを提供するために使用される可撓性ガイドカテーテルに関する。
【背景技術】
【0002】
心房細動の様な心不整脈は、心臓の通常の鼓動パターンにおける不規則であり、心房、又は心室の何れかで起こり得る。心房細動は、不規則な、急激であることが多い心拍数の原因となる、心房の心筋の急速にランダム化された収縮によって特徴付けられ、鬱血性心不全、リウマチ性心疾患、冠動脈疾患、左室肥大、心筋症、又は高血圧症を含む他の形態の心疾患を引き起こし得る。
【0003】
心房細動に対する治療は肺静脈に焦点を合わせ、肺静脈は心房細動の賦活を担う逸脱電気信号の元の1つとして識別されてきた。1つの既知のアプローチでは、組織は、円周パターンで、肺静脈の内部の様な位置、肺静脈の口、又は肺静脈の周において切除される。結果として生じるセグメントが小さくなり過ぎて、細動プロセスをそれら自体で維持できなくなるように、それらの位置において心臓組織を切除することによって、1つのセグメントから他のセグメントへの導電率がブロックされ得る。
【0004】
心臓の内部、又は周りの位置に到達するために、ガイドカテーテルが一般に使用される。殆どのガイドカテーテルは、内部に形成された1又は複数の管腔を有する長い管状本体に接続された近端部、及び遠端部を有する。通常、カテーテルの近端部は、術者によるカテーテルの制御のためのハンドル、及びカテーテル管腔を通して流体と器具を導入するための種々のポートを含み、遠端部は、患者に挿入される先端を含む。例えば、血管への応用では、カテーテルの先端は大脈、動脈、又は他の体腔の内部に挿入できる。次に、カテーテルが挿入されて、関心のある領域に誘導される。更に、カテーテルは、それが中で使用できる「シース」又は「ガイドカテーテル」、血管形成術を行うためのバルーン、及び/又はステントの様な他の道具、又は心臓の内部で処置を行うための他の器具マッピング電極、及びアブレーション装置のための送達コンジットとしても機能できる。
【0005】
カテーテルを挿入し、誘導するための現在の方法はガイドワイヤの使用を含み、ガイドワイヤは患者の内部の位置に送り込まれ、次に、カテーテルがガイドワイヤを通り過ぎる。しかし、ターゲットのアブレーション部位が心臓の後面の肺静脈の中、又は近くであるとき、この方法に関する1つの欠点は、もし不可能でなければ、心筋の形状のために最終的なターゲット部位に最後までガイドワイヤを進めるのが困難であることが多いことである。
【0006】
代わりに、操縦可能なカテーテルが使用できる。操縦可能なカテーテルは、術者がカテーテルの遠端部の前進方向を調節し、カテーテルの遠端部を位置決めすることを可能にすることによって、カテーテルの遠先端を所望する方向へ選択的に曲げる機能を必要とする。一般に、遠先端の撓曲は、カテーテルの遠端部に取り付けられ、外科医が選択的に先端を曲げ、及び/又は正しい位置までナビゲートするためにカテーテルシャフトを回転させることができるように、制御ハンドルまで伸びる1又は複数のプルワイヤによって提供される。
【発明の開示】
【発明が解決しようとする課題】
【0007】
心臓の内部へのアクセスのための操縦可能なカテーテルを設計するとき、カテーテルが血管、又は心腔を通って進むとき、穴をあけることなく生物学的構成の生来の湾曲を辿ることができる様に、カテーテルシャフトに充分な柔軟性を有することが重要である。しかし、カテーテルの「押込力伝達性」(即ち、座屈、又は蛇行なしにターゲット位置へカテーテルの先端を配向する機能)と、特に、心臓の左心房の中の位置にアクセスするために必要な急旋回をナビゲートするときに、カテーテルが心臓にアクセスすることを可能にする必要なスティフネスの間の均衡を達成することは困難であり得る。
【0008】
一般に、従来技術の可撓性カテーテルは、単一のスティフネス値、又は、たかだか、カテーテル本体に対して1つのスティフネス値、及び可撓性先端に対して1つのスティフネス値を有する。結果として、これらのカテーテルは、中で曲げるために大きな空間的容積を必要とすることが多く、患者を傷付けることなくターゲット領域に到達するために必要なこともあるきつい旋回ができない。特に、最終的なターゲット領域が右下肺静脈の付近にあるとき、心房細動の治療のための左心房へのアクセスはとりわけ困難であり、通常、この静脈は中隔穿刺に最も近いので、適切な方向付けを達成するために方向において180°の旋回をカテーテルに要求する。
【0009】
現在、この問題を扱う方法は、異なる湾曲を有する1組のシースカテーテルを使用すること、1つのカテーテルを除去すること、及びそれをもう1つと何度か交換することを含む。しかし、この交換は時間を浪費し、空気塞栓症の偶発的飛沫同伴の様な追加のリスクを呈し得る。
【0010】
静脈の内部、又は口でバルーンを適切に方向付けるために追加のマヌーバが要求され得るので、カテーテルがバルーンを有するアブレーション器具を含むとき、更なる困難が発生する。更に、肺静脈を小孔において塞ぐために軸方向力が要求され、殆どのカテーテルのスティフネスの欠如が、問題のアブレーションの前に、静脈をうまく封鎖するのに充分な力の適用を行う。
【0011】
従って、心臓、特に左心房、に入る、及び内部の狭い空間、及び限られた空間を進み、アクセスすることができる可撓性シースカテーテルに対する必要性が存在する。心臓の内部のアブレーション器具の更に良い、及び/又は更に正確な位置を提供できる、心房細動治療の改良された方法に対する必要性も存在する。
【課題を解決するための手段】
【0012】
造影剤の送達の様な診断目的、又は左心房、左心耳、又は肺静脈の様な心臓の領域への種々のアブレーション器具、又はマッピング器具の送達の様な治療目的における使用のために、装置、及び方法がここで開示される。
【0013】
1つの側面では、可撓性シースカテーテルは、近端部、遠端部、及びカテーテル本体の遠端部における可撓性遠端部分を有する細長いカテーテル本体を含む。可撓性遠端部分は、複合曲線に沿って曲がるように適合されるか、又は心臓の内部のターゲット部位にアブレーション器具を配向するために、撓曲の平面から外れた方向に向けられた曲がった先端を有する。1実施例では、可撓性遠端部分は、スティフネスが異なる少なくとも2つのセグメントを有する。スティフネスが異なるセグメントは、異なるデュロメータを有する高分子材料を含み、セグメントのデュロメータは、遠端部分の少なくとも一部分に沿って遠端方向に減少する。代わりに、セグメントのスティフネスが、遠端部分の少なくとも一部分にわたって徐々に変化し得る。
【0014】
もう1つの実施例では、可撓性遠端部分が、屈曲していない状態のカテーテル本体の中心軸に対して約5°〜約90°の範囲の角度で曲がった先端を有し、屈曲していない状態のカテーテル本体の中心軸に対して約10°〜約60°が更に好ましく、屈曲していない状態のカテーテル本体の中心軸に対して約15°〜約45°が最も好ましい。先端は、製造中に固定位置まで曲げられるか、又は使用前に所望する位置まで曲げられるように適応性がある。また、カテーテルの遠端部分は、異なるデュロメータを有する高分子材料から成る、スティフネスが異なる少なくとも2つのセグメントも含み、セグメントのデュロメータは、遠端部分の少なくとも一部分に沿って遠端方向に減少し得る。
【0015】
また、可撓性シースカテーテルは、スティフネスが異なるセグメントを提供するために変化するカテーテル本体上の少なくとも1つの編組線補強層、及び/又は遠端部分の撓曲をもたらすアクチュエータの様な多様な他の特徴を持ち得る。
【0016】
もう1つの側面では、上記の可撓性シースカテーテルは、心臓アブレーションアセンブリの中で使用され、アセンブリは、一般に、カテーテル、及び心臓組織を切除するために可撓性シースカテーテルの管腔の内部で移動可能なアブレーション器具を含むことができる。アブレーション器具は、多様な形状を有し、1実施例では、心臓の内部の選択された位置に放射体を位置決めするための並進機構を任意に含むことができる放射エネルギー放射体である。また、アブレーション器具は、超音波放出素子、マイクロ波エネルギー放出素子、又は低温アブレーション放出素子の様な接触アブレーション器具であり得る。
【0017】
1つの側面では、可撓性シースカテーテルは、遠端部において可撓性先端部分を含み、可撓性先端が複合曲線に沿って曲がることを可能にする遠先端部分の少なくとも一部分に沿って変化するスティフネスを有する。この先端の結果として、本発明は、単一の経中隔アプローチ、特に右下肺静脈、を介して左心房の4つ全ての肺静脈への容易なアクセスを可能にする。更に、このアクセスは、脱出なしに、軸方向力の適用も可能にする方法で達成され、シースカテーテルを通して挿入されるアブレーション器具は所定の位置で操縦され、アブレーションの間は適所に保持される。それを塞ぐために静脈の小孔に押し付けられなければならないバルーン要素をアブレーション器具が含むとき、これは特に有用である。
【0018】
もう1つの側面では、本発明は近端部、及び遠端部を備える細長いカテーテル本体を有する可撓性シースカテーテルを含み、カテーテル本体は複数の可撓セグメントを長さに沿って含み、可撓セグメントの少なくとも1つ(2つ、又は3つ以上が好ましい)は異なるスティフネスを有する。スティフネスが異なるセグメントは、異なるデュロメータを有する細長い本体の複数の高分子セグメントによって形成されることが好ましく、1実施例では、遠端部分のデュロメータが、遠端部分の少なくとも一部分に沿って遠端方向に減少する。更に、カテーテルはハンドル部分を近端部に、可撓性先端部分を遠端部に含み、可撓性先端部分は複合曲線、又はらせん曲線に沿って可撓性である。ハンドルは多様な形状を有することができるが、1実施例では、止血弁を含む。
【0019】
カテーテル本体が少なくとも2つのセグメントを長さに沿って有し、少なくとも1つのセグメントが異なるスティフネスを有するように、本発明のもう1つの側面は、近端部、及び遠端部を備える細長いカテーテル本体を有する可撓性シースカテーテルを含む。他の実施例では、カテーテルは3つ、4つ、5つ、等の壁体セグメントを有することができる。更に、カテーテルは、カテーテルがターゲット領域まで通過することを補助するためにカテーテル本体の内部に最初は配置される補強部材(例えば、拡張器)を含むことができる。次に、補強部材、又は拡張器が除去されるか、又は部分的に引き込まれる。更に、カテーテルはハンドル部分を近端部に、可撓性先端部分を遠端部に含み、スティフネスが異なるセグメントの結果として、可撓性先端部分は複合曲線、又はらせん曲線に沿って可撓性である。
【0020】
もう1つの実施例では、カテーテルは少なくとも1つの編組線補強層を含み、編組線補強層は本体の長さの少なくとも一部分を囲む。編組線補強層は連続的、又は、代わりに、断続的であり得る。更に、スティフネスが異なるセグメントを提供するために、編組線補強層が変化し得る。
【0021】
もう1つの実施例では、カテーテルが可撓性先端部分の撓曲をもたらすアクチュエータを更に含むことができる。アクチュエータは多様な形状を有するが、アクチュエータは可動範囲内の特定曲線の可撓性遠端部分を固定するためのロックを更に含むことができる。代わりに、アクチュエータは可撓性遠端部分を近位のハンドル部分に機械的にリンクするプルワイヤを含むことができる。
【0022】
本発明のもう1つの側面では、先端自体は非平面方向に方向付けられる一方、術者は先端部分を1平面内で曲げられるように、シースカテーテルの可撓性先端部分は、例えば、撓曲の平面の範囲外で予め曲げることができる。曲げは製造中に形成できるか、又は使用前に所望する曲げ角度、及び/又は方向付けをユーザが選択することを可能にするために、先端は適応性がある。曲がった先端は、屈曲していない状態のカテーテル本体の中心軸に対して約5°〜約90°の範囲の角度で形成でき、中心軸に対して約10°〜約60°の範囲の角度が好ましく、特定の用途では、カテーテル本体の中心軸に対して約15°〜約45°の範囲の角度が更に好ましい。
【0023】
本発明の他の側面では、可撓性シースカテーテルは、可撓性先端部分の遠端部に配置された洗浄孔と一緒に開示される。洗浄孔は、追加洗浄、及び細長いカテーテル本体の中の中心管腔と人間の脈管構造の間の流体連絡を可能にし得る。先端部分に含まれる少なくとも1つの洗浄孔が存在することが好ましいが、洗浄孔の数は設計形状によって変化し得る。実施例では、カテーテルの遠端部が心内膜と間接的に接触し、遠先端孔が塞がれるとき、洗浄側面孔は可撓性シースカテーテルを通した流体の通過を可能にできる。
【0024】
もう1つの側面では、可撓性シースカテーテルは心臓の内部の処置に適合され、可撓性シースカテーテルを通して所望するターゲット位置に配置できる少なくとも1つの心臓アブレーション器具を含むことができる。更に、アブレーション器具は、心内構造物と接触し、装置を所定の位置に固定するために、係留バルーンの様な任意の係留部材を含むことができる。
【0025】
1実施例では、所望する位置に配置でき、放射エネルギーを器具の伝達領域を通してターゲット組織部位に送達できる様に、アブレーション器具は可撓性シースカテーテルの管腔の内部で動ける放射エネルギー放出素子を含む。また、アブレーション器具は、エネルギー放射体から組織ターゲットへの無血伝達経路を提供するために、単体で、又は流体放出機構と一緒に利用できるプロジェクションバルーンも任意で含むことができる。
【0026】
もう1つの実施例では、所望する位置に配置でき、放射性超音波エネルギーを器具の伝達領域を通してターゲット組織部位に送達できる様に、アブレーション器具は可撓性シースカテーテルの管腔の内部で動ける超音波エネルギー放出素子を含む。また、アブレーション器具は、エネルギー放射体を組織ターゲットに反射するプロジェクションバルーン、及び/又は集束部材も任意に含むことができる。
【0027】
もう1つの実施例では、所望する位置に配置でき、放射性マイクロ波エネルギーを器具の伝達領域を通してターゲット組織部位に送達できる様に、アブレーション器具は可撓性シースカテーテルの管腔の内部で動けるマイクロ波エネルギー放出素子を含む。また、アブレーション器具は、エネルギー放射体を組織ターゲットに反射するための集束部材を提供するために、プロジェクションバルーンを任意に含む得る。
【0028】
もう1つの実施例では、低温表面を有するターゲット組織部位対して所望する位置に配置できる様に、アブレーション器具は可撓性シースカテーテルの管腔の内部で動けるクライオアブレーションエネルギー放出素子を含む。また、アブレーション器具は、アブレーション部位からの血液を除去するためのプロジェクションバルーンも任意で含み、組織ターゲットのクライオアブレーションの実現を可能にする。代わりに、カテーテルは、切除流体、電気抵抗加熱、又は他のアブレーション様式を実現するためのアブレーション器具を含むことができる。
【0029】
もう1つの側面では、心臓アブレーションアセンブリは、心臓の内部の処置に適合され、少なくとも1つの管腔を有する可撓性シースカテーテル、心臓の内部の配置と撓曲によって複合曲線を形成するためにスティフネスが異なる少なくとも1つのセグメントを有するカテーテル、及び切除エネルギーを送達するためにターゲット組織部位に配置できる様に、可撓性シースカテーテルの管腔の内部で動けるアブレーション器具を含むものとする。1実施例では、アブレーション器具は放射エネルギー放射体でもよく、可撓性シースカテーテルの内部の選択された位置に放射体を位置決めするための並進機構を更に含む。更に、放射エネルギー放射体は、特定の用途により、超音波放射体、超高周波音放射体、光放射体、マイクロ波放射体、無線周波数(RF)放射体、X線放射体、電離放射線放射体、又は粒子ビーム放射体であり得る。もう1つの実施例では、アブレーション器具は、低温アブレーション器具、切除流体器具、又は加熱器具の様な接触アブレーション器具であり得る。
【0030】
もう1つの側面では、心臓アクセスのための方法が提供される。その方法は、ガイドワイヤを患者の内部にターゲット領域まで挿入すること、及び可撓性先端を有する可撓性シースカテーテルをターゲット領域に送達させるためにガイドワイヤを使用することを含む。更に、その方法は、カテーテルがターゲット領域に向けられる様に、(内部補強部材、又は「拡張器」も任意に含むことができる)シースカテーテルにガイドワイヤの上方を通過させることを含む。ガイドワイヤと拡張器の除去に続いて、心臓の左心房の内部の1又は複数のターゲット領域にアクセスするために、シースカテーテルの可撓性先端部分が、複合曲線、又はらせん曲線に曲げられることが好ましい。最後に、先端部分が曲げた位置でロックされ、医療器具、又は治療流体がカテーテルを通して心臓の内部のターゲット部位まで送達される。
【0031】
本発明によるもう1つの方法では、ガイドワイヤは大腿静脈へ最初に挿入され、下大静脈を通って右心房の内部に、及び、任意で左心房の内部に心房中隔穿刺を介して進み、肺静脈に入るまで更に進むことができる。次に、拡張器が可撓性シースカテーテルの内部で位置決めされ、両方が一緒にガイドワイヤの上方に位置決めされ、心臓の内部に進められる。もし中隔穿刺がガイドワイヤを用いて行われていなければ、(中に配置された補強部材を有することが好ましい)可撓性シースカテーテルが穿刺を行うために使用できる。次に、シースカテーテルはターゲット部位の近く、例えば、肺静脈の口、まで進む。次に、ガイドワイヤ(及び、拡張器)が除去され、切除器具と取り替えられる。切除器具は器具を進めることによって位置決めされ、肺静脈の小孔を充分な軸方向力と接触させ、シールを創出して切除エネルギーをターゲット組織領域に送達し、組織を切除して伝導ブロックを形成する。
【0032】
もう1つの側面では、本発明の方法は、可撓性遠端部セグメントを有するシースカテーテルを心臓の左心房の中で位置決めすること、アブレーション器具がシースカテーテルを通して第1肺静脈に近い位置まで送達される様にシースカテーテルを方向付けること、第1肺静脈の周りに円周方向の傷を形成するためにアブレーション器具を作動させること、遠端部セグメントをもう1つの方向に曲げることによってシースカテーテルを再度位置決めすること、及び少なくとも1つの追加の肺静脈の周りに円周方向の傷を形成するためにアブレーション器具を作動させることを含む。1実施例では、本発明の方法は、シースカテーテルを方向付けるステップ、及び全ての肺静脈が円周方向の傷によって分離されるまでアブレーション器具を作動させるステップを更に含む。もう1つの実施例では、本発明の方法は、シースカテーテルを螢光透視法で位置決めすること(又は、代わりに、再度位置決めすること)、及びシースカテーテルを(又は、シースカテーテルを補強内部拡張器と一緒に)心臓の中でガイドワイヤの上方に最初は配置することを更に含む。更に、本発明の方法は、中隔穿刺を創出して心臓の左心房へのアクセスを得るために、シースカテーテルを補強内部拡張器と一緒に使用することを含む。
【0033】
もう1つの実施例では、アブレーション器具を作動させるステップが、シースカテーテルを介して心臓の内部に配置されるバルーンカテーテルの内部の選択された位置に放射エネルギー放射体を配置すること、及び放射エネルギー放射体を作動させることを更に含む。放射エネルギー放射体は、超音波放射体、超高周波音放射体、光放射体、マイクロ波放射体、無線周波数(RF)放射体、X線放射体、電離放射線放射体、及び粒子ビーム放射体の様な多様なエネルギー放射体であり得る。
【0034】
1実施例では、放射エネルギー放射体を作動させるステップが、ターゲット領域を光エネルギーさらしてターゲット領域の内部で心臓組織の光凝固を起こすために光放出素子を作動させることを更に含む。代わりに、放射エネルギー放射体を作動させるステップは、ターゲット領域を光エネルギーにさらして連続的な傷を心臓組織の内部で引き起こすために光放出素子を作動させること、ターゲット領域を光エネルギーの環状ビームにさらして円周方向の傷を心臓組織の中で引き起こすためにビーム形成光導波路を有する光放出素子を作動させること、及び/又は約800nm〜約1000nm、又は約915nm〜約980nmの範囲の所望する波長で光切除放射を発生する光放出素子を作動させることを含むことができる。
【0035】
更に、放射エネルギー放射体を作動させるステップは、ターゲット領域を音響エネルギーにさらして心臓組織の光凝固をターゲット領域の内部で起こすために超音波放出素子を作動させること、又は、代わりに、ターゲット領域をマイクロ波、X線、ガンマ線、及び電離放射線を含む群から選択される放射エネルギーの少なくとも1つの形態にさらして心臓組織の光凝固をターゲット領域の内部で起こすために放射放出素子を動作させることを更に含むことができる。
【0036】
もう1つの実施例では、本発明の方法は、エネルギー放射体と心臓組織のターゲット領域の間の伝達経路から血液を除去するためにプロジェクションバルーンを膨らませること、及び可撓性シースカテーテルの管腔に内部に配置された光センサによる反射率測定結果に基づいて、放射エネルギー放射体とターゲット組織の間にクリアな伝達経路が確立されたか否かを決定することを更に含む。代わりに、本発明の方法は、投射経路が存在するか否かを決定するために、光センサによって集められた反射光の少なくとも2つの異なる波長を測定することを更に含む。
【0037】
もう1つの実施例では、アブレーション器具を作動させるステップが、シースカテーテルを介して心臓の内部に接触アブレーション器具を配置すること、接触アブレーション器具を選択された位置に位置決めすること、及び接触アブレーション器具を作動させることを更に含む。接触アブレーション器具は多様な形状を有するが、実施例では、接触アブレーション器具は低温アブレーション器具、切除流体器具、及び加熱器具を含む群から選択される。
【0038】
もう1つの側面では、心臓の右下肺静脈の小孔の周りの組織を切除するための方法は、曲がった先端素子を備える可撓性遠端部セグメントを有するシースカテーテルを心臓の左心房の中で位置決めすること、カテーテルが右下肺静脈の小孔に向けて進むときに、遠端部セグメントを複合曲線に曲げること、アブレーション器具がシースカテーテルを通して右下肺静脈に近い位置まで送達される様にシースカテーテルを方向付けること、及び右下肺静脈の周りに少なくとも1つの傷を形成するためにアブレーション器具を作動させることを含む。1実施例では、本発明の方法は、シースカテーテルを心臓の中でガイドワイヤの上方に最初は配置すること、又はシースカテーテルを補強内部拡張器と一緒にガイドワイヤの上方に最初は配置することを含むことができる。更に、本発明の方法は、中隔穿刺を創出して心臓の左心房へのアクセスを得るために、シースカテーテルを補強内部拡張器と一緒に使用することを含む。
【0039】
もう1つの実施例では、アブレーション器具を作動させるステップが、シースカテーテルを介して心臓の内部に配置されるバルーンカテーテルの内部の選択された位置に放射エネルギー放射体を配置すること、及び放射エネルギー放射体を作動させることを更に含む。放射エネルギー放射体は、超音波放射体、超高周波音放射体、光放射体、マイクロ波放射体、無線周波数(RF)放射体、X線放射体、電離放射線放射体、及び粒子ビーム放射体、又は焦点を合わされた音響エネルギー放射体の様な多様な形状を有することができる。
【0040】
もう1つの実施例では、アブレーション器具を作動させるステップが、シースカテーテルを介して心臓の内部に接触アブレーション器具を配置すること、接触アブレーション器具を選択された位置に位置決めすること、及び接触アブレーション器具を作動させることを更に含む。接触アブレーション器具は多様な形状を有するが、実施例では、接触アブレーション器具は低温アブレーション器具、切除流体器具、及び加熱器具を含む群から選択される。
【0041】
本発明の更にもう1つの側面では、本発明の可撓性シースカテーテルは、4つ全ての肺静脈に対するアクセスを可能にする。複合曲線形状、及び/又は曲がった先端構造は、本発明のシースカテーテルを非常に操縦しやすくし、シースカテーテルが、例えば、アブレーション器具を右肺静脈の小孔に向けるために左心房の蓋の上方で弓形になることを可能にし、右肺静脈の小孔は従来のアブレーション器具を用いて到達することが特に困難である。従って、本発明は心臓アクセスに関連する現在の問題を扱い、更に詳細には、人間の心臓の左心房、及び下肺静脈、特に、右下肺静脈にアクセスすることを扱う。
【0042】
本発明のもう1つの側面では、心臓の内部の処置に適合された可撓性シースカテーテル、及び近位の止血弁を介し、可撓性シースカテーテルを通して所望するターゲット位置に配置できる少なくとも1つのアブレーション器具を有する心臓アブレーション器具アセンブリが開示される。ハンドルを近端部に、可撓性先端部分を遠端部に有する可撓性シースカテーテルが(及び、上記の拡張器が任意に)提供される。可撓性先端部分は、心臓、及び心臓組織のターゲット領域に対するアクセスを提供し、アブレーション器具が、心房細動の治療のために肺静脈にアクセスする様に心臓の左心房の中のターゲット心臓組織に到達することを可能にすることが好ましい。シースは、アブレーション装置を肺静脈の小孔に「向ける」ことができ、アブレーション器具はターゲット組織まで進み、組織のアブレーションの間にターゲット組織との接触を維持するために軸方向力が加えられる。
【0043】
1実施例では、ターゲット組織部位に器具の伝達領域を通して放射エネルギーを送達するためにエネルギー放射体が所望する位置に配置できる様に、アブレーション器具は、可撓性シースカテーテルを通して送達され、器具の配置に続いてアブレーション器具の管腔の内部で単独で動けるエネルギー放射体素子を含む。無血伝達経路をエネルギー放射体から組織ターゲットに提供するために、アブレーション器具は、更に、プロジェクションバルーンを単体で、又は流体放出機構と一緒に含むことができる。
【0044】
もう1つの実施例では、心内構造物と接触し、アブレーション器具を所定の位置に固定するために、アブレーション器具は、所望する位置に配置できる少なくとも1つの係留部材を含む。可撓性シースカテーテルを介した器具の配置に続いて、器具はアブレーション器具の管腔の内部で動けるエネルギー放射体素子を再度含む。無血伝達経路をエネルギー放射体から組織ターゲットに提供するために、プロジェクションバルーンが単体で、又は流体放出機構と一緒に再度利用できる。
【発明を実施するための最良の形態】
【0045】
ここで開示される方法、及び装置の構造、機能、製造、及び使用の原理の全体的理解を提供するために、特定の実施例が記載される。これら1又は複数の実施例が、添付の図面に示される。特にここに記載され、添付の図面に図示される方法、及び装置は限定しない実施例であること、及び本発明の範囲は請求項によってのみ定められることを、当業者は理解するであろう。1実施例と関連して図示され記載される特徴は、他の実施例の特徴と組み合わされる。その種の変更、及び変形は、本発明の範囲に含まれる。
【0046】
本発明は、心房細動の治療のための装置、及び方法を提供する。1実施例では、可撓性シースカテーテルは近端部、及び遠端部を有する細長いカテーテル本体をふくみ、遠端部は種々のスティフネスを有する複数の可撓セグメントを含む遠先端領域を有する。複合曲線、又はらせん曲線に従って遠先端領域を曲げる舵取り機構を提供するために、ハンドル部分がカテーテル本体の近端部に配置できる。心臓アブレーション処置と関連して記載したが、本発明の装置、及び方法が、腹腔鏡アプローチ、腔内アプローチ、内臓周囲アプローチ、内視鏡的アプローチ、胸腔鏡下アプローチ、関節内アプローチ、及び複合アプローチを含む、放射エネルギーを用いた治療が望ましい多様な他の処置のために使用できることは明らかである。
【0047】
ここで開示される装置、及び方法の特徴を議論する前に、以下のことを理解すべきである。
【0048】
ここで使用されるように、用語「バルーン」は、特定の空洞の要求により、風船形、円形、涙滴形、又は任意の他の形状の様な種々の形状に膨張できる変形可能な中空形状を含む。更に、バルーンは、任意の数の(即ち、複数の)チャンバ形状を有することもできる。また、バルーン要素は多様な形態を有することができ、伸縮自在であるか、膨らんだ状態へ単に展開する、又は解くことができるかの何れかである。
【0049】
ここで使用されるように、用語「カテーテル」は、体組織、又は間質腔を貫通できる任意の中空器具を含み、溶液、又はガスを選択的に注入するためのコンジットを提供し、限定するものではないが、種々のサイズと形状の静脈コンジットと動脈コンジット、気管支鏡、内視鏡、膀胱鏡、culpascopes、大腸内視鏡、トロカール、腹腔鏡、及び類似のものを含む。また、用語「カテーテル」は、例えば、エネルギー放射体、バルーン、及び/又は内視鏡の様な、ここに記載される1又は複数のアブレーション素子、伸長可能素子、又は検出素子のためのコンジットとして機能できる任意の細長い本体を含むことも目的とする。特に、同軸器具との関連で、用語「カテーテル」は外部カテーテル本体、シース、シースを通して導入できる他の器具の何れかを含むことができる。用語「カテーテル」の使用は単一の器具だけを意味する様に構成されるべきではなく、同軸配置、入れ子配置、及び他の縦続配置を含む単一器具、及び複数器具の両方を含む様にむしろ使用される。更に、器具、又は治療用具が通過できる少なくとも1つの管腔を有するカテーテルを記載するために、用語「可撓性シースカテーテル」「操縦可能なカテーテル」又は「誘導カテーテル」は互換的に使用される。その種の可撓性シースカテーテルは、例えば、アブレーション器具、及び類似のものが心臓の左心房まで中隔を通過するために使用できる。
【0050】
ここで使用されるように、用語「複合曲線」は、曲線の異なる部分に沿った湾曲の可変半径を有する曲線を言う。湾曲は増減でき、連続的に変化するか、又は湾曲の半径が所定の長さにわたって一定であるが、1つの円弧から次の円弧で変化するセグメント化された円弧の形態を取る。また、複合曲線の湾曲の変化は累進的であるか、又は他のパターンに従って変化し得る。
【0051】
ここで使用されるように、派生語を含む用語「周りの」及び/又は「曲線の」は、組織の領域を部分的に、若しくは完全に囲むか、又は組織の1領域をもう1つの領域から分離する外縁、又は外周部を形成する径路、又は線を意味することを意図する。更に、「周りの」径路、又は素子は1又は複数の形状を含んでもよく、例えば、円形、環状、長方形、卵形、楕円形、半環状、又はドーナツ形でもよい。
【0052】
ここで使用されるように、傷との関連で、用語「連続的」は、傷の対辺の組織セグメントの間の電気伝導を実質的に阻止する傷を意味することを意図する。
【0053】
ここで使用されるように、生物学的構成との関連で、派生語を含む用語「管腔」は、組織壁によって少なくとも部分的に定められる体の内部の任意の空洞、又は管腔を意味することを、ここでは意図する。例えば、心室、子宮、胃腸管、尿路、及び動脈管、又は静脈管の領域は全て、意図する意味の中の体内空間の実例と考えられる。カテーテルとの関連で、派生語を含む用語「管腔」は、構成要素器具、若しくは流体の通過のため、治療薬の送達のため、又は器具の遠隔領域における状態をサンプリング、若しくは検出するためのカテーテル器具(及び/又は、通路として機能できる器具に別の方法で結合されたトラック)の内部の通路を含むことを意図する。
【0054】
ここで使用されるように、用語「放射エネルギー」は、超音波、収束超音波、超高周波音、並びに音響エネルギー、及び(可視光、紫外線、及び赤外線放射を含む)光の他の形態、マイクロ波放射、無線周波数(RF)放射、X線放射、電離放射線、並びに電磁、若しくは粒子ビーム、又は放射、及び収束音響エネルギーの他の形態を含む。
【0055】
ここで使用されるように、用語「切除エネルギー」は、傷を形成するための導電手段、若しくは対流手段による熱の適用、及び/又は低温治療の適用、及び/又は使用(気体の、若しくは液体の)化学的切除流体、若しくは熱適切所流体の使用の様な、(上記の様な)放射エネルギー、及び接触アブレーション機構の任意の、及び全ての形態を含むことを意図する。
【0056】
ここで使用されるように、用語「透明な」は、例えば、第1バルーン部材を通るエネルギーの伝達を可能にする材料を含む。多様な材料が使用できるが、その種の透明な材料はフッ素重合体、例えば、フッ素化エチレンプロピレン(FEP)、パーフルオロアルコキシ樹脂(PFA)、ポリテトラフルオロエチレン(PTFE)、及びエチレン−テトラフルオロエチレン(ETFE)、又はポリエチレンテレフタレート(PET)を含むポリエステル樹脂を含み、好ましい透明な材料は、(例えば、伝達エネルギーの20%の損失の結果)組織、又は細胞部位のエネルギー放射体からのエネルギー伝達を著しく妨げるべきではない。
【0057】
ここで使用されるように、「ショアー(デュロメータ)試験」は、押し込みに対するプラスチックの抵抗を測定するために一般に使用される方法を言い、実験的な硬さの値を提供する。ショアーAスケール、又はショアーDスケールの何れかを使用するショアー硬さ試験は、ゴム/エラストマーに対して好ましい方法であり、ポリオレフィン、フッ素重合体、及びビニルの様な「柔らかい」プラスチックに対して一般に使用される。ショアーDスケールは「硬い」ゴムに対して使用されるが、ショアーAスケールは「柔らかい」ゴムに対して使用される。特に断りのない限り、ここでは、スティフネス評価はショアー(デュロメータ)試験に基づくことが好ましい。
【0058】
ここで使用されるように、「経中隔アプローチ」は、心房内中隔の穿刺の次に左心房、及び左心室の内部にカテーテルを進めることを含む手術法を言う。
【0059】
ここで使用されるように、用語「管」又は「血管」は、限定するものではないが、静脈、動脈、及び心房、心室の様な心臓の種々のチャンバ、又は領域、冠状静脈洞、並びに大静脈を含み、更に詳細には、肺静脈の小孔、又は心房を含む。
【0060】
ここで使用されるように、用語「視覚」「視覚化」、及びそれらの派生語は、反射率データの人間と機械の両方の使用を記載する。その種のデータは、臨床医の目に見える映像の形態を取るか、又は、例えば、白黒、カラー、又はいわゆる「偽色」若しくは色向上ビューの反射光の任意の機械表示である。可視スペクトルの範囲外の反射エネルギー測定結果の検出と表示も含まれる。自動化されたシステムでは、その種の画像データが表示される必要はないが、アブレーション処置を援助するために制御装置によってむしろ利用される。
【0061】
図1〜図33は、心臓への、更に詳細には、左心房への、経中隔アプローチを介した経皮的アクセスのための装置、及び方法に関する本発明の実施例を示す。図1は、細長いカテーテル本体20によって接続された近端部11と遠端部12を有する可撓性シースカテーテル10の1実施例を示す。近端部11と遠端部12は多様な形状を有することができるが、図示される様に、近端部11はハンドル部分40、及び可変ロッキングアクチュエータ50を含み、遠端部12は可撓性先端部分30を含む。(ハンドル40、及び先端30は、以下で更に詳細に論じられる。)
【0062】
カテーテル本体20は、静脈、又は動脈の内部への及び/又は通した挿入に適する任意の形状、例えば、円形、長方形、又は卵形を有することができるが、図示される様に、カテーテル本体20は卵形である。また、カテーテル本体20は、内部に形成され、中を通って伸長する少なくとも1つの管腔21も有することができる。また、管腔21はカテーテル本体20の内部の多様な位置で形成され得るが、管腔21は中心に配置されることが好ましい。管腔21は円形、長方形、又は卵形の様な多様な形状を有することができるが、実施例では、管腔21は、カテーテル本体20の形状に対して相補的な形状、例えば、卵形、を有する。
【0063】
細長いカテーテル本体20は、それらが動くことを可能にする任意の数の可撓壁体セグメントを有することができる。例えば、カテーテル本体20は、1つの連続的なセグメントであり得る。代わりに、カテーテル本体20は、2,3,4,5,6個等、任意の数の可撓セグメントを有することができ、少なくとも1つの可撓セグメントは他と異なるスティフネスを有する。図示される様に、カテーテル本体20は、5個の可撓セグメントa,b,c,d,eを有する。可撓セグメントa,b,c,d,eは、カテーテル10が心臓の内部、又は周囲で動くことを可能にする任意のスティフネス構成を有することができるが、実施例では、各可撓セグメントa,b,c,d,eは異なるスティフネスを有する。可撓セグメントのスティフネスの変化はランダムであるか、又は傾斜に沿い、図1に図示される様に、可撓セグメントa,b,c,d,eのスティフネスは本体20の長さに沿って遠くに行くほど減少するスティフネスの傾斜であり、例えば、セグメントaは「72D」のスティフネス評価を有し、セグメントbは「63D」のスティフネス評価を有し、セグメントcは「55D」のスティフネス評価を有し、セグメントd「40D」のスティフネス評価を有し、セグメントeは「35D」のスティフネス評価を有する。セグメントa,b,c,d,eのスティフネスの変化が、複合曲線、又は、代わりに、らせん曲線に沿って可撓性先端が曲がることを可能にすることを、当業者は高く評価するであろう。
【0064】
また、各セグメントは多様な長さを有することができ、1mm〜100mmの範囲であることが好ましい。各セグメントは同じ長さを有することができるか、又は各部分は、ランダムな変化、又は(図1に示されるように、遠くに行くほど減少する様な)連続的な傾斜の何れかによって、互いに長さが変化することができる。更に、可撓性先端部分30は長さが変化するが、実施例では、約20mm〜20cmの範囲である。
【0065】
異なるスティフネス評価が形成できるように、細長いカテーテル本体20は多様な可撓性の生体適合ポリマーから作ることができる。異なるスティフネス評価の形成を可能にするポリマーの1つは、Pbaxプラスチックである。カテーテル本体20は、同じ、又は異なるポリマー材料から作られる内部ライニングを含むことができる。更に、カテーテル本体20の異なる部分は異なる材料から作ることができ、例えば、可撓性先端30は、上記の細長いカテーテル本体20の様に同じ、又は異なる材料から作ることができる。
【0066】
図2〜図9は、ハンドル40、可撓性先端30、及び外科医が所望する組織にアクセスすることを補助できるカテーテルの種々の部品の様な図1のカテーテルの種々の構成要素を更に示す。
【0067】
図2は、可撓性シースカテーテルの遠端部12を示す。図示される様に、遠端部12は、先端30が細長いカテーテル本体20の壁部24の内部で動けるように、ハンドル部分40(例えば、図1に示されるハンドル部分40)上の可変ロッキングアクチュエータ(例えば、図1に示される可変ロッキングアクチュエータ50)と先端30の間で伸長するプルワイヤ25を含む。
【0068】
プルワイヤ25は多様な形状を有することができるが、実施例では、プルワイヤ25は形状が円筒形であることが好ましく、中心管腔21と連絡することなく細長いカテーテル本体20の壁部24の内部のチャネルに合う大きさにできる。また、プルワイヤ25はアクチュエータ50と可撓性先端30に多様な方法で取り付けることができ、実施例では、プルワイヤ25は近端部においてアクチュエータ50に(図1に示される様に)固定でき、遠端部において可撓性先端部分30に固定できる。クランプ、ネジ、ボルト、アンカー、及びフックの様な固定の、及び着脱可能な両方の多様な固定手段が、プルワイヤ25をアクチュエータ50と可撓性先端30の両方に接続するために使用できる。代わりに、プルワイヤ25の遠端部は、カテーテル本体20の遠端部に埋め込まれたステンレス鋼リングに溶接できる。
【0069】
プルワイヤ25が動くと直ぐに、可撓性先端部分30は、プルワイヤ25の側方移動の量による可変角だけ曲がることができる。実施例では、可撓性先端部分は約5°〜約270°の範囲で動くことができ、約10°〜約200°が更に好ましい。
【0070】
図3A、及び図3Bは、1又は複数の平面を通して患者に挿入する前に可撓性先端部分30が予め形成できるか、又は曲げることができる本発明のもう1つの実施例を示す。曲げ31は外科医が心臓にアクセスすることを可能にする任意の角度でよいが、実施例では、曲げ31は、心臓に対して(角αで示される様に)約20°〜約90°の範囲の後方に形成される。更に、角αは屈曲していない状態のカテーテルの中心軸に対して約5°〜約90°の間であり、屈曲していない状態のカテーテルの中心軸に対して約10°〜約60°であるか、又は屈曲していない状態のカテーテルに対して約15°〜約45°であることが好ましい。その種の曲げ31が心臓への、特に心臓の上肺静脈と下肺静脈への更に効果的なアクセスを容易にすることを、当業者は高く評価する。
【0071】
可撓性先端部分30の曲げ31は、変位の平面に対する撓曲の範囲全体にわたって位置決めを維持することを可能にする、当該分野で既知である任意の方法で作ることができる。例えば、曲げ31は、モールディング、又は押出しによって製造中に形成できる。代わりに、曲げ31は使用の前に形成できる。即ち、曲げ31は、2種以上の金属から成る材料の NITINOL (NIckel TItanium Naval Ordnance Laboratory の略)ファミリの様な形状記憶合金から形成でき、形状記憶合金はニッケル(重量で55%)とチタニウムの同程度の混合物を含む。
【0072】
曲がった先端31が4つ全ての肺静脈へのアクセスで特に有用であることを、当業者はは高く評価するであろう。何故ならば、これら静脈の小孔が単一平面の撓曲に全てあるとは限らないからである。
【0073】
更に、図2に関して論じたのと同様に、曲げ31はプルワイヤ25と連動して使用でき、当業者は、プルワイヤ25と曲げ31の組合せが外科医に心臓の内部の種々の位置へのアクセスの精密な制御を可能にすることを、高く評価するであろう。
【0074】
図4A〜図4Cは、可変ロッキングアクチュエータ50を備えるハンドル部分40の1実施例を有する可撓性シースカテーテル10、アクチュエータ50を(上記のプルワイヤ25の様な)プルワイヤに接続するための部品、種々のポート、及び弁アセンブリを示す。
【0075】
ハンドル部分40は当該分野で既知の任意の形状を有することができるが、図示される様に、ハンドル40は細長いカテーテル本体20の管腔21に接続された中心管腔45を含むことができる。管腔45は多様な形状、例えば、円形、長方形、又は卵形を有することができるが、実施例では、管腔45は、細長いカテーテル本体20の管腔21の形状に相補的な形状(即ち、卵形)を有する。また、管腔45は、(以下で更に詳細に論じる様に)終端ポート47で終端できる。
【0076】
ハンドル部分40は細長いカテーテル本体20と固定的に、又は着脱可能に結合できるが、実施例では、ハンドル部分40は、ナット、及びボルトアセンブリの様な当該分野で既知の手段によってカテーテル本体20へ着脱可能に結合される。代わりに、細長いカテーテル本体20は、ハンドル部分40の遠端部に近い点で中心管腔45に接続できる様に、ハンドル部分40の内部に伸長できる。また、ハンドル部分40は、プルワイヤ25をアクチュエータ50に接続するための手段も含むことができる。
【0077】
可変ロッキングアクチュエータ50は、プルワイヤ25を細長いカテーテル本体20に沿って横方向動かす任意の形状を有することができる。実施例では、所定の位置に固定することができ、それによって、可動範囲全体にわたる種々の点で曲げられた位置で可撓性先端部分30がとどまることを可能にする様に、アクチュエータ50は構成できる。アクチュエータ50が固定できる位置は、可変ロッキングアクチュエータ50、及びハンドル部分40の内部に設計される機械的増分によって決定できる。機構はアクチュエータ50を固定するために多様な増分で構成できるが、1実施例では、アクチュエータ50を1°の先端撓曲で、又は5°毎の先端撓曲で固定する様に機構は構成できる。
【0078】
また、可変ロッキングアクチュエータ50は、プルワイヤ25と固定的に、又は着脱可能に結合するための多様な固定手段を含むことができ、その種の手段は直接的な、又は間接的な接続の何れかであり得る。図示される様に、図4Aでは、プルワイヤ25は、可変ロッキングアクチュエータ50に直接的な接続を介して接続できる。使用中、アクチュエータ50は遠位から近位の方向に移動するので、プルワイヤ25は同じ方向に移動し、従って、可撓性先端部分30は所望する量だけ曲がる。可撓性先端部分30を曲がっていない位置に戻すために、アクチュエータ50は近端方向から遠端方向に動き、従って、プルワイヤ25を同じ方向に動かし、先端30がほどけないことを可能にする。代わりに、図4Bに図示される様に、プルワイヤ25は滑車機構43を介して間接的にアクチュエータ50にへ接続できる。滑車機構43は多様な形状を有することができるが、実施例では、プルワイヤ25が滑車43の周りに巻き付き、アクチュエータ50へ接続する様に、滑車機構43はハンドル部分40の中に収納できる。使用中、先端部分30を曲げるため、及び逆操作が先端30をほどくために、アクチュエータ50は近端から遠端方向に移動する。
【0079】
また、ハンドル部分40は、多様なポート、及びそこに取り付けられた弁アセンブリも有することができる。例えば、図4Cに図示される様に、例示の側面ポート、及び弁アクセスアセンブリは、少なくとも1つの流体アクセス側面ポート49、及び少なくとも1つの弁51を含むことができる。側面ポート、及び弁アセンブリは、接着剤、圧着、等の様な多様な方法によってハンドル部分40へ固定的に、又は着脱可能に結合できる。更に、アセンブリがハンドル40の中心管腔45と流体連絡する様に、側面ポート、及び弁アセンブリはハンドル部分40に結合できる。
【0080】
側面ポート49は多様な形状を有することができるが、実施例では、側面ポート49は、生理食塩水、又はヘパリン点滴剤、造影剤、又は他の薬物、若しくは薬品の様な他の適当な流体を、人間の脈管構造を苦しめる病気の治療、及び/又は診断のためにカテーテル本体20の内部の(管腔21の様な)1又は複数の管腔に搬入できる大きさに作られる。弁51は、手動弁、一方向弁、双方向弁、又は停止弁の様な当該分野で既知の任意の弁である。
【0081】
上記の様に、ハンドル40の中心管腔45は、終端ポート47の中で終端できる。終端ポート47は多様な形状を有することができるが、実施例では、他の医療器具をハンドル部分40の内部に挿入し、その後に細長いカテーテル本体20の管腔21に挿入することを可能にするために、終端ポート47は止血弁を近端部に含む。
【0082】
止血弁は、要求される特定の処置、及び器具使用に依存する多様な形状とサイズを有することができるが、実施例では、止血弁は、約2.5Fr〜約15Frの範囲の大きさに作ることができる。止血弁が、(点線で示される拡張器150の様な)器具がハンドル40の近端部を通る失血無しに可撓性カテーテル40を通して導入されること、一方、止血弁を通した装置を挿入する間の可撓性カテーテル40への空気の導入を防止することも可能にすることを、当業者は高く評価するであろう。
【0083】
上記のハンドル部分40が、プラスチック、金属、又は当該分野で既知の適切な材料の様な多様な材料から作ることができることを、当業者は高く評価するであろう。
【0084】
図5、及び図6はカテーテル10のもう1つの実施例を示し、プルワイヤ25が細長いカテーテル本体20の壁部24の内部に配置される。プルワイヤ25は多様な方法で細長いカテーテル本体20の壁部の内部に配置できるが、図示される様に、プルワイヤ25がカテーテル本体20、又はカテーテル20の中心管腔21と流体連絡しない様に、プルワイヤ25は壁部24の内部に形成されたチャンバ27の内部に配置される。更に、プルワイヤ25の遠端部は、撓曲の間に作用する張力の分布を助けるために、図示される様に、アンカーリング25Aの補助でカテーテル本体20の壁部24に固定できることが好ましい。
【0085】
チャンバ27は壁部の内部の多様な位置に形成できるが、図5Bに図示される様に、チャンバ27は、ハンドル部分40の中の可変ロッキングアクチュエータ50と同じ側に配置される。従って、使用中、可撓性先端部分30はロッキングアクチュエータ50の方向に角張って曲がる(その結果、先端30は上向きに曲がる)。代わりに、先端部分が異なる方向に角張って曲がることができる様に、(図示されない)プルワイヤが壁部のもう1つの領域に配置できる。更にもう1つの実施例では、(また図示されない)可撓性シースカテーテルは2個のプルワイヤを有することができ、各プルワイヤは壁部の異なるチャンバの中に配置される。各プルワイヤはアクチュエータへ縦続して、又は別々に取り付けることができるが、実施例では、可撓性先端部分がカテーテル本体に対して異なる方向に曲がることを可能にするために、各プルワイヤはアクチュエータへ別々に取り付けることができる。
【0086】
図7は本発明のもう1つの実施例を示し、細長いカテーテル本体20の壁部24は補強のためにワイヤシース、又は編組部分60を含む。編組部分60は細長いカテーテル本体20の構造的補強を補助する任意の形状を有することができるが、図示される様に、編組部分60は十字パターンに編まれる。また、編組部分60は、細長いカテーテル本体20で所望される柔軟性の量によって変化する強度と厚さも有することができ、所望する可変スティフネス/柔軟性特性を達成するために異なる密度を有する種々のパターンで適用できる。
【0087】
編組部分60は、カテーテル本体20に沿って多様な位置に配置でき、実施例では、細長いカテーテル本体20の壁部24の周りに巻かれる。更に、編組部分60は、細長いカテーテル本体20の壁部24の全長に沿って連続的であるか、又は編組部分60は、細長いカテーテル本体20の壁部24の長さに沿って断続的である(即ち、編組部分60は、所望する様に、編組部分の間に配置された編組の無い部分を有する、細長いカテーテル本体20の壁部24の周りの部分に配置できる)。実施例では、上記の様に、先端部分30が曲がることを可能にするために、編組部分60は可撓性先端部分30の前で止まることができる。
【0088】
編組部分60が、種々の金属、合金、又は種々のポリマーを含む、カテーテル本体20に充分な補強を提供できる任意の材料から作ることができることを、当業者は高く評価できる。
【0089】
図8は本発明の実施例を示し、カテーテル10は少なくとも1つの放射線不透過性マーカーバンド70、及びカテーテル10の遠端部に配置された少なくとも1つの洗浄孔31を有する。カテーテル10は任意の数のマーカーバンド70を有することができるが、図示される様に、カテーテル10は2個のマーカーバンド70を有する。マーカーバンド70は、カテーテル10に沿って多様な位置に配置できるが、マーカーバンド70は可撓性先端部分30の近端部30a、及び先端部分30の遠端部30bに配置されることが好ましい。代わりに、(以下で論じられるテーパ33の様な)遠端部に形成されるテーパを有するカテーテルのために、マーカーバンドがテーパの近くに形成できる。
【0090】
マーカーバンド70は、X線、他の生物医学的な画像装置、又は当該分野で既知のプロセスのもとで観察されるときに見やすくなるマーカーバンド70を可能にする任意のサイズを有することができる。マーカーバンドを形成するために任意の放射線不透過性材料が使用できるが、実施例では、マーカーバンドが金で形成できることを、当業者は高く評価するであろう。更に、カテーテル材料自体は、約20〜40%の濃度の硫酸バリウム(BaSO4)と一緒に使用されるポリマーを調合することによって、放射線不透過性が与えられる。
【0091】
上記の様に、カテーテル10は、追加洗浄、及び細長いカテーテル本体20の中のカテーテル中心管腔21と人間の脈管構造の間の流体連絡を可能にするために形成された任意の数の洗浄孔31を有することができる。図示される様に、カテーテル10は3個の孔31を有する。洗浄孔31はカテーテル10上の多様な位置に固定できるが、実施例では、少なくとも1つの洗浄孔31がカテーテル10の先端部分30の中に形成される。代わりに、少なくとも1つの孔31が、カテーテル本体20の側に、又は、代わりに、カテーテル10の先端部分30の側に形成できる。細長いカテーテル本体20の中のカテーテル中心管腔21と人間の脈管構造の間に流体連絡が存在できる様に、孔31は任意のサイズを有することができる。組織接触、又は血栓によって中心管腔21の末端の開口部が塞がれた結果、中心管腔21を通る流体の通過を孔31が可能にできることも、当業者は高く評価するであろう。
【0092】
図9は、末端のテーパ33を有する可撓性先端部分30を備えるカテーテルのもう1つの実施例を示す。テーパ33は多様な形状を有することができるが、可撓性先端部分30が動脈、又は静脈を通って容易にナビゲートできる様に、テーパ33は長さと量を有することができる。更に、テーパ33は、先端部分30が柔らかい材料から作られることを可能にし、従って、繊細な脈管構造と心内組織を傷付けないことを、当業者は高く評価するであろう。
【0093】
拡張器、又はアブレーション器具の様な多様な装置が、ここに記載されるカテーテルと一緒に使用できる。図10は、拡張器150を含むカテーテルの1実施例を示す。拡張器150は、カテーテルを通り、ガイドワイヤを超えて心臓の内部まで通過することを可能にする任意の形状を有することができるが、図示される様に、拡張器150は近端部149と遠端部151を有し、周りに形成された中心管腔152を含むことができる。中心管腔152は、円形、卵形、又は長方形の様な任意の形状とサイズを有することができるが、ここで、形状において、中心管腔152は(例えば、卵形である)カテーテルの形状に対応し、可撓性シースカテーテルの中心管腔の内部にぴったりと合う様に適合され、脈管構造を通した心房中隔穿刺器具の容易な挿入を可能にする。もし軸方向力が心房中隔穿刺部位を横切ることを遭遇したら、可撓性カテーテルの内部での拡張器150のぴったり合う性質が、可撓性カテーテルの先端30が脱出することを防止できることを、当業者は高く評価するであろう。
【0094】
また、拡張器150は、その配置を補助するための多様な他の特徴を有することができる。例えば、拡張器150の遠端部157は、静脈、又は脈管の内部の移行の容易さのために先細である。また、拡張器150は、長さに沿った種々の点に上記のマーカーバンド70に類似の放射線不透過性マーキングを有する様に構成されるか、又は放射線不透過性材料から全体が作られる。代わりに、拡張器はポリマー材料から作ることができ、生体適合性を有することができる。
【0095】
また、アブレーション器具500は、可撓性シースカテーテルと一緒に使用できる。アブレーション器具500は多様な形状を有することができるが、アブレーション器具500は近端部500aと遠端部500bを有し、可撓性カテーテルの内部管腔を通ってターゲット治療部位に近い位置まで通過する様に適合される。図11に図示される様に、アブレーション器具500は放射エネルギー放射体を含むことができる。放射エネルギー放射体は多様な形状を有することができるが、実施例では、可撓性シースカテーテルを通した送達に続く、アブレーション器具500の内部での動きを制御するために細長い本体589と並進機構580を含む。並進機構580は多様な形状を有することができ、図示される様に、アブレーション器具500の近端部500aの中のハンドル584に組み込むことができる。更に、並進機構580は、自動化された制御機構、又は手動の制御機構の様な多様な制御機構を有することができるが、実施例では、並進機構580は放射体の前進と収縮を制御するために放射エネルギー放射体540の細長い本体582と係合できるサムホイール586を有する。
【0096】
ここで開示されるカテーテルが上記の特徴に加えて多様な他の設計と特徴を取り入れることができることを、当業者は高く評価するであろう。例えば、ここで参照する米国特許第6,522,933号(「Steerable Catheter with a Control Handle having a Pulley Mechanism」)と同様に、カテーテルは、ハンドルハウジングの中に滑動自在に取り付けられたピストン、及び第1プラーワイヤと第2プラーワイヤによってピストンの近端部に近い位置でハンドルハウジングに直接的に、又は間接的に固定的に取り付けられた滑車を有する制御ハンドルを有することができる。また、ハンドルがここで参照する米国特許第6,679,873号(「Method for using a Steerable Catheter Device」)に記載されたものと類似のハンドルへの背圧を維持するためのバネ仕掛けの力のもとにあるように、ハンドル部分はピストル形の握りの様な形状にできる。
【0097】
加えて、ここで参照する米国特許第6,702,780号(「Steering Configuration for Catheter with Rigid Distal Device」)と同様に、カテーテルは、先端を実質的に真っ直ぐな位置に戻すためにバイアスされたスプリング素子を備える遠先端を有することができる。また、ユーザが舵取りアセンブリを係合するとき、ここで参照する米国特許第6,579,278号(「Bi-Directional Steerable Catheter with Asymmetric Fulcrum」)に開示される様に何れのコイル、又はワイヤが動的に動かされるかによって、又はここで参照する米国特許第6,251,092号(「Deflectable Guiding Catheter」)に開示されるものと類似の撓曲機構によって、管状本体の遠端部が第1の方向、又は第2の方向へ選択的に曲げることができる様に、カテーテルは圧縮コイル、又は平坦な可撓ワイヤを含むことができる。
【0098】
更に、本発明のカテーテルは、例えば、シラスティック、ポリエチレン、テフロン(登録商標)、ポリウレタン、等の様な当該分野で既知の任意の生体適合材料で構成することができ、その中に形成される管腔は補強部材で裏張りできる。
【0099】
図12〜図22は、上記のカテーテルを使用する切除術を実行するための方法を示す。図12は、本発明による放射エネルギーを用いた切除術を実行するための方法の略図である。図示される様に、シースカテーテル10が心臓の内部に導入され、肺静脈516の前に位置決めされた後、アブレーション器具500はシースカテーテル10を通ってターゲット組織部位まで滑動する。
【0100】
アブレーション器具500は図11に関して論じたアブレーション器具に類似するが、カテーテル10に取り付けられたプロジェクションバルーン構造526、及びバルーン526の膨張のための(図示されない)少なくとも1つの内部流体通路を含む。バルーン526はカテーテル10に多様な方法で取り付けることができるが、実施例では、バルーン526の内部への膨張流体の導入がバルーンを膨張できる様に、バルーン526は遠位のシール525と近位のシール527によってカテーテル524の本体に封止される。プロジェクションバルーン526が、心臓組織の放射エネルギーアブレーションのための投射経路を定めるために膨張できることを、当業者は高く評価するであろう。
【0101】
プロジェクションバルーン526は多様な形状を有することができるが、肺静脈の口に器具を設置すること、又は心臓の静脈小孔、又は他の自動的に定められる領域を係合することを補助するために、放物線状、又は種々の他の形状を形成する様にプロジェクションバルーン526は予め形成できる。その種の形状は多様な方法で形成できるが、実施例では、テフロン(登録商標)膜を予め形成されたモールドの中で所望する形状に溶かして形成することによって形成される。代わりに、プロジェクションバルーン526は、ポリエチレンテレフタレート(PET)薄膜の薄い壁から作ることができる。薄膜は多様な厚さを有することができるが、実施例では、約5〜50μmの厚さを有する。
【0102】
上記の様に、膨張の後に、エネルギー放射体からの放射エネルギーが器具を通って心臓組織のターゲット領域552へ効率的に通過できる様に、プロジェクションバルーン526は放射透過流体529で充填できる。本明細書中の切除流体529は、放射エネルギーの導体として機能できる任意の流体、例えば、生理食塩水、又は無毒の他の液体の様な生理学的に互換性がある任意の流体である。また、流体529は、放射エネルギーの径路の内部の血液を異動させることによって洗浄機能を提供でき、さもなければ、放射エネルギーの径路の内部の血液は、ターゲット領域552への放射光エネルギー伝達を妨げる。
【0103】
流体529はバルーン526に多様な方法で入ることができるが、実施例では、流体529は1又は複数の出口ポート536を介してプロジェクションバルーン526と周囲の組織の間の流れに放出でき、それによってバルーン526組織に接触しない任意の間隙を充填する。更に、器具が配置されるときに放射エネルギーの効率的伝達を保証するために、放射透過流体529は、(例えば、バルーン526とターゲット領域552の間に)継続的に放出できる。
【0104】
放射エネルギー伝達を保証するためにプロジェクションバルーン526がターゲット組織と接触するだけでなく、プロジェクションバルーン526がエネルギー放射体の径路から多量の血液を除去するためにも役立つことを、当業者は高く評価するであろう。
【0105】
ここで開示されるもう1つの方法は、赤外線放射が光剥離傷の形成に特に有用であるという発見に基づく。従って、切除器具は約800nm〜約1000nmの範囲の波長で放射を放出でき、傷が形成される様に約915nm〜約980nmの範囲の波長で放出することが好ましい。約915nm〜980nmの範囲の波長での放射の放出が、心臓組織による赤外線放射の最適吸収を可能にすることを、当業者は高く評価するであろう。
【0106】
本発明の他の側面では、アブレーション器具は、例えば、電気伝導ブロックを創出するために組織を透過する放射エネルギーを利用してフォトアブレーションを実行できる。放射エネルギー、例えば、投射された電磁放射、又は超音波が、一般に従来技術のアプローチに関連する表面組織破壊の逆のタイプの少ない時間と少ないリスクで傷を創出できることが発見された。熱伝導、又は抵抗加熱、制御された透過放射エネルギーに頼る類似でない器具が、たとえ心臓が血液で満たされるときも、心臓壁の様なターゲット組織の全部の厚さを通してエネルギーを同時に堆積させるために使用できることを、当業者は高く評価するであろう。更に、放射エネルギーも、更に明確で一様な傷を生成できる。
【0107】
赤外線光に基づくアブレーション装置に加えて、他の波長の光、超音波、超高周波音、無線周波数放射、マイクロ波放射、X線、及びガンマ線を含むが限定されない他の形態の放射エネルギーも有用である。更に、導電手段、若しくは対流手段による熱の適用、低温治療の適用、及び/又は(気体の、若しくは液体の)化学的切除流体、若しくは熱適切所流体の使用の様な接触アブレーション機構も、傷を形成するために使用できる。
【0108】
図13Aは、ここで開示される様な心臓アクセスの代替方法を示す。図示される様に、人間の心臓130は右心房131、右心室132、左心室133、及び左心房134を有する。図示される様に、左肺静脈135,136、及び右肺静脈137,138は、左心房に流れ込む。本発明の方法は、ガイドワイヤ506を右心房131の中で位置決めすることも含むことができる。次に、可撓性シースカテーテル10はガイドワイヤの上方を通過して、カテーテル10の先端が心臓の左心房135,136の中の肺静脈へのアクセスを提供する様に、可撓性シースカテーテル10の遠端部が曲げられる。
【0109】
図13Bに図示される様に、アブレーション器具500がターゲット領域に導入され、ターゲット領域が最終的に切除される様に、肺静脈135,136の中では、カテーテル10の可撓性先端部分は左肺静脈135の小孔/心房、又は周囲の心筋外膜に向けて曲げた位置に固定できる。代わりに、図13Cに図示される様に、ターゲット領域への導入の後に、可撓性カテーテル10は動ける様にされ、再度位置決めできる。カテーテル10の遠端部分を右肺静脈137,138の小孔に向けるために、カテーテル10の可撓性先端部分が心房の蓋の「上方でループする」、又は上方でアーチを作ることができる様に、ここで開示される可撓性シースカテーテル10は、術者がカテーテル10を少なくとも180°曲げることを可能にすることを、当業者は高く評価するであろう。
【0110】
アクセスし、整列させ、肺静脈の隔離(アブレーション)によって心房細動の治療の役に立つために、カテーテル10はアブレーションエネルギーを送達できるだけではなく、生理食塩水の様な治療流体、又はアブレーション器具の様な医療器具を4つの肺静脈の各々に送達できる。一般に、可撓性アブレーション器具単独で、この軸方向力を加えることはできないので、臨床医が軸方向力をアブレーション器具を用いて小孔に加えることを可能にすることによって、可撓性カテーテル10が肺静脈小孔との接触も容易にすることを、当業者は高く評価するであろう。
【0111】
図14に図示される様に、心臓組織を切除するための方法のもう1つの実施例は、心臓組織552のターゲット領域の近くにガイドワイヤを位置決めすること、及びシースカテーテル10がガイドワイヤの上方を通って心臓組織552のターゲット領域まで通過できる様に、少なくとも1つの管腔514を有する可撓性シースカテーテル10を位置決めされたガイドワイヤに管腔514を介して結合することを含む。シースカテーテル10は、カテーテル10の内部のライニングとして機能する同軸拡張器、又は補強部材を更に含むことができ、その種の用途では、本発明の方法は、ガイドワイヤの上方のカテーテル10、及び拡張器アセンブリの通過を更に含む。次に、可撓性シースカテーテル10(及び、任意の補強部材)は、ガイドワイヤの上方を心臓の内部の位置まで通過でき、左心房の内部への経中隔穿刺を創出するために使用できる。中隔が穿刺される前、又は後に、ガイドワイヤは除去できる。いったん、シースカテーテル10がターゲット部位(例えば、肺静脈の小孔)の近くに位置決めされたら、拡張器は除去されて、(ターゲット組織552の様な)所望する位置に配置できる様に、可撓性シースカテーテル10の管腔の内部で滑動自在に動けるアブレーション器具と交換できる。
【0112】
エネルギー放射体は処置によって変化することができるが、図示された実施例では、エネルギー放射体540は、遠位の光を投射する光学素子543と結合する少なくとも1つの光ファイバ542を有する放射エネルギー放射体であり、ターゲット部位552に器具を通して切除光エネルギーを投射するために光学素子543は協働する。好ましい1実施例では、ここで参照する2002年07月22日発行の米国特許第6,423,055号に更に詳細に記載される様に、光学素子543は環状(リング形)ビームの放射を投射できるレンズ素子である。更に、本発明の方法は、組織を切除して伝導ブロックを形成するためにターゲット組織領域の近くでアブレーション器具を作動させることを含む。
【0113】
図15、及び図16は、ここで開示されるもう1つの方法を示し、外科医は器具の設計とは独立して傷の位置を選択できる。本発明の方法は図14に関して論じた方法に類似するが、放射エネルギー放射体540がターゲット組織領域552との接触を必要とせず、実際には、アブレーション器具の他の部分から切り離されているので、本発明は、可撓性シースカテーテル10の管腔514の内部で放射体540を単に動かすことによって、所望するターゲット領域を臨床医が選択することを可能にする。図15に図示される様に、ターゲット組織から少し離れたプロジェクションバルーン526の後部に放射エネルギー放射体540を位置決めすることによって、(肺静脈小孔の形が、その種の傷を保証するとき)幅の広い円周方向の傷を形成するために、放射エネルギー放射体540が位置決めできる。代わりに、図16に図示される様に、プロジェクションバルーン526の前面の更に近くに放射エネルギー放射体540を位置決めすることは、更に小さい半径の傷を形成することができる。図示される様に、静脈小孔の形状が半径の更に緩やかな変化を呈示するとき、更に小さい傷が使用できることを、当業者は高く評価するであろう。更に、放出された放射の強度を投射しなければならない距離によって変化させることが望ましいことは、高く評価されるべきである。従って、図16に示される方法と比較して図15に示される方法では、更に強い放射エネルギービームが望ましい。
【0114】
図17に示されるもう1つの実施例では、器具が可撓性シースカテーテル10を通して送達され、肺静脈504の内部で位置決めされた後で、マッピング電極カテーテル588がアブレーション器具を通過できる。(上記の様な)放射エネルギー放射体によって形成された傷が伝導ブロックとして機能するのに充分であるか否かを決定するために、マッピング電極588を使用して、電気パルスを印加することができる。電気伝導ブロックの構成を変化させるための種々の技術は、当業者に既知である。1つの単純なアプローチでは、冠状静脈洞カテーテルは電圧パルスを印加し、マッピング電極カテーテル588は肺静脈504の内壁に接触する。もし無信号(又は、実質的に減衰した信号)が検出されたら、それによって伝導ブロックが確認できる。場合によっては、投射、及び/又はアンカーバルーン526が除去される前でさえ、マッピング電極588が使用できることも、高く評価されるであろう。
【0115】
更に、図12〜図17に記載される本発明の方法は、ターゲット組織に対して所望する位置にカテーテルをを維持するために、係留バルーンの様な係留素子を使用することも含むことができる。しかし、図18に図示される様に、本発明による放射エネルギーを用いた切除術は、係留バルーンを必要とすることなく実行できる。ガイドワイヤ506は心臓の内部に導入され、肺静脈504の近くまで通過し、(補強ライナー、又は拡張器素子を備える、又は備えない)可撓性シースカテーテルがガイドワイヤ506の上方を通って心臓まで通過できる。心臓への挿入の後、可撓性シースカテーテルは、アブレーション器具の導入のためのプラットフォームとして機能できる。アブレーション器具は、バルーン526の膨張のための少なくとも1つの(図示されない)内部流体通路を備える細長い本体を有する上記のプロジェクションバルーン526に類似のバルーンカテーテルであり、バルーン526の内部への膨張流体の導入がバルーン526を膨張させることができる様に、バルーン526は遠位のシール521と近位のシール522によってカテーテルの本体に封止される。如何なる型の係留素子も使用することなく、可撓性シースカテーテルはアブレーション器具を適切な方向に向けるだけでなく、バルーンを肺静脈の口に対して封止するために、臨床医が充分な軸方向圧力を加えることを可能にすることも、当業者は高く評価するであろう。
【0116】
上記の様に、挿入の後で、心臓組織の放射エネルギーアブレーションのための投射経路を定めるために、プロジェクションバルーン526を膨張させることができる。図19に図示される様に、膨張したプロジェクションバルーン526は、本発明に従って投射される放射エネルギーが通るステージングを定める。図12で論じた実施例に類似の好ましい1実施例では、プロジェクションバルーン526は放射透過流体で充填され、エネルギー放射体からの放射エネルギーは、器具を通って心臓組織のターゲット領域まで効率的に通過することができる。
【0117】
図20は、図18、及び図19の装置を用いて切除術を実行する他のステップの略図であり、ガイドワイヤと拡張器が可撓性シースカテーテルから除去され、所望する病変部552から離れて(しかし、心臓のターゲット領域への放射エネルギーの投射をまだ可能にする位置に)配置されたアブレーション器具540と取り替えられる。図示された実施例では、放射エネルギー放射体540は、光学素子543の様な遠位の光投射装置と結合する少なくとも1つの光ファイバ542を含み、光学素子543は、ターゲット領域の内部で心臓組織の光凝固を誘導する器具を通して切除光エネルギーを投射するために協働する。好ましい1実施例では、ここで参照する2002年07月22日発行の米国特許第6,423,055号に更に詳細に記載される様に、光学素子543も、環状(リング形)ビームの放射を投射することができるレンズ素子である。代わりに、上記の様に、放射エネルギー放射体は、超音波源、又はマイクロ波エネルギー源である。
【0118】
更に、所望する径路が可視化され、アブレーション素子が辿れる様に、内視鏡的誘導システムが、切除エネルギーの任意の可動点源、例えば、滑動自在に位置決め可能な源の代わりに回転接触素子、若しくは放射アブレーション素子、又はそれらの組合せ、を位置決めするために使用できる。最も一般に、内視鏡的誘導システムは、心臓アブレーションに必要な種々の器具の1つを配置し位置決めするために、種々の螢光透視技術、又は他の画像技術と一緒に使用できる。
【0119】
特に、放射光がアブレーションモダリティーとして利用されるとき、エネルギー放射体を位置決めするための機能も、エネルギーの内視鏡的照準を可能にする。例えば、何処にエネルギーが送達されたかを内科医が可視化できる様に、照準光ビームは、カテーテルを介してターゲット部位に伝達できる。従って、内視鏡的誘導は、エネルギー放射体の種々の配置において、エネルギーが何処に送達されるかをユーザが見ることを可能にする。例えば、もし肺静脈の小孔の周りの環状リングの中で光を投射する様に器具が設計されたら、照準ビームは放射エネルギーと同じ光送達径路で投射できる。もしクリアな伝達経路が見られる心房の領域に「照準リング」が投射されたら、連続的な接触が存在し(さもなければ、所望する傷径路から血液が除去され)、内科医は処置を開始できる。他方では、もしクリアな伝達経路がアブレーション素子の特定の配置で見られなければ、クリアな傷径路が見付かるまでアブレーション素子は移動できる。本発明のこの「照準」機能が放射光エネルギー源と関連して記載されてきたが、「照準」が任意の放射エネルギー源と一緒に都合良く使用できること、及び、実際には、固定された、又は接触に基づくアブレーション素子の配置を補助できることも明らかである。最も一般に、順調な傷構成を位置決めすること、及び予め決定することを向上させるために、内視鏡誘導は、任意の心臓アブレーションシステムの中で照準ビームと組み合わせることができる。
【0120】
更に、図21、及び図22は、遭遇することが多い複雑な心臓の形状の治療における、本発明の複数の位置決め可能な放射エネルギーアブレーション装置の特有の用途を示す。図示される様に、一般に、肺静脈(例えば、肺静脈504)の口は、単純な漏斗形、又は円錐形面を示さない。その代わりとして、小孔の一方の側504Bは緩やかな傾斜面を示すことができ、他方の側504Aは鋭い曲がりを示すことができる。従来技術の装置の加熱バンドの位置は固定されるので、ターゲット組織、及び円弧の形状の傷と完全に接触しないか、又は不完全に形成されたリング形になる。一般に、その種の傷は、伝導を阻止するのに不充分である。
【0121】
図21は、この問題を回避するために、本発明の滑動自在に位置決め可能なエネルギー放射体が如何にして使用できるかを示す。放射体540の3つの潜在的な位置が図に示される(「A」「B」及び「C」と表示される)。図示される様に、バルーン526とターゲット組織の間の間隙のために、位置Aと位置Cは最適な傷をもたらす。他方では、位置Bは好ましい。何故ならば、周りの接触が達成されたからである。従って、バルーン526に対するエネルギー源の独立した位置決めは、遭遇した形状に合わせるために、臨床医が適切なリングサイズを「ダイヤルを回して選択する」ことを可能にする。(3つの個別の配置が図21に示されるが、放射体が更に多くの位置に位置決めできること、及びもし所望するなら、個別の間隔で、又は連続的に配置が変化できることは明らかである。)
【0122】
更に、ある場合には、肺静脈504の形状(又は、小孔に対するプロジェクションバルーン526の方向付け)は、単一の環状傷が連続的な伝導ブロックを形成できない様なものである。また、本発明は、2又は3以上の部分的に円周方向の傷を形成するためにエネルギー放射体の配置を調節することによって、この問題を扱うための機構を提供する。図22に図示される様に、本発明の装置第1の傷194と第2の傷196を形成することができ、各々は円弧、又は部分的リングの形状である。各傷194,196は(組織に堆積されるエネルギーの量に大きく依存する)厚さを有するので、図示される様に、伝導を阻止する連続的に巻いた、又は外接円状の傷を形成するために、2つの傷194,196は軸方向に結合することができる。
【0123】
図23は、内視鏡176、及び分析装置システムに接続されたアブレーション素子540を含む内視鏡/アブレータアセンブリ132として形成されたアブレーション器具を示すブロック図である。更に、分析装置システムは、反射光を検出(及び、画像を生成)するための検出器134を含む。検出器134の出力は、臨床医が観察するためのディスプレイ136に送信できる。ディスプレイ136は、単純な接眼レンズ、モニタ、又は手術チームのメンバーが装着するメガネへのヘッドアップ投射であり得る。更に、システムは、エネルギー源139、制御装置137、及びユーザインターフェース138を含むことができる。使用中、適切なアブレーション径路が創出できるか否かを決定するために、内視鏡176は検出器134、及び/又は制御装置137によって処理できる画像を取り入れる。また、照準光源131は、エネルギーが組織に送達される配置を可視化するために使用できる。もし適切なアブレーション径路が外科医によって見られたら、アブレーションを引き起こすために、制御装置137は放射エネルギーをアブレーション素子139からターゲット組織部位に送信できる。更に、制御装置137は、疑似ディスプレイをユーザに提供でき、例えば、検出器によって得られた画像に予測された傷パターンを重ね合わせるか、又は傷配置に基づく線量測定情報を重ね合わせる。更に、制御装置137は、前処理画像、傷予測、及び/又は実際の結果の様なデータを記憶し表示するためのメモリを含み、放射エネルギー源とターゲット組織の間のクリアな伝達経路がエネルギー送達の間に喪失した場合にシステムを安全に停止させることができる。
【0124】
図24は、本発明による放射エネルギー放射体140Aの1実施例の略図である。エネルギー放射体140Aは多様な形状を有することができるが、図示される様に、エネルギー放射体140Aは、凹形内部境界、又は面145を有する環形成光導波路144と連絡する光ファイバ142を含む放射エネルギー放射体140Aであり得る。導波路144は光の環状ビームを段階強度(GRIN)レンズ146まで通過させ、レンズ146はビームを平行にするために機能し、ビーム幅を投射された距離全体にわたって同じに保つ。従って、エネルギー放射体140の遠位の窓148から出るビームは(半径が)距離全体にわたって拡張するが、エネルギーは狭い環状バンドに大部分は制限されたままである。
【0125】
好ましい1実施例では、放射エネルギーは電磁放射、例えば、コヒーレント、又はレーザー光であり、エネルギー放射体140Aは、ターゲット面に衝突すると環状露出パターンを形成する中空円錐の放射を投射する。一般に、光ファイバ142、又は導波路144の中心軸からの投射の角度は、約20°〜60°(全体の範囲を定める角度約40°〜約120°)である。更に、光の環状ビームの半径は、投射点から表面、例えば、間隙の空洞、又は管腔の様な組織部位、によって取り込まれる点までの距離に依存する。一般に、放射エネルギー投射の目的が例えば、肺静脈の周りに、経壁の心臓の傷を形成することであるとき、環状ビームの半径は約10mm〜約33mmであり、10mmより大きいことが好ましく、15mmより大きいことが好ましく、20mmより大きいことが好ましく、23mm以上であることが最も好ましい。一般に、投射された環状光の角度は約20°〜約60°であり、約45°〜約55°が好ましく、用途の中には約50°(全体の範囲を定める角度100°)が最も好ましいものもある。
【0126】
本発明の経皮的なアブレーション器具と一緒に使用するための好ましいエネルギー源は、約200nm〜2.5μmの範囲のレーザー光を含む。更に詳細には、水の吸収ピークに対応する、又は近い波長が好ましいことが多い。その種の波長は約805nm〜約1060nmの波長を含み、約900nm〜1000nmが好ましく、約915nm〜980nmが最も好ましい。好ましい実施例では、約915nm、又は約980nmの波長が、心内処置の間に使用される。適切なレーザーは、エキシマレーザー、ガスレーザー、固体レーザー、及びレーザーダイオードを含む。 Arizona 州 Tucson の Spectra Physics が製造した1つの好ましいAlGaAsダイオードアレイは、980nmの波長を発生する。
【0127】
図24を再び参照すると、導波路144は光ファイバ142に当該分野で既知の種々の方法で結合できる。これらの方法は、例えば、トーチ、又は二酸化炭素レーザーとの接着、又は融合を含む。1実施例では、導波路144、光ファイバ142、及びオプションで屈折率レンズ(GRIN)146が連絡し、光学装置140の周りでポリエチレンテレフタレート(PET)の様な高分子被覆材料149を熱収縮することによって位置が保持される。
【0128】
上記の様な光導波路は、水晶、石英ガラス、又はアクリルの様なポリマーの様な当該分野で既知の材料から作られる。アクリルの適切な実施例は、アクリレーツ、ポリアクリル酸(PAA)、エステル、メタクリル酸塩、ポリメタクリル酸(PMA)、及びエステルを含む。ポリアクリル酸エステルの代表的実施例は、ポリメチル・アクリレート(PMA)、ポリエチル・アクリレート、及びポリプロピレン・アクリレートを含む。ポリメチル・アクリレート・エステルの代表的実施例は、ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル、及びポリプロピルメタクリル酸を含む。好ましい1実施例では、導波路44は水晶で形成され、光ファイバ42の端部に融解される。
【0129】
導波路の内部形成は、ユニット式本体、例えば、円筒、又はロッド、から材料の一部を除去することによって実行できる。当該分野で既知の方法が、先細の内壁を有する様に、例えば、研磨、切削加工、融食、等によって導波路を修正するために利用できる。1つの方法では、近端部が潰れて共に融解し、導波路の遠端部に対して先細になる一体化した近位の部分を形成する様に、中空ポリマー円筒、例えば管、が加熱される。もう1つの方法では、先細の穿孔機を用いて穴あけすることによって、固体水晶円筒、又は固体水晶ロッドの中に円錐面45が形成できる。
【0130】
以下で論じられる様な、多様な他のエネルギー放射体が、本発明と一緒に使用できる。図25は、光ファイバ142が、切除放射の横方向円筒形露出パターンを生成するための光散乱粒子147を有する光拡散器141と結合される、本発明による放射エネルギー放射体140Bのもう1つの実施例の略図である。この実施例は、例えば、肺静脈の内部に傷を創出するのに有用である。図21を再度参照すると、もしその配置に傷を所望するなら、肺静脈小孔の拡散露出を可能にするために、図25に示される設計の放射エネルギー放射体がプロジェクションバルーンの前まで前進できることは明らかである。光拡散素子の構造についての詳細は、ここで参照する1999年06月01日発行の米国特許第5,908,415号を参照のこと。
【0131】
図26は、放射エネルギー放射体140Cの代わりの実施例を示し、ターゲット面に衝突すると環状露出パターンを同様に形成できるエネルギーの円錐に超音波エネルギーを向ける(投射する)、個々に形成されたトランスデューサ素子(及び/又は、レンズ、又は反射鏡)162を超音波トランスデューサ160が含む。放射体140Cはシース166、又は類似の細長い本体によって支持され、細長い本体は、例えば、導線を囲むことができ、それによって臨床医が放射体を器具の内部管腔を通して超音波放出を所望する位置まで前進させることを可能にする。
【0132】
放射エネルギー放射体140Dの更にもう1つの実施例が図27に示され、マイクロ波エネルギーが環状露出ビームの内部に同様に焦点を合わされる。図27に図示される様に、放射エネルギー放射体140Dは、同軸伝達線174(又は、類似の電気信号線)、及びヘリカルコイルアンテナ173を含むことができる。放射反射鏡172A,172Bはシールドに対応し、放射を円錐の内部に向ける。他の実施例では、放射性同位体、又は他の電離放射線源が、電離放射線のビームを投射するための適切な放射遮蔽素子172A,172Bと一緒に、マイクロ波アンテナ173の代わりに使用できる。
【0133】
図28、及び図29は、(上記の様な)放射体アセンブリに内蔵されるセンサの1実施例を示す。図示される様に、アセンブリは、内視鏡/アブレータアセンブリを覆い、カテーテル本体114の内部管腔の内部での滑動的位置決めを容易にするアセンブリ本体132を含む。更に、アセンブリは、(例えば、上記のものに類似の)エネルギー放射体140、及び基準センサ176を含む。使用中、もし本発明の切除素子140が心臓の内部に正しく位置決めされたら、その種のアブレーション素子140を通して伝達された光がターゲット領域に当たり、反射され、反射率センサ176によって検出される様に、切除素子140は照明光源として機能できる。図28、及び図29は1つの切除素子140と1つの反射率センサ176を示すが、種々の数の照明素子、及び/又は検出素子、例えば、2つの切除素子、2つの反射率センサを用いて、及び接触感知モジュールの中の素子としてエネルギー放射体を使用して、又は使用せずに本発明が実施できることは明らかである。もし所望するなら、放射体と内視鏡は各々が単独で動くことができる。更に、超音波放射体と検出器も、接触を決定するための光反射機構の代わりに同じ方法で使用できる。何れにしても、センサの出力信号は電気的に処理されて、ディスプレイに取り込むことができる。
【0134】
更に、本発明の装置は、照明ファイバの遠端部で散乱媒体を利用することによって、組織の大きな接触領域に光を拡散できる照明素子を含むことができる。任意の拡散材料が使用でき、治療するシリコンの中で浮遊する二酸化チタン粒子のマトリックスの様な大きな領域全体(半径40mmより大きい領域であることが好ましい)にわたって高強度の光が一様に拡散されることを可能にする。
【0135】
図28を再度参照すると、内視鏡176は、取り込まれた画像を検出器、ディスプレイ、及び向上した視野を提供するレンズ236,240に送り返すための光ファイバ束178を含むことができる。その種の視野向上素子は視野を50°より大きく増加させることが好ましく、約70°以上が更に好ましい。一般に、市販の内視鏡は、空気中で約50°以下の視野を有する。しかし、水、又は類似の流体に浸されるとき、水と空気の屈折率の差のために、内視鏡の視野は更に減少する。以下で更に詳細に説明する様に、更に大きな視野が内視鏡的誘導に対して重要である。
【0136】
図28、及び図29の内視鏡が、ターゲット組織に対するエネルギー放射体の適切な配置(及び、プロジェクションバルーンと組織の間の接触の満足な角度)が達成される様に、本発明の経皮的なアブレーション器具を治療部位に位置決めする機能を提供することを、当業者は高く評価するであろう。
【0137】
また、本発明の内視鏡は、血液、体液、及び組織による光散乱、又は光吸収の他の光学反射率測定結果と関連して使用することができる。例えば、組織に向けて照明源から投射された白色光は、赤色光と緑色光を含む複数の成分を有する。赤色光は約600〜約700nmの範囲の波長を有し、緑色光は約500〜約600nmの範囲の波長を有する。投射された光が血液、又は体液に遭遇するとき、全部ではないが殆どの緑色光は吸収され、従って、ほんの少しの緑色光、又は青色光が反射光収集装置を含む光学アセンブリに向けて反射される。膨張したバルーン部材によってクリアにされた治療照射野から血液と体液が除去される様に装置が位置決めされるので、生物学的組織が更に多くの緑色光を反射するにつれて、緑色光と青色光の反射率は減少する。結果として、反射された緑色光と青色光の量は、装置と組織の間に血液が存在するか否かを決定する。
【0138】
従って、本発明の内視鏡的ディスプレイは、視野の中の血液の存在、又は不在を強調するフィルタを内蔵する(又は、「偽色」画像を生成する)ことができる。例えば、膨張したバルーン部材が心臓組織と接触する(又は、バルーン、及び器具によって除かれた切除流体がクリアな伝達経路を形成するのに充分なだけ接近する)とき、更に多くの緑色光が光学アセンブリと収集装置に反射される。2又は3以上の異なる波長の比率が、画像を向上させるために使用できる。従って、色を向上させた内視鏡は、器具、及び/又はターゲット部位の可視化、並びに連続的な傷、例えば、肺静脈の小孔の周りの円周方向の傷の構成を血液が不可能にするか否かの決定を可能にする。
【0139】
代わりに、分光学的測定結果は内視鏡的撮像と平行して取り入れることができ、従って、反射光は、分光光度計に対する光ファイバの様な収集装置に伝達できる。分光光度計(例えば、 Florida 州 Dunedin の Ocean Optics Spectrometer 社からのモデルS-2000分光光度計)は、反射光の各反射パルスに対するスペクトルを生成する。市販のソフトウェア(Texas 州 Austin の LabView Software 社)は特定の色に対する値を分離し、比率分析を実行できる。
【0140】
いったん術者が器具の位置決めに満足したら、放射エネルギーはターゲット組織領域に投射できる。もし放射エネルギーが電磁放射、例えば、レーザー放射なら、別々の光ファイバを介して、又は、代わりに、白色光、緑色光、又は赤色光の伝達に使用された同じ光ファイバを通して、組織部位に放射される。レーザー光は、処置の最初から終わりまで径路がクリアのままであることを保証するために、位置決め/反射光と同期する方法で、断続的にパルス化できる。
【0141】
本発明の撮像側面と接触感知側面は放射エネルギーアブレーション装置に限定されず、接触加熱、又は冷却アブレーション器具の配置においても有用であることは明らかである。例えば、図30では、伸長可能素子256、及び接触加熱素子258を有する接触加熱装置254が、肺静脈の中に配置して示される。接触加熱素子258は、伸長可能素子256の表面に印刷された導電材料の線、又はグリッドであり得る。1実施例では、伸長可能素子256が透明バンド259を除いて特定の波長(例えば、可視光)を実質的に通さないことがあり、透明バンド259上に接触加熱素子が設置される。また、反射信号収集と干渉しない様に、加熱ワイヤは充分に透明であるべき(又は、バンドの実質的に小さな領域を覆うべき)である。更に、装置254は、センサ、例えば、照明ファイバ、及び複数の収集ファイバを有する装置の中心管腔の内部に配置された内視鏡を含むことができる。
【0142】
図31では、反射率感知のもう1つの実施例、又は内視鏡にガイドされるカテーテルが、カテーテル本体312、及び低温流体源315からの低温流体を循環させるための内部コンジット314を有する低温アブレーションカテーテル310の形態で示される。カテーテル本体312は伸長可能部分、例えば、バルーン構造を含むことができ、低温が組織に加えられる導電領域316を更に含む。図示される様に、本発明の内視鏡376は導電領域の近くに配置でき、組織接触が為されたか否かを決定するために使用される。
【0143】
図32は、接触センサのための更に他の用途を示す。図示される様に、接触センサは超音波に接続して使用でき、接触加熱バルーンカテーテル420は、肺静脈小孔に接触するための(上記のものに類似の)バルーン422、及び組織に熱を加えるためのオプションのバンド423を有する。更に、超音波アブレーション器具420は、組織の所望する領域を加熱するためにアクチュエータ425によって駆動されるトランスデューサ424を含む。また、器具420は、ターゲット組織の中の(又は、バルーンの表面の)環状焦点にバルーンを通して超音波エネルギーを投射するために、反射鏡426を含むことができる。また、図示される様に、本発明の反射率センサ、又は内視鏡的センサ476は、バルーン、又はカテーテル本体の内部に配置でき、組織接触が為されたか否かを決定するために使用される。
【0144】
図33では、アセンブリ432が、放射エネルギー放射体440の制御された動きのために並進機構480を有して示される。並進機構480は上記のものと類似しており、例示の並進機構480は器具の近位の領域のハンドル484に内蔵され、放射体の前進と収縮を制御するために、放射エネルギー放射体440の細長い本体482はサムホイール486と係合する。更に、手動の、又は自動化された特性の種々の代替機構は、ターゲット組織領域に対して所望する位置に放射体を位置決めするために、図示されるサムホイール486の代わりができる。
【0145】
また、図33のアセンブリ432は、追加の特徴を含むことができる。例えば、アブレーション器具を支持する細長い本体482は位置決め指標492を更に含むことができ、その表面に臨床医が器具の内部のアブレーション素子の配置することを補助する。更に、ハンドルは窓490を含むことができ、それによって、ユーザは、器具の内部に放射体がどれだけ前進したかを正確に測定するための指標(例えば、階調マーカ)を読み取ることができる。
【0146】
更に、アセンブリ432は、本発明の器具の内部の反射率センサ、又は内視鏡476の制御された動きのための内視鏡並進機構498を含むことができる。例示の位置決め装置498は、器具の近位の領域のハンドル499に内蔵でき、放射体の前進と収縮を制御するために、センサ476の細長い本体はサムホイール497と係合する。
【0147】
使用中、放射体440と内視鏡476の両方に対する別々の枝は、ターゲット組織部位の内部への放射体440の侵入/前進の前に、内視鏡が抜き取られることを可能にする。これが、放射体440からのエネルギーによって内視鏡476が損傷することを防止することを、当業者は高く評価するであろう。
【0148】
以上、本発明の好ましい実施例について図示し記載したが、特許請求の範囲によって定められる本発明の範囲から逸脱することなしに種々の変形および変更がなし得ることは、当業者には明らかであろう。
【図面の簡単な説明】
【0149】
【図1】ハンドルと可撓性先端部分を備える可撓性シースカテーテルを示す本発明の実施例の斜視図である。
【図2】可撓性先端部分を示す本発明の実施例の拡大図である。
【図3A】可撓性先端部分の変形を示す本発明のもう1つの実施例の斜視図である。
【図3B】図3Aの可撓性先端部分の上面図である。
【図4A】ハンドル部分、及び可変ロッキング撓曲アクチュエータを示す本発明の実施例の斜視図である。
【図4B】ハンドル部分の変形、及びアクチュエータを示す本発明のもう1つの実施例の斜視図である。
【図4C】止血弁を有するハンドル部分を示す本発明のもう1つの実施例の斜視図である。
【図5】プルワイヤと埋め込みプルリングを備える細長いカテーテル本体を示す本発明の実施例の斜視図である。
【図6】プルワイヤと軸方向中心の管腔を備える細長いカテーテル本体を示す本発明の実施例の端面図である。
【図7】編組シース部分を有する細長いカテーテル本体を示す本発明の実施例の斜視図である。
【図8】放射線不透過性帯、及び洗浄ポートを有する可撓性先端部分を示す本発明の実施例の斜視図である。
【図9】先細の可撓性先端部分を示す本発明のもう1つの実施例の斜視図である。
【図10】シースカテーテルと一緒に配置される拡張器、又は補強部材を示す本発明の実施例の斜視図である。
【図11】ターゲット組織領域に対して選択された位置に放射エネルギー放射体を位置決めするための機構の略図である。
【図12】本発明による同軸カテーテルアブレーション器具の断面図である。
【図13A】人間の心臓にアクセスする可撓性シースカテーテルを示す本発明の実施例の斜視図である。
【図13B】左肺静脈の小孔にアクセスするために本発明の可撓性シースが中で使用される、人間の心臓の左心房の斜視図である。
【図13C】右肺静脈の小孔にアクセスするために本発明の可撓性シースが中で使用される、人間の心臓の左心房の斜視図である。
【図14】本発明による切除術を実行する他のステップの略図であり、ガイドワイヤ、及び拡張器が除去され、病変部から離れているが心臓のターゲット領域への放射エネルギーの投射を可能にする位置に配置された放射エネルギー放射体と取り替えられる図である。
【図15】本発明による切除術を実行するためのステップの略図であり、定められた位置に傷を形成するために放射エネルギー放射体が配置される図である。
【図16】本発明による切除術を実行するための代わりのステップの略図であり、定められた異なる位置に傷を形成するために放射エネルギー放射体が配置される図である。
【図17】本発明による切除術を実行するための他のステップの略図であり、アブレーション素子がマッピング電極と取り替えられる図である。
【図18】本発明による放射エネルギーを用いた切除術に対する代わりのアプローチの略図であり、係留部材を備えないアブレーション器具が肺静脈に近い位置に可撓性シースカテーテルを介して配置される図である。
【図19】図18に示された実施例を用いて切除術を実行する他のステップの略図であり、アブレーション素子が放射エネルギー放射体であり、心臓組織の放射エネルギーアブレーションのための投射経路を定めるためにプロジェクションバルーン要素が膨張する図である。
【図20】図19に図示された実施例を用いて切除術を実行する他のステップの略図であり、放射エネルギー放射体が、心臓のターゲット領域に放射エネルギーを送達するためにプロジェクションバルーンの内部に位置決めされる図である。
【図21】本発明による器具の略図であり、非対称な静脈口が遭遇し、放射エネルギー放射体の位置が如何にして調節され、接触を検出し、位置を選択するかを更に示す図である。
【図22】連続的な静脈を囲む傷が、2つの部分的に囲む傷によって如何にして形成できるかを示す図である。
【図23】本発明による、内視鏡にガイドされる心臓アブレーションシステムの構成要素のブロック図である。
【図24】本発明のよる放射光エネルギー放射体の1実施例の略図である。
【図25】本発明による放射光エネルギーのもう1つの実施例の略図である。
【図26】超音波エネルギーを利用する本発明による放射エネルギー放射体の代わりの実施例の略図である。
【図27】マイクロ波、又は電離放射線を利用する本発明による放射光エネルギー放射体の代わりの実施例の略図である。
【図28】本発明による内視鏡、及びアブレータアセンブリの1実施例の断面図である。
【図29】図28に示される内視鏡、及びアブレータアセンブリの端面図である。
【図30】本発明の内視鏡ガイド装置を利用する接触加熱アブレーション装置の斜視図である。
【図31】本発明の内視鏡ガイド装置を利用する低温アブレーション装置の斜視図である。
【図32】本発明の接触検出装置を利用する超音波加熱アブレーション装置の斜視図である。
【図33】処置の間に内視鏡/アブレータアセンブリの内視鏡、及びアブレーション構成要素を単独で位置決めするための並進システムの略図である。
【符号の説明】
【0150】
10 可撓性シースカテーテル
12 遠端部
20 細長いカテーテル本体
21 中心管腔
24 壁部
25 プルワイヤ
30 先端
31 曲げ
33 テーパ
40 ハンドル部分
42 光ファイバ
43 滑車機構
45 中心管腔
47 終端ポート
49 側面ポート
50 アクチュエータ
60 編組部分
70 マーカーバンド
130 心臓
131 右心房
131 照準光源
132 アセンブリ本体
134 検出器
135,136 肺静脈
136 ディスプレイ
139 エネルギー源
140 エネルギー放射体
142 光ファイバ
144 導波路
145 凹形内部境界
147 光散乱粒子
149 近端部
150 拡張器
151 遠端部
152 中心管腔
157 遠端部
160 超音波トランスデューサ
166 シース
172A,172B 放射反射鏡
173 マイクロ波アンテナ
174 同軸伝達線
176 反射率センサ
194,196 傷
236,240 レンズ
254 接触加熱装置
256 伸長可能素子
258 接触加熱素子
259 透明バンド
312 カテーテル本体
314 内部コンジット
376 内視鏡
420 超音波アブレーション器具
422 バルーン
424 トランスデューサ
426 反射鏡
432 アセンブリ
440 放射体
476 センサ
476 内視鏡
480 並進機構
484 ハンドル
486 サムホイール
490 窓
498 位置決め装置
500 アブレーション器具
504 肺静脈
514 管腔
516 肺静脈
521,522 シール
524 カテーテル
525,527 シール
526 アンカーバルーン
529 放射透過流体
529 流体
536 出口ポート
540 アブレーション素子
542 光ファイバ
552 ターゲット組織領域
586 サムホイール
588 マッピング電極
589 細長い本体

【特許請求の範囲】
【請求項1】
可撓性シースカテーテルであって、
近端部、及び遠端部を有する細長いカテーテル本体、及び
前記カテーテル本体の前記遠端部における可撓性遠端部分を含み、
前記可撓性遠端部分は複合曲線に沿って曲がる様に適合されるか、又は心臓の内部のターゲット部位にアブレーション器具を配向するために、撓曲の平面から外れた方向に向けられた、曲がった先端を有することを特徴とするカテーテル。
【請求項2】
前記可撓性遠端部分が、スティフネスが異なる少なくとも2つのセグメントを含む、請求項1に記載のカテーテル。
【請求項3】
スティフネスが異なる前記セグメントが、異なるデュロメータを有する高分子材料を含む、請求項2に記載のカテーテル。
【請求項4】
前記セグメントの前記デュロメータは、前記遠端部分の少なくとも一部分に沿って遠端方向に減少する、請求項3に記載のカテーテル。
【請求項5】
前記セグメントの前記スティフネスが、前記遠端部分の少なくとも一部分にわたって徐々に変化する、請求項2に記載のカテーテル。
【請求項6】
前記カテーテル本体が、少なくとも1つの編組線補強層を含む、請求項1に記載のカテーテル。
【請求項7】
スティフネスが異なるセグメントを提供するために、前記補強層が変化する、請求項6に記載のカテーテル。
【請求項8】
前記遠端部分の撓曲をもたらすアクチュエータを更に含む、請求項1に記載のカテーテル。
【請求項9】
屈曲していない状態の前記カテーテル本体の中心軸に対して約5°〜約90°の範囲の角度で先端が曲げられる、請求項1に記載のカテーテル。
【請求項10】
屈曲していない状態の前記カテーテル本体の中心軸に対して約10°〜約60°の範囲の角度で先端が曲げられる、請求項9に記載のカテーテル。
【請求項11】
屈曲していない状態の前記カテーテル本体の中心軸に対して約15°〜約45°の範囲の角度で先端が曲げられる、請求項9に記載のカテーテル。
【請求項12】
先端が、製造中に固定位置まで曲げられる、請求項1に記載のカテーテル。
【請求項13】
先端が、使用前に所望する位置まで曲げられるように適応性がある、請求項1に記載のカテーテル。
【請求項14】
前記遠端部分が、スティフネスが異なる少なくとも2つのセグメントを更に含む、請求項9に記載のカテーテル。
【請求項15】
スティフネスが異なる前記セグメントが、異なるデュロメータを有する高分子材料を含む、請求項14に記載のカテーテル。
【請求項16】
前記セグメントの前記デュロメータは、前記遠端部分の少なくとも一部分に沿って遠端方向に減少する、請求項15に記載のカテーテル。
【請求項17】
心臓アブレーション器具アセンブリであって、
請求項1〜16の何れか1つに記載の可撓性シースカテーテル、及び
心臓組織を切除するために前記可撓性シースカテーテルの管腔の内部で移動可能なアブレーション器具を含むことを特徴とする心臓アブレーション器具アセンブリ。
【請求項18】
前記アブレーション器具が放射エネルギー放射体である、請求項17に記載のアセンブリ。
【請求項19】
前記放射エネルギー放射体が、心臓の内部の選択された位置に前記放射体を位置決めするための並進機構を更に含む、請求項18に記載のアセンブリ。
【請求項20】
前記アブレーション器具が、超音波放出素子である、請求項17に記載のアセンブリ。
【請求項21】
前記アブレーション器具が、マイクロ波エネルギー放出素子である、請求項17に記載のアセンブリ。
【請求項22】
前記アブレーション器具が接触アブレーション器具である、請求項17に記載のアセンブリ。
【請求項23】
前記接触アブレーション器具が低温アブレーション放出素子である、請求項22に記載のアセンブリ。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図13C】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate


【公表番号】特表2008−531086(P2008−531086A)
【公表日】平成20年8月14日(2008.8.14)
【国際特許分類】
【出願番号】特願2007−556403(P2007−556403)
【出願日】平成18年2月21日(2006.2.21)
【国際出願番号】PCT/US2006/006115
【国際公開番号】WO2006/091597
【国際公開日】平成18年8月31日(2006.8.31)
【出願人】(300059980)カーディオフォーカス・インコーポレイテッド (2)
【氏名又は名称原語表記】CardioFocus,Inc.
【Fターム(参考)】