説明

回転子の着磁方法

【課題】界磁子たる回転子の両側に、電機子たる固定子を有する回転電機において、回転子を移動させずに磁極のほとんどを着磁する。
【解決手段】固定子1には三相で四組の磁芯が周方向に等配されるので、相互に30度ずれて配置される。固定子3には三相で四組の磁芯が周方向に等配されるので、相互に30度ずれて配置される。U相の電機子巻線が巻回された固定子3の磁芯U1〜U4は、U相の電機子巻線が巻回された固定子1の磁芯U5〜U8と、回転軸に沿った方向から見て15度ずれて配置される。着磁において磁芯U1〜U4及びこれと45度ずれた磁芯V5〜V8とを、回転子2に対して同極性とする。W相の電機子巻線が巻回された固定子3の磁芯W1〜W4は、回転子2に対して磁芯U1〜U4と異極性とする。磁芯W1〜W4及びこれと45度ずれた磁芯U5〜U8とを、回転子2に対して同極性とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は永久磁石を有する回転子を得るために、永久磁石材料を着磁する方法に関する。
【背景技術】
【0002】
アキシャルギャップ型の回転電機は、界磁子と電機子とが回転軸に沿った方向(以下、単に「回転軸方向」ともいう)において対向する。かかる構成は、回転電機を薄型化できたり、界磁子や電機子の磁極面積を大きくすることでトルク密度を向上できたりするという利点を有する。
【0003】
通常、アキシャルギャップ型の回転電機では、界磁子は界磁磁束の発生源として永久磁石を有する。そのため、回転軸方向に沿って電機子と界磁子との間で吸引力となるスラスト力が発生する。このスラスト力は、例えば二つの界磁子を一つの電機子に対して互いに反対側に設けたり、二つの電機子を一つの界磁子に対して互いに反対側に設けたりして、打ち消し合う。
【0004】
アキシャルギャップ型の回転電機において、一つの界磁子に対して二つの電機子を設ける構成が望ましい。上述のようにスラスト力が相殺される他、通常は界磁子を回転子として採用するので、界磁子が一つである方が風損を低減でき、また界磁子を回転軸において保持することが容易であるからである。
【0005】
なお、特許文献1及び特許文献2には、一つの界磁子に対して二つの電機子を設けた回転電機が紹介されている。特許文献1では、当該界磁子は、互いに極性が異なる二つの磁極面を有する磁石の複数を有し、当該磁極面の一方が電機子の一方に対向し、当該磁極面の他方が電機子の他方に対向している。特許文献2では、2以上の電機子の巻線方式が異なる。特許文献3では、ラジアルギャップ型の回転電機において、一つの界磁子に対して二つの電機子を設ける構成が開示されている。
【0006】
【特許文献1】特開2001−136721号公報
【特許文献2】特開2006−25486号公報
【特許文献3】特開2002−369467号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
上述のスラスト力が存在することは、予め着磁された永久磁石を有する界磁子と、電機子とを組み合わせることを困難にする。従って、永久磁石材料が着磁される前の状態で、界磁子と電機子を組み立て、その後に電機子が有する電機子巻線に通電する(以下、単に「電機子に通電する」とも表現する)ことで永久磁石材料を着磁し、永久磁石を得ることが望ましい。
【0008】
上述した特許文献1の回転電機において集中巻を採用した場合、例えば(界磁子の磁極数):(一つの電機子の突極部の個数)=2:3が最も一般的である。しかし突極部の個数が界磁子の磁極数で割り切れない。従って、三相電流を、ある1相と他の2相との間に通電すれば、永久磁石材料で同一の極性に着磁される部分が、磁極一つ分が占める角度を越えてしまう。これは隣接する磁極同士で極性を異ならせるという、界磁子の永久磁石に要求される構成を満足しない。
【0009】
ある1相を開放状態にし、他の2相の間で通電して着磁する角度を小さくすることも考えられる。但し、アキシャルギャップ型の回転電機では、界磁子が有する二つの磁極面が電機子と対向するので、スキューによる若干のずれはあっても、二つの電機子のティース同士は回転軸に平行な方向において対向する。よって二相の間で通電して着磁しても、磁極一つ当たり、その占める角度の約2/3しか着磁されないと考えられる。これは磁極の面積を実質的に損なってしまうことになる。
【0010】
着磁する角度を拡げるには、二相の間で通電して行う着磁を、界磁子の位置を異ならせて二回行うことも考えられる。しかしこれでは工数が煩雑になってしまう。しかも1回目の着磁によって電機子のコイルが発熱した場合、冷却する手間がかかるという欠点も有する。
【0011】
本発明は、上述した事情に鑑みてなされたものであり、界磁子たる回転子の両側に、電機子たる固定子を有する回転電機において、回転子を移動させずに磁極のほとんどを着磁する。
【課題を解決するための手段】
【0012】
この発明にかかる回転子の着磁方法の第1の態様は、回転軸(Q)において第1及び第2の固定子(3,1)にそれぞれ第1側及び第2側で対向し、前記回転軸周りで回転する回転子(2)が有する永久磁石材料(202)を着磁する方法である。前記第1の固定子は、前記回転軸周りの周方向に(120/N)度(Nは正整数)で等配されて設けられる3N個の第1磁芯(302)と、前記第1磁芯の各々に集中巻で各相が交代にN回繰り返して巻回される三相の第1巻線(303U,303V,303W)とを有する。前記第2の固定子は、前記周方向に(120/N)度で等配されて設けられる3N個の第2磁芯(102)と、前記第2磁芯の各々に集中巻で各相が交代にN回繰り返して巻回される三相の第2巻線(103U,103V,103W)とを有する。
【0013】
そして当該着磁方法は、第1相の前記第1巻線(303U)が巻回された前記第1磁芯(U1〜U4)と、これと前記回転軸に沿った方向である回転軸方向から見て(180/N)度ずれた前記第2磁芯(V5〜V8;U5〜U8)とを、前記回転子に対して同極性とし、前記第1相の前記第1巻線が巻回された前記第1磁芯と、第3相の前記第1巻線(103W)が巻回された前記第1磁芯(W1〜W4)とを、前記回転子に対して異極性とし、前記第3相の前記第1巻線が巻回された前記第1磁芯と、これと前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(U5〜U8;W5〜W8)とを、前記回転子に対して同極性とする通電を、前記第1巻線及び前記第2巻線に対して行う。
【0014】
この発明にかかる回転子の着磁方法の第2の態様は、その第1の態様であって、第2相の前記第1巻線(303V)と、これが巻回された前記第1磁芯(V1〜V4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(W5〜W8;V5〜V8)に巻回された前記第2巻線(103W;103V)とには通電しない。
【0015】
この発明にかかる回転子の着磁方法の第3の態様は、その第1乃至第2の態様のいずれかであって、前記回転子(2)は、前記永久磁石材料(202)の前記第1側で相互に磁気的に独立して前記周方向に配置された2N個の第1軟磁性体(203)と、前記永久磁石材料の前記第2側で相互に磁気的に独立した2N個の第2軟磁性体(201)とを有する。そして前記回転軸方向において、前記第1軟磁性体と前記第2軟磁性体とが正対する。
【0016】
この発明にかかる回転子の着磁方法の第4の態様は、その第3の態様であって、前記第2相の前記第1巻線(303V)が巻回された前記第1磁芯(V1〜V4)は、前記周方向に隣接する前記第1軟磁性体(203)の境界に正対し、前記第2相の前記第1巻線が巻回された前記第1磁芯と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(W5〜W8;V5〜V8)は、前記周方向に隣接する前記第2軟磁性体(201)の境界に正対する。
【0017】
この発明にかかる回転子の着磁方法の第5の態様は、その第1乃至第4の態様のいずれかであって、前記第1相の前記第1巻線(301U)が巻回された前記第1磁芯(U1〜U4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(V5〜V8)には、前記回転子(2)から見て前記第2相の前記第1巻線(303V)の巻回方向と反対方向に前記第2相の前記第2巻線(103V)が巻回される。前記第2相の前記第1巻線が巻回された前記第1磁芯(V1〜V4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(W5〜W8)には、前記回転子から見て前記第3相の前記第1巻線(303W)の巻回方向と反対方向に前記第3相の前記第2巻線(103W)が巻回される。前記第3相の前記第1巻線が巻回された前記第1磁芯(W1〜W4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(U5〜U8)には、前記回転子から見て前記第1相の前記第1巻線の巻回方向と反対方向に前記第1相の前記第2巻線が巻回される。
【0018】
この発明にかかる回転子の着磁方法の第6の態様は、その第1乃至第4の態様のいずれかであって、前記第1相の前記第1巻線(303U)が巻回された前記第1磁芯(U1〜U4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(U5〜U8)には、前記回転子(2)から見て前記第1相の前記第1巻線の巻回方向と同じ方向に前記第1相の前記第2巻線(103U)が巻回される。前記第2相の前記第1巻線(303V)が巻回された前記第1磁芯(V1〜V4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(V5〜V8)には、前記回転子から見て前記第2相の前記第1巻線の巻回方向と同じ方向に前記第2相の前記第2巻線(103V)が巻回される。前記第3相の前記第1巻線(303W)が巻回された前記第1磁芯(W1〜W4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(W5〜W8)には、前記回転子から見て前記第3相の前記第1巻線の巻回方向と同じ方向に前記第3相の前記第2巻線(101W)が巻回される。
【0019】
この発明にかかる回転子の着磁方法の第7の態様は、その第1乃至第6の態様のいずれかであって、前記永久磁石材料(202)は、前記回転軸方向に異方性を有する。
【0020】
この発明にかかる回転子の着磁方法の第8の態様は、その第7の態様であって、前記永久磁石材料(202)は、相互に磁気的に独立して前記周方向に配置されて2N個設けられ、前記回転子(2)の前記周方向の位置を、隣接する前記永久磁石材料の境界を、前記第2相の前記第1巻線(303V)が巻回された前記第1磁芯(V1〜V4)に正対させてから前記通電を行う。
【発明の効果】
【0021】
この発明にかかる回転子の着磁方法の第1の態様によれば、永久磁石材料に対して、周方向に2N個磁極を交互に呈させる着磁を、固定子を利用して行うことができる。
【0022】
この発明にかかる回転子の着磁方法の第2の態様によれば、永久磁石が対称性良く着磁される。
【0023】
この発明にかかる回転子の着磁方法の第3の態様によれば、永久磁石材料をほぼ回転軸方向に着磁することが容易である。
【0024】
この発明にかかる回転子の着磁方法の第4の態様によれば、第1相の第1巻線が巻回された第1磁芯及びこれと回転軸方向から見て(180/N)度ずれた第2磁芯が、それぞれ第1軟磁性体及び第2軟磁性体に対して、回転軸方向から見てほぼ重なる。同様にして、第3相の第1巻線が巻回された第1磁芯及びこれと回転軸方向から見て(180/N)度ずれた第2磁芯が、それぞれ第1軟磁性体及び第2軟磁性体に対して、回転軸方向から見てほぼ重なる。よって永久磁石材料をほぼ回転軸方向に着磁することが更に容易である。
【0025】
この発明にかかる回転子の着磁方法の第5の態様によれば、永久磁石材料の着磁後、第1の固定子と第2の固定子を相対的に周方向に(60/N)度ずらせ、第1相の第1磁芯と第1相の第2磁芯とを正対して配置することにより、通常のアキシャルギャップ型回転電機の構成が得られる。よって着磁後、巻線の構成を大幅には変更することなく、第1巻線及び第2巻線に三相電流を供給して、当該回転電機の運転を行うことができる。
【0026】
この発明にかかる回転子の着磁方法の第6の態様によれば、永久磁石材料の着磁後、巻線の構成を大幅には変更することなく、更に第1の固定子と第2の固定子を相対的に周方向にずらせることすらなく、第1巻線及び第2巻線に三相電流を供給して当該回転電機の運転を行うことができる。
【0027】
この発明にかかる回転子の着磁方法の第7の態様によれば、永久磁石材料をほぼ回転軸方向に着磁することが容易である。
【0028】
この発明にかかる回転子の着磁方法の第8の態様によれば、回転子の周方向の初期位置を定めておけば、第1磁芯及び第2磁芯を流れる磁束によって永久磁石材料が引き寄せられるので、回転子が回転しないように拘束することなく、2N個の永久磁石材料が周方向に交互に異なる極性で着磁される。
【発明を実施するための最良の形態】
【0029】
本実施の形態において、電機子は固定子として機能し、界磁子は回転子として機能する。よって固定子は電機子の構成を有しており、回転子は界磁子の構成を有している。
【0030】
第1の実施の形態.
図1及び図2は本実施の形態にかかる回転電機の構成を示す斜視図である。当該回転電機は固定子1,3と、回転子2とを備えている。図1ではこれら三者を回転軸Qに沿って分離して示している。回転電機として組み立てられる場合、固定子1と回転子2、固定子3と回転子2の間は、エアギャップと通称される間隔が設けられる。
【0031】
回転子2は回転軸Qの周りで回転する。回転子2は回転軸Qにおいて一方の側で固定子1に、他方の側で固定子3に、それぞれ対向する。回転子2は、後に着磁されて永久磁石となる、永久磁石材料202を備えている。一般的に、永久磁石材料202は周方向に沿って相互に磁気的に独立して2N個(Nは正整数)設けられる。ここではNとして4が採用されている。
【0032】
永久磁石材料202は環状で一体となっていてもよい。後述する着磁においていわゆる多極着磁が実現でき、2N個の磁極が得られるからである。
【0033】
回転子2は更に、永久磁石材料202の一方の側で相互に磁気的に独立して周方向に配置された2N個の軟磁性体201と、永久磁石材料202の他方の側で相互に磁気的に独立した2N個の軟磁性体203とを有している。より具体的には、一つの永久磁石材料202を、その両側から軟磁性体201,203が挟む構成が採用されている。これにより軟磁性体201,203は互いに回転軸方向において正対する。
【0034】
永久磁石材料202が環状で一体となっていても、軟磁性体201,203は互いに回転軸方向において正対する位置に配置される。
【0035】
図1及び図2では回転子2を回転自在に支持する機構や、永久磁石材料202、軟磁性体201,203を保持する機構は省略している。軟磁性体201.203は、接着剤等を用いて永久磁石材料202に固定することができる。またはこれら三者を機械的に固定してもよい。図1では見やすくするため、これら三者を回転軸方向に分離して示した。
【0036】
固定子1はヨーク101と、いわゆるティースとして機能する磁芯102と、電機子巻線103とを備えている。ヨーク101、磁芯102は圧粉鉄心を材料としても良いし、積層鋼板を採用しても良い。但し、いずれの図面においても、積層鋼板の各々や導線の各々を個別に図示してはいない。
【0037】
電機子巻線103は細い導線を複数回巻回することで構成されている。電機子巻線103同士の結線も省略している。
【0038】
磁芯102はヨーク101上の回転子2側に、周方向に(120/N)度で等配されて3N個設けられる。ここではNとして4が採用されるので、その個数は12個となる。
【0039】
図3は固定子1の構成を示す斜視図である。磁芯102は本体102aと、鍔部102bとで構成されている。図3では電機子巻線103と、本体102aと、鍔部102bとを、回転軸方向に沿って分離して示しているが、実際には本体102aと鍔部102bとは連結している。
【0040】
本体102aは、ヨーク101の回転子2側の面101a上に屹立している。鍔部102bは本体102aよりも周方向に幅広であって、本体102aに対してヨーク101とは反対側に設けられる。鍔部102bは、回転子2からの磁束をより多く固定子1に鎖交させる点で好ましいが、省略してもよい。
【0041】
電機子巻線103は磁芯102の各々に、より具体的には本体102aに、集中巻で巻回される。電機子巻線103には三相電流が流れるが、いずれの相の電流がどの磁芯102に巻回された電機子巻線103に流れるかについては後述する。
【0042】
図4は固定子3の構成を示す斜視図である。固定子3はヨーク301と、いわゆるティースとして機能する磁芯302と、電機子巻線303とを備えている。これらはそれぞれヨーク101と、磁芯102と、電機子巻線103とに対応しており、同様の構成を備えている。
【0043】
より具体的には、磁芯302は本体302aと、鍔部302bとで構成されている。本体302aは、ヨーク301の回転子2側の面301a上に屹立している。鍔部302bは本体302aよりも周方向に幅広であって、本体302aに対してヨーク301とは反対側に設けられる。鍔部302bは、回転子2からの磁束をより多く固定子3に鎖交させる点で好ましいが、省略してもよい。図4では電機子巻線303と、本体302aと、鍔部302bとを、回転軸方向に沿って分離して示している。
【0044】
但し、いずれの相の電流がどの磁芯302に巻回された電機子巻線303に流れるかについては、後に詳述する。
【0045】
ヨーク101,301はそれぞれ貫通孔100,300を開口しており、これらの間には回転子2に保持される回転シャフト(図示省略)が貫挿される。
【0046】
永久磁石材料202には焼結された希土類磁石材料を採用することが望ましい。希土類磁石材料を着磁して得られる永久磁石は、その磁束密度が大きいからである。
【0047】
希土類磁石、とりわけ焼結された希土類磁石には渦電流損が生じやすい。しかし、希土類磁石よりも導電率が小さい軟磁性体201,203が永久磁石材料202よりもそれぞれ固定子1,3側に設けられている。よって永久磁石材料202が着磁された後に回転電機が駆動されたとき、渦電流損の発生を抑制することができる。軟磁性体201,203の材料として、圧粉磁芯を採用することができる。
【0048】
特に、固定子1,3に流れる電機子電流がPWM制御を受けている場合、PWM制御のキャリア成分の磁束の変化による渦電流損を低減する点で、軟磁性体201,203を設けることが効果的である。
【0049】
なお、固定子1,3と共に回転子2が回転電機を構成する。よって永久磁石材料202は、隣接するもの同士が相互に極性を異ならせて回転軸方向に磁極を呈する磁石へと着磁されることが要求される。かかる要求に対応するため、永久磁石材料202は磁化容易軸が回転軸方向である磁気異方性を備えていることが望ましい。回転軸方向に着磁するのが容易となるからである。
【0050】
また後述するように、固定子1,3に通電することによって永久磁石材料202を着磁する。よって固定子1,3からの着磁用の磁界が回転軸方向から傾いていてもこれを永久磁石材料202へと導くことが要求される。かかる要求に対応する観点からも、軟磁性体201,203が設けられていることが望ましい。更に、当該観点からは軟磁性体201,203が磁気等方性を備えていることが望ましい。
【0051】
図5及び図6は回転子2の構成を例示する斜視図である。ここでは非磁性のホルダ204によって永久磁石材料202、軟磁性体201,203を保持する態様が例示されている。図6ではホルダ204と、永久磁石材料202及び軟磁性体201,203とを、回転軸方向に分離して示している。
【0052】
ホルダ204は、内環204aと、リブ204bと、外環204cとを備えている。内環204aの内側で回転シャフト(図示省略)が保持される。リブ204bは内環204aと外環204cとの間で、回転軸Qに対して径方向に延びている。永久磁石材料202及び軟磁性体201,203は、周方向に隣接するリブ204bと、内環204aと外環204cとで囲まれた領域に嵌合して保持される。
【0053】
ホルダ204として樹脂を採用し、永久磁石材料202及び軟磁性体201,203を図5に示される形態にモールドしてもよい。
【0054】
なお、永久磁石材料202が環状で一体となっている場合には、その内径で直接に回転シャフトを支持してもよい。あるいは非磁性体のホルダを介して回転シャフトを支持してもよい。
【0055】
図7は回転子2の他の構成を例示する斜視図である。ここでも非磁性のホルダ204によって永久磁石材料202、軟磁性体201,203が保持されている場合が例示されている。但しここではホルダ204として、永久磁石材料202及び軟磁性体201,203を相互に反対側から挟み込むホルダ2041,2043を採用している。図7では、永久磁石材料202及び軟磁性体201,203と、ホルダ2041,2043とを回転軸方向に分離して示している。
【0056】
また図8は回転子2の構造を、回転軸Qに平行でかつ回転軸Qを含む位置で示す断面図である。但し図8では回転子2が対称性を有することに鑑み、回転軸Qに対しての一方側のみを図示した。
【0057】
軟磁性体201,203はそれぞれ永久磁石材料202とは反対側でテーパ面201t,203tを有している。またホルダ2041,2043は、それぞれテーパ面201t,203tを永久磁石材料202とは反対側から押さえている。よってテーパ面201t,203tは、ホルダ2041,2043から軟磁性体201,203が、ひいてはホルダ2041,2043から軟磁性体201,203及び永久磁石材料202が、回転軸方向に飛び出しにくくなる効果をもたらす。これはスラスト力に抗して永久磁石材料202を保持する観点で望ましい。
【0058】
図9及び図10は、回転子2の更に他の構成を例示する斜視図である。ここでも非磁性のホルダ204によって永久磁石材料202、軟磁性体201,203が保持されている場合が例示されている。但しここでは更に、永久磁石材料202の周方向の両側に、磁性体205をも備えている構成が例示されている。磁性体205は、界磁磁束と電気的に位相が直交するいわゆるq軸の、インダクタンス(いわゆるq軸インダクタンス)を増加させる。q軸インダクタンスが高くなれば、q軸インダクタンスとd軸インダクタンス(界磁磁束と電気的に同相のインダクタンス)との差も大きくなる。適当な進相制御を行えば、この差に比例したリラクタンストルクを発生させ、トルクの増大に利用できる。以下、磁性体205をq軸コア205と称す。
【0059】
ここではq軸コア205の回転軸方向の厚みは、永久磁石材料202、軟磁性体201,203の積層方向の厚みの総計と等しく選定されている。ホルダ204には、永久磁石材料202、軟磁性体201,203のみならず、q軸コア205も嵌合する。図9ではホルダ204と、永久磁石材料202、軟磁性体201,203、及びq軸コア205とを回転軸方向に分離して示している。
【0060】
図11及び図12は、電機子巻線101,301がそれぞれ磁芯102,302に集中巻される様子を模式的に示す平面図であり、いずれも回転子2側から見て現れる面が示されている。
【0061】
磁芯102に示された符号U1〜U4、V1〜V4、W1〜W4は、それぞれに巻回された電機子巻線103に、U相、V相、W相の電流が供給されることを示す。より詳細には、符号U1〜U4が附された磁芯102の各々に巻回された電機子巻線103のいずれにもU相の電流が供給される。同様に符号V1〜V4が附された磁芯102の各々に巻回された電機子巻線103のいずれにもV相の電流が供給され、符号W1〜W4が附された磁芯102の各々に巻回された電機子巻線103のいずれにもW相の電流が供給される。
【0062】
従って電機巻線103は、磁芯102の各々に集中巻で、各相が交代にN回繰り返して巻回される三相の巻線として把握できる。
【0063】
上述と類似して、符号U5〜U8が附された磁芯302の各々に巻回された電機子巻線303のいずれにもU相の電流が供給される。同様に符号V5〜V8が附された磁芯302の各々に巻回された電機子巻線303のいずれにもV相の電流が供給され、符号W5〜W8が附された磁芯302の各々に巻回された電機子巻線303のいずれにもW相の電流が供給される。そして電機巻線303は、磁芯302の各々に集中巻で、各相が交代にN回繰り返して巻回される三相の巻線として把握できる。
【0064】
但し、図11の黒三角のマークは、図12の黒三角のマークと、周方向において同じ位置に配置されることを示している。すなわち、符号U1が附された磁芯302と符号U5が附された磁芯102とが回転軸方向において正対し、かつ、符号W4が附された磁芯302と符号W8が附された磁芯102とが回転軸方向において正対する。
【0065】
図13はこのような電機子巻線103,303が配置された固定子1,3と、回転子2との位置関係を、磁芯が存在する径方向の位置において、周方向に沿って一周分を外周側へと展開して示す展開図である。図13において黒三角のマークは固定子1,3の両端に付記されており、この間が一周分であることを示している。図13では永久磁石材料202が既に着磁された後の構成を示している。永久磁石材料202が着磁された後は、回転電機として駆動されるべく、磁芯102,302はこのように回転軸方向において正対する。
【0066】
但し、コギングトルクを低減する目的のため、磁芯102,302の相対的な位置関係は、正対位置から周方向に若干ずれることも望ましい。通常、ずれ角度は、最大でも、磁芯102,302が配置されるピッチの半分(すなわち60/N度)未満である。本実施の形態では、回転電機としての駆動時には、上述のずれはないとして説明する。
【0067】
なお、磁芯102,302にそれぞれ巻回される電機子巻線103,303は、いずれも導線一つ分で模式的に示されており、図中の黒丸入り円と×入り円とで巻回方向が示されている。ここでいう巻回方向とは、各相の相電流の正方向の向きを示す。正方向としては、例えば中性点へと電流が流れ込む向きが採用される。当該巻回方向として、各相の相電流の負方向の向きを採ってもよい。そして本実施の形態では、当該巻回方向には、全ての電機子巻線103,303に共通して、固定子3側から固定子1側を見て同方向(ここでは時計回り方向)が採用されている。
【0068】
例えばU相電流が正方向に流れる場合、符号U1〜U4が附された磁芯302(図中では本体302aと鍔部302bとに分けて示した)、符号U5〜U8が附された磁芯102(図中では本体102aと鍔部102bとに分けて示した)のいずれもが、固定子1から固定子3へと向かう方向に磁束を発生させる。あるいは例えば、V相電流が負方向に流れる場合、符号V1〜V4が附された磁芯302、符号V5〜V8が附された磁芯102のいずれもが、固定子3から固定子1へと向かう方向に磁束を発生させる。
【0069】
別の観点で言えば、電機子巻線103の巻回方向と電機子巻線303の巻回方向とは、回転子2からみるとそれぞれ時計回り方向、反時計回り方向であって、互いに反対方向となっている。しかも回転子2は周方向の位置が同じであれば固定子1と固定子3とに異なる極性を呈する。よって電機子巻線103と電機子巻線303とは各相について、回転子2に対して同相の磁界を供給することになる。
【0070】
図14は電機子巻線103,303の結線の例を示す回路図である。この例では電機子巻線103,303は各相毎に直列に接続され、かつ三相スター結線が採用された態様が例示されている。
【0071】
より具体的には、U相電流が流される電機子巻線103として電機子巻線103Uが示されている。同様にして、V相電流、W相電流が流される電機子巻線103として、それぞれ電機子巻線103V,103Wが示されている。またU相電流、V相電流、W相電流が流される電機子巻線303として、それぞれ電機子巻線303U,303V,303Wが示されている。なお、U相電流、V相電流、W相電流を供給する三相電源は図示を省略した。
【0072】
電機子巻線103U,303Uは直列に接続され、電機子巻線103V,303Vは直列に接続され、電機子巻線103W,303Wは直列に接続され、これらの三組がスター結線を実現している。
【0073】
図15は電機子巻線103,303の結線の他の例を示す回路図である。この例では電機子巻線103,303は各相毎に並列に接続され、かつ三相スター結線が採用された態様が例示されている。図15でも三相電源は図示を省略した。
【0074】
より具体的には、電機子巻線103U,303Uは並列に接続され、電機子巻線103V,303Vは並列に接続され、電機子巻線103W,303Wは並列に接続され、これらの三組がスター結線を実現している。但し、電機子巻線103U,103V,103Wが相互に接続される中性点と、電機子巻線303U,303V,303Wが相互に接続される中性点とを、別個に設けてもよい。この二つの中性点を一致させれば図15の態様が得られる。
【0075】
図16は電機子巻線103Uの構成の例を示す回路図である。電機子巻線103Uは電機子巻線103U1,103U2,103U3,103U4が並列接続されて構成される。電機子巻線103U1,103U2,103U3,103U4は、それぞれ符号U1,U2,U3,U4が附された磁芯102に巻回される。同様にして電機子巻線103Vは符号V1,V2,V3,V4が附された磁芯102に巻回される電機子巻線が並列接続されて構成され、電機子巻線103Wは符号W1,W2,W3,W4が附された磁芯102に巻回される電機子巻線が並列接続されて構成される。このようにして構成された電機子巻線103U,103V,103Wは、図14に示された構成にも、図15に示された構成にも採用できる。
【0076】
図17は電機子巻線103Uの構成の他の例を示す回路図である。電機子巻線103Uは電機子巻線103U1,103U2,103U3,103U4が直列接続されて構成される。同様にして電機子巻線103Vは符号V1,V2,V3,V4が附された磁芯102に巻回される電機子巻線が直列接続されて構成され、電機子巻線103Wは符号W1,W2,W3,W4が附された磁芯102に巻回される電機子巻線が直列接続されて構成される。このようにして構成された電機子巻線103U,103V,103Wは、図14に示された構成にも、図15に示された構成にも採用できる。
【0077】
以下、説明の便宜のため、電機子巻線303Uが巻回された磁芯302をU相磁芯と称して符号U1,U2,U3,U4を用いて表す。同様にして、電機子巻線303Vが巻回された磁芯302をV相磁芯と称して符号V1,V2,V3,V4を用いて表し、電機子巻線303Wが巻回された磁芯302をW相磁芯と称して符号W1,W2,W3,W4を用いて表し、電機子巻線103Uが巻回された磁芯102をU相磁芯と称して符号U5,U6,U7,U8を用いて表し、電機子巻線103Vが巻回された磁芯102をV相磁芯と称して符号V5,V6,V7,V8を用いて表し、電機子巻線103Wが巻回された磁芯102をW相磁芯と称して符号W5,W6,W7,W8を用いて表す。
【0078】
図18は、q軸コア205を設けた場合の回転子2と、固定子1,3との位置関係を、磁芯が存在する径方向の位置において、周方向に沿って一周分を外周側へと展開して示す展開図である。q軸コア205を設けた以外に、図13に示された構成と異なる所はない。
【0079】
さて、永久磁石材料202を着磁するときには、固定子3から固定子1を見て、固定子3を時計回り方向に(60/N)度ずらせる。図19及び図20はこのような着磁のためにずれた位置関係を示す斜視図であり、それぞれ図1及び図2に対応する。
【0080】
図21は着磁のためにずれた固定子3の位置を示す平面図である。図21は図11と同様に回転子2側から見て現れる面が示されている。また図21で付記された黒三角のマークは、図12で付記された黒三角のマークと、周方向の位置が一致することを示している。
【0081】
図22は着磁のために固定子3がずれたときの、固定子1,3と、回転子2との位置関係を、磁芯が存在する径方向の位置において、周方向に沿って一周分を外周側へと展開して示す展開図である。図22においては黒三角のマークは一個所のみで示しているが、固定子1,3の図示された範囲が一周分に相当する。図22でも永久磁石材料202が既に着磁された後の構成を示している。
【0082】
上記のように固定子1,3の相対位置をずらせることにより、U相磁芯U1,U2,U3,U4はそれぞれU相磁芯U5,U6,U7,U8に対して固定子3から固定子1を見て時計回り方向に(60/N)度ずれる。またW相磁芯W1,W2,W3,W4はそれぞれV相磁芯V5,V6,V7,V8に対して固定子3から固定子1を見て反時計回り方向に(60/N)度ずれる。本実施の形態ではNとして4が採用されているので、(60/N)度は15度となる。
【0083】
またV相磁芯V1,V2,V3,V4はそれぞれW相磁芯W5,W6,W7,W8に対して固定子3から固定子1を見て時計回り方向に(180/N)度ずれる。またV相磁芯V1,V2,V3,V4はそれぞれW相磁芯W8,W5,W6,W7に対して固定子3から固定子1を見て反時計回り方向に(180/N)度ずれる。またU相磁芯U1,U2,U3,U4はそれぞれV相磁芯V5,V6,V7,V8に対して固定子3から固定子1を見て時計回り方向に(180/N)度ずれる。またW相磁芯W1,W2,W3,W4はそれぞれU相磁芯U5,U6,U7,U8に対して固定子3から固定子1を見て反時計回り方向に(180/N)度ずれる。本実施の形態ではNとして4が採用されているので、(180/N)度は45度となる。
【0084】
永久磁石材料202を着磁するときには、電機子巻線101,103には通常の回転駆動において流れる三相電流ではなく、直流電流もしくはパルス電流を流す。例えば、コンデンサ(図示せず)に蓄えられた電荷を、コンデンサ両端を電機子巻線にて短絡することとで、電機子巻線にパルス電流を流すことができる。
【0085】
図22において着磁を施す磁界の向きは磁芯の本体102a,302aに白抜き矢印で示される。具体的にはU相磁芯U1,U2,U3,U4及びこれと(180/N)度ずれたV相磁芯V5,V6,V7,V8には、いずれも回転子2から外側へ向かう方向に磁界が発生する。つまりこれらの磁芯はいずれも回転子2に対してS極となる。またW相磁芯W1,W2,W3,W4及びこれと(180/N)度ずれたU相磁芯U5,U6,U7,U8には、いずれも回転子2へと向かう方向に磁界が発生する。つまりこれらの磁芯はいずれも回転子2に対してN極となる。U相磁芯U1,U2,U3,U4とW相磁芯W1,W2,W3,W4とは相互に極性が異なり、U相磁芯U5,U6,U7,U8とV相磁芯V5,V6,V7,V8とは相互に極性が異なる。
【0086】
上述のように、U相磁芯U1,U2,U3,U4はそれぞれU相磁芯U5,U6,U7,U8に対して(60/N)度ずれている。またW相磁芯W1,W2,W3,W4はそれぞれV相磁芯V5,V6,V7,V8に対して(60/N)度ずれている。よって永久磁石材料202は、磁芯の配置ピッチに対応する(120/N)度及び上記のずれ(60/N)度との和である(180/N)度の範囲において、固定子1,3に対して互いに異なる磁極を呈して着磁される。
【0087】
しかも、着磁を施す磁界は(180/N)度毎に極性が異なるので、永久磁石材料202は、(180/N)度毎に異なる極性で着磁される。よって永久磁石材料202は周方向の一周分(360度)において2N個の磁極に着磁される。
【0088】
このようにして、永久磁石材料202に対して、周方向に2N個の磁極を交互に呈させる着磁が、固定子1,3を利用して行われる。しかも着磁のときに回転子2を移動させる必要がない。なお、着磁後の永久磁石材料202は、固定子1,3に対して相互に極性が異なる磁極を呈することになる。
【0089】
図22では着磁後の永久磁石材料202が呈する磁極の極性のうち、固定子1側に呈するものを軟磁性体201の位置に、固定子3側に呈するものを軟磁性体203の位置に、それぞれ記載した。
【0090】
図23は着磁用の磁界を発生するための構成を例示する回路図である。着磁電源としては例えばパルス電圧を発生する電源が採用される。図23で例示された構成は、回転電機を回転駆動する場合に用いられる結線が、図14で示される態様である場合に好適である。より具体的には、図23で例示された構成は、図14において電機子巻線303V,303Wを短絡除去して電機子巻線103V,303V同士の並列接続を実現することで、当該並列接続と電機子巻線103U,303Uとを着磁電源に対して直列に接続して得られる。
【0091】
今、着磁電源の極性を電機子巻線103U,303U側を正に採り、各相の電流の向きとして中性点へと流れ込む方向を正に採ると、電機子巻線103U,303Uには正の向きの電流が流れる。これにより、U相磁芯U1〜U8に巻回された電機子巻線103,303には、その巻回方向と同じ方向に電機子電流が流れ、U相磁芯U1〜U8には白抜き矢印で示された磁界が発生する。
【0092】
また、電機子巻線103V,303Wには負の向きの電流が流れる。これにより、V相磁芯V5〜U8に巻回された電機子巻線103、W相磁芯W1〜W4に巻回された電機子巻線303には、その巻回方向とは逆の方向に電機子電流が流れ、V相磁芯V5〜U8及びW相磁芯W1〜W4には白抜き矢印で示された磁界が発生する。
【0093】
図24は着磁用の磁界を発生するための他の構成を例示する回路図である。図24で例示された構成は、回転電機を回転駆動する場合に用いられる結線が、図15で示される態様である場合に好適である。より具体的には、図24で例示された構成は、図15において電機子巻線303V,103Wを開放除去して電機子巻線103V,303V同士の並列接続を実現することで、当該並列接続と電機子巻線103U,303U同士の並列接続とを着磁電源に対して直列に接続して得られる。このような構成においても、電機子巻線103U,303Uと電機子巻線103V,303Wとは逆方向に電流が流れ、図22で白抜き矢印で示された磁界が発生する。
【0094】
通常、回転電機の電機子巻線は対称性良く設けられるので、電機子巻線103U,103V,103W,303U,303V,303Wのインピダンスはほぼ等しい。よって図23に示された構成と比較して、図24に示された構成では、電機子巻線103U,103V,303U,303Wに流れる電流は等しくなる。これはU相磁芯U1〜U8、V相磁芯V5〜U8、W相磁芯W1〜W4に発生する磁界の強さがほぼ等しくなり、着磁が均等になるという利点を招来する。かかる利点は、電機子103U,103V,103W,303U,303V,303Wのいずれもが電機子103Uについて例示された図16の構成を採っても、図17の構成を採っても、得られる。
【0095】
図22で示されるように、着磁を施す磁界は、固定子1,3の間で(60/N)度ずれている。よって永久磁石材料202を回転軸方向に着磁するには、上述のように、回転軸方向に磁化容易軸を有することが望ましい。図25は永久磁石材料202が着磁されたことを矢印で模式的に示す断面図である。このように着磁することにより、回転電機として使用する場合に得られる磁気エネルギー積が大きい。
【0096】
図26は、図22の内、近接する三つの磁芯の近傍を拡大して示す展開図である。例えば図1を参照して、固定子1において磁芯102は3N個設けられる。よって周方向に隣接する本体102aの中心同士は周方向に(360/3N)度で離れている。本実施の形態ではNとして4が採用されるので、(360/3N)度は30度になる。本体302aの中心同士についても同様である。
【0097】
着磁の方向を回転軸方向に近づけるためにも、鍔部102b,302bは本体102a,302aよりも周方向に幅広であることが望ましい。但し鍔部102b,302bは、隣接する磁芯同士での磁気的短絡を防止すべく、本体102a,302aの中心から15度未満で拡がることが望ましい。
【0098】
また本体102a,302a同士は(60/N)=30/2=15度ずれている。よって(360/2N)=(180/N)度=45度の範囲内では3つの磁芯が存在することになる。他方、永久磁石材料202を着磁して2N個の磁極を対称性良く得るためには、(180/N)度毎に極性が異ならせて着磁しなければならない。よって(180/N)度の範囲内にある3つの磁芯のうち、一つには着磁を施す磁界を発生させないことが望ましい。図22に示した例でいえば、相互に(180/N)度ずつずれた磁芯V1〜V4,W5〜W8に巻回された電機子巻線303V,103Wには、着磁時に通電しない方が、着磁の対称性が良い。
【0099】
更には、これら、着磁時に磁界を発生させない磁芯V1〜V4,W5〜W8は、それぞれ軟磁性体203,201の周方向の境界に正対する事が望ましい。これにより磁芯U1〜U4,V5〜V8はそれぞれ軟磁性体203,201に、回転軸方向から見てほぼ重なる。同様にして磁芯W1〜W4,U5〜U8はそれぞれ軟磁性体203,201に、回転軸方向から見てほぼ重なる。よって永久磁石材料202をほぼ回転軸方向に着磁することが容易となる。
【0100】
なお、着磁において回転子2の回転を阻止することは必要ではない。このことは、永久磁石材料202が環状で一体である場合は当然であるが、2N個で離散して設けられている場合についても妥当する。
【0101】
永久磁石材料202が2N個で離散して設けられている場合においては、着磁を施す磁界が発生する磁芯102,302へと永久磁石材料202が引き寄せられる。よって回転子2の回転を拘束せず、回転自在な状態で着磁を行っても、永久磁石材料202はその各々について着磁される。但し、予め、着磁時に磁界を発生させない磁芯V1〜V4,W5〜W8を、それぞれ軟磁性体203,201の周方向の境界に正対する事が望ましい。この状態を初期状態として着磁することにより、永久磁石材料202が磁芯U1〜U4,W1〜W4,U5〜U8,V5〜V8に引き寄せられる力が拮抗し、回転子2は殆ど回転しないからである。
【0102】
着磁後は、磁芯102,302が回転軸方向において正対するように固定子1,3の相対的位置関係を変える。具体的には、着磁後、固定子3から固定子1を見て、固定子3を反時計回り方向に(60/N)度ずらせる。
【0103】
これにより、図18に示された位置関係、すなわち通常のアキシャルギャップ型回転電機の構成が得られる。更に電機子巻線103,303を、図14や図15で例示されるように、三相電流を流す態様に結線する。例えば図14に示された態様で電機子巻線103,303を結線しておき、着磁においては電機子巻線303V,303Wを短絡する結線を追加して図23に示された結線を得る。そして着磁後は、その追加した結線を外し、着磁電源を通常の三相電源(図示省略)に置換すればよい。または、巻線303V,103Wは結線せずに着磁を行い、着磁ののちに、巻線303V、103Wを、巻線103V,303Wに接続してもよい。これにより回転電機は通常に駆動できる。
【0104】
このように第1の実施の形態によれば、着磁後、電機子巻線103,303の構成を大幅には変更することなく、これらに三相電流を供給して、当該回転電機の運転を行うことができる。
【0105】
第1の実施の形態では、着磁するときと、回転電機として用いるときとで、固定子1,3の周方向における相対的位置関係が異なる。しかしかかる位置関係の調整は周知の機構で実現することが可能である。
【0106】
図27は固定子1,3の周方向における相対的位置関係を異ならせる機構を例示する斜視図である。但し、図示の繁雑を避けるため、回転子2、固定子1,3はいずれも円盤として簡略化して示し、かつ回転子2は鎖線で示されるように透視されている。
【0107】
固定子1には締結孔110が設けられている。締結孔110は例えば、図1を参照して、ヨーク101において電機子巻線103を避けて設けられる。また固定子3には締結孔310,311が設けられている。締結孔310,311は例えば、図1を参照して、ヨーク301において電機子巻線303を避けて設けられる。
【0108】
回転軸方向に沿って、締結孔110,310が重なるとき、通常のアキシャルギャップ型回転電機としての位置関係(図18参照)が得られる。また回転軸方向に沿って、締結孔110,311が重なるとき、着磁のときの位置関係(図22)が得られる。
【0109】
具体的には、締結孔110,310はいずれも周方向において90度離れて配置されており、締結孔311は固定子3から固定子1を見て反時計回り方向に15度ずれて設けられている。そして締結孔110,310,311の径方向の位置は例えば全て等しい。
【0110】
着磁を行うときには、締結孔110,311を貫通する締結具(図示省略)を用いて固定子1,3を固定する。そして着磁が終了すると回転電機の通常の運転が行えるように、締結孔110,310に締結具を貫通させて固定子1,3を固定する。
【0111】
もちろん、締結孔110,310,311を用いることなく、他の機構を用いてもよい。例えば固定子1,3を固定するケーシングを別途に設け、当該ケーシングに対する固定子1の位置関係を固定しつつ、固定子3の位置関係を二通り許す機構を設ける。当該機構の例として、ケーシングと固定子3との間で二種の位置関係で契合する凹凸が挙げられる。
【0112】
第2の実施の形態.
図28は本実施の形態における磁芯102の配置を模式的に示す平面図であり、回転子2側から見て現れる固定子1の面が示されている。本実施の形態において、固定子3の平面図は、図21に示される。図21及び図28に付記された黒三角のマークは、周方向において同じ位置に配置されることを示している。
【0113】
図29は固定子1,3と、回転子2との位置関係を、磁芯が存在する径方向の位置において、周方向に沿って一周分を外周側へと展開して示す展開図である。図29において黒三角のマークは一個所のみで示しているが、固定子1,3の図示された範囲が一周分に相当する。図29でも永久磁石材料202が既に着磁された後の構成を示している。
【0114】
本実施の形態では磁芯102の磁芯302に対する位置関係が第1の実施の形態で示された位置関係と比較して、固定子3から固定子1を見て時計方向周りに更に(120/N)度ずれている点で異なる。例えばU相磁芯U1は、第1の実施の形態ではU相磁芯U5とW相磁芯W8との間に位置していたが(図22参照)、本実施の形態ではW相磁芯W8とV相磁芯V8との間に位置している。
【0115】
更に、本実施の形態では電機子巻線103の巻回方向が、回転軸方向の一方からみて電機子巻線303の巻回方向と反対方向(回転子2からみて同方向)となっている。
【0116】
別の観点で言えば、電機子巻線103の巻回方向と電機子巻線303の巻回方向とは、回転子2からみるといずれも時計回り方向であって同じ方向となっており、回転子2に対して呈する磁極は各相毎に極性が同じになる。しかも、回転子2は固定子1,3に対し、各相毎に同じ極性を呈する。より詳細には、固定子3のU相磁芯U1〜U4と、固定子1のU相磁芯U5〜U8とは機械角として45度ずれている。また永久磁石材料202も45度毎に極性が反転して着磁される。よって電機子巻線103と電機子巻線303とは、回転子2に対して同相の磁界を供給することになる。
【0117】
但し、電機子巻線103,303同士は、各相毎に直列接続あるいは並列接続し、スター結線あるいはデルタ結線を採用することができる。例えば図14や図15に例示された結線が採用される。なお、スター結線を採用する場合には、3相の巻線を全て結線した状態で二つの相の端子の間で電流を流せば、他の一つの相には電流が流れない。但しデルタ結線を採用する場合、通電しない相の巻線を通電する相の巻線と結線しない状態で、着磁用の通電を行う必要がある点を注意しなければならない。
【0118】
本実施の形態でも、着磁を施す磁界は白抜き矢印で示されており、当該磁界と回転子2との関係は、第1の実施の形態と同じである。すなわち、磁芯U1〜U4と磁芯W1〜W4とは、回転子2に対して異なる極性を呈する。そして磁芯U1〜U4及びこれと(180/N)度ずれた磁芯102が回転子2に対して同極性となっている。当該磁芯102は第1の実施の形態では磁芯V5〜V8であったが、本実施の形態では磁芯U5〜U8である。また磁芯W1〜W4及びこれと(180/N)度ずれた磁芯102が回転子2に対して同極性となっている。当該磁芯102は第1の実施の形態では磁芯U5〜U8であったが、本実施の形態では磁芯W5〜W8である。
【0119】
このように本実施の形態では、着磁において、W相の電機子巻線を用いず、U相及びV相の二相についての電機子巻線103,303にのみ通電すれば足りる。これは着磁電源への電機子巻線103,303の接続を容易にする。
【0120】
例えば図14に示された態様の結線を採用する場合、W相の電機子巻線を開放し、電機子巻線103U,303U,103V,303Vの直列接続に対して着磁電源を接続すればよい。あるいは図15に示された態様の結線を採用する場合、W相の電機子巻線を開放し、電機子巻線103U,303U同士の並列接続と、電機子巻線103V,303V同士の並列接続との直列接続に対して着磁電源を接続すればよい。
【0121】
電機子巻線103Uと電機子巻線303Uには同じ向きに電流が流れ、両者は回転子2から見て同方向に巻回されているので、磁芯U1〜U4と磁芯U5〜U8とは、回転子2に対して同極性を呈することになる。また電機子巻線103Vと電機子巻線303Vには同じ向きに電流が流れ、両者は回転子2から見て同方向に巻回されているので、磁芯V1〜V4と磁芯V5〜V8とは、回転子2に対して同極性を呈することになる。そして電機子巻線103U,303Uに流れる電流と電機子巻線103V,303Vに流れる電流とはその向きの符号が異なるので、磁芯U1〜U8と磁芯V1〜V8とは、回転子2に対して異なる極性を呈することになる。
【0122】
このように二相の通電を行うことは、電機子巻線103,303に流れる電流を均一にし易く、着磁が均等になるという利点を招来する。
【0123】
本実施の形態においても第1の実施の形態と同様に、軟磁性体201,203あるいはホルダ204を配置し、その機能や配置によって特有の効果を得ることができる。また第1の実施の形態と同様に永久磁石材料202が磁気異方性を有することで、回転軸方向の着磁が容易となる。また永久磁石材料202が2N個で離散して設けられている場合、その周方向の境界に、着磁の際に通電されない電機子巻線が巻回された磁芯(本実施の形態では磁芯V1〜V8)を正対させて着磁を行うことも好適である。これによれば、回転子2の回転を拘束せずに回転自在な状態で着磁を行っても、永久磁石材料202はその各々について着磁される。
【0124】
更に、本実施の形態では、固定子1,3同士の相対的位置を着磁のときと、回転電機として駆動する場合とで異ならせる必要がないという、特有の効果を有する。すなわち、本実施の形態における回転電機の構成は、着磁のときも、回転電機として駆動する場合にも、図29で示される態様で固定子1,3が回転軸方向において対向する。但し、当然、このときには電機子巻線103,303は、図14や図15で例示されるような、通常の三相電流を流す態様に結線される。
【0125】
図29に示された構成では、固定子1のU相の磁芯とV相の磁芯との中間の位置と、固定子3のW相の磁芯とが正対する。例えば磁芯U5,V5の中間の位置と、磁芯W1とが正対する。通常は三相電流は平衡するので、U相電流とV相電流とW相電流との総和が零となる。そして電機子巻線103と電機子巻線303とは各相毎に回転子2からみて同じ方向で巻回されている。
【0126】
よって平衡三相電流が流れると、固定子1のU相の磁芯とV相の磁芯との中間の位置では等価的に、回転軸方向に沿ってみて、固定子3のW相の磁芯が発生する磁界と同じ方向に磁界が発生している。換言すれば、回転子2にとっては、周方向について同じ位置で、固定子1,3から相互に極性が異なる磁極が呈されていることになる。よって固定子1,3の突極性を除けば、電機子巻線に通電される三相電流により発生する磁界は、図18に示された構造と同様に、固定子1,3同士で相互に位相が180度ずれる。
【0127】
しかしながら、図18に示された構造と同様に、回転子2は周方向について同じ位置で、固定子1,3に対して異なる極性を呈している。よって固定子1,3から回転子2には、同相で回転磁界が発生していることになる。よって固定子1,3から回転子2に働くトルクは一致し、しかもスラスト力は相殺する。
【0128】
しかも磁芯102と磁芯302とは、それぞれの配置ピッチの半分で周方向にずれているので、コギングトルクやトルクリプルが低減される。したがって、固定子1,3のいずれについても並行して最大トルク制御を行うことができるために特性の低下がないのみならず、コギングトルクやトルクリプルを低減することができる。
【0129】
図30乃至図33は永久磁石材料202が着磁された後に、回転子2が回転する様子を示す展開図である。これらの図は図29の一部を取り出して示しており、白抜き矢印は磁界の向きを示している。但し回転電機として駆動される場合、三相電流が流れるので、磁芯にはU,V,Wの符号のみ示している。
【0130】
図30はU相電流が零であり、W相電流が正方向に、V相電流が負方向に流れている状況を示す。この状況ではW相の磁芯に巻回された電機子巻き線の巻回方向と同方向に電流が流れるので、固定子1,3のW相の磁芯がいずれも回転子2に対してS極を呈する。逆に、V相の磁芯に巻回された電機子巻き線の巻回方向と逆方向に電流が流れるので、固定子1,3のV相の磁芯がいずれも回転子2に対してN極を呈する。よって回転子2の永久磁石材料202(着磁済み:以下同様)のN極はV相の磁芯から斥けられ、W相の磁芯に引きつけられる。これにより回転子2は回転方向(図中右側)へと移動する。
【0131】
図31は図30で示された状況の後、U相電流が正方向に流れた状況を示す。この状況ではU相の磁芯に巻回された電機子巻き線の巻回方向と同方向に電流が流れるので、U相磁芯は回転子2に対してS極を呈することになる。但しまだV相の磁芯が回転子2に対してN極を呈しているので、回転子2の永久磁石材料202(着磁済み)のS極はU相の磁芯から斥けられ、V相の磁芯に引きつけられる。これにより回転子2は回転方向へと更に移動する。
【0132】
図32は図31で示された状況の後、U相電流が増大し、W相電流が零になった状況を示す。図33は図32で示された状況の後、U相電流が減少し、W相電流が負方向に流れた状況を示す。このようにして三相電流が電機子巻線に流されることにより、回転子2は回転駆動される。
【0133】
このように、第2の実施の形態によれば、永久磁石材料202の着磁後、電機子巻線103,303の構成を変更することなく、更に固定子1,3を相対的に周方向にずらせることすらなく、電機子巻線103,303に三相電流を供給して当該回転電機の運転を行うことができる。
【0134】
なお、本実施の形態においても第1の実施の形態と同様に、q軸コア205を採用し、リラクタンストルクを利用することもできる。
【図面の簡単な説明】
【0135】
【図1】本発明の第1の実施の形態にかかる回転電機の構成を示す斜視図である。
【図2】第1の実施の形態にかかる回転電機の構成を示す斜視図である。
【図3】第1の実施の形態における固定子の構成を示す斜視図である。
【図4】第1の実施の形態における固定子の構成を示す斜視図である。
【図5】第1の実施の形態における回転子の構成を例示する斜視図である。
【図6】第1の実施の形態における回転子の構成を例示する斜視図である。
【図7】第1の実施の形態における回転子の他の構成を例示する斜視図である。
【図8】第1の実施の形態における回転子の構造を示す断面図である。
【図9】第1の実施の形態における回転子の更に他の構成を例示する斜視図である。
【図10】第1の実施の形態における回転子の更に他の構成を例示する斜視図である。
【図11】第1の実施の形態における電機子巻線及び磁芯を示す平面図である。
【図12】第1の実施の形態における電機子巻線及び磁芯を示す平面図である。
【図13】第1の実施の形態における固定子と回転子との位置関係を示す展開図である。
【図14】第1の実施の形態における電機子巻線の結線の例を示す回路図である。
【図15】第1の実施の形態における電機子巻線の結線の他の例を示す回路図である。
【図16】第1の実施の形態における電機子巻線の構成の例を示す回路図である。
【図17】第1の実施の形態における電機子巻線の他の構成の例を示す回路図である。
【図18】第1の実施の形態における固定子と回転子との位置関係を示す展開図である。
【図19】第1の実施の形態における着磁のためにずれた位置関係を示す斜視図である。
【図20】第1の実施の形態における着磁のためにずれた位置関係を示す斜視図である。
【図21】第1の実施の形態における着磁のためにずれた固定子の位置を示す平面図である。
【図22】第1の実施の形態における着磁のために固定子がずれたときの、固定子と回転子2との位置関係を示す展開図である。
【図23】第1の実施の形態における着磁用の磁界を発生するための構成を例示する回路図である。
【図24】第1の実施の形態における着磁用の磁界を発生するための他の構成を例示する回路図である。
【図25】永久磁石材料が着磁されたことを示す断面図である。
【図26】図22の一部を拡大して示す展開図である。
【図27】一対の固定子同士の、周方向における相対的位置関係を異ならせる機構を例示する斜視図である。
【図28】本発明の第2の実施の形態における磁芯の配置を示す平面図である。
【図29】第2の実施の形態における固定子と回転子との位置関係を示す展開図である。
【図30】第2の実施の形態において着磁後に回転子が回転する様子を示す展開図である。
【図31】第2の実施の形態において着磁後に回転子が回転する様子を示す展開図である。
【図32】第2の実施の形態において着磁後に回転子が回転する様子を示す展開図である。
【図33】第2の実施の形態において着磁後に回転子が回転する様子を示す展開図である。
【符号の説明】
【0136】
1,3 固定子
102,302,U1〜U8,V1〜V8,W1〜W8 磁芯
103,103U,103V,103W,303,303U,303V,303W 電機子巻線
2 回転子
201,203 軟磁性体
202 永久磁石材料

【特許請求の範囲】
【請求項1】
回転軸(Q)において第1及び第2の固定子(3,1)にそれぞれ第1側及び第2側で対向し、前記回転軸周りで回転する回転子(2)が有する永久磁石材料(202)を着磁する方法であって、
前記第1の固定子は、前記回転軸周りの周方向に(120/N)度(Nは正整数)で等配されて設けられる3N個の第1磁芯(302)と、前記第1磁芯の各々に集中巻で各相が交代にN回繰り返して巻回される三相の第1巻線(303U,303V,303W)とを有し、
前記第2の固定子は、前記周方向に(120/N)度で等配されて設けられる3N個の第2磁芯(102)と、前記第2磁芯の各々に集中巻で各相が交代にN回繰り返して巻回される三相の第2巻線(103U,103V,103W)とを有し、
前記方法は、
第1相の前記第1巻線(303U)が巻回された前記第1磁芯(U1〜U4)と、これと前記回転軸に沿った方向である回転軸方向から見て(180/N)度ずれた前記第2磁芯(V5〜V8;U5〜U8)とを、前記回転子に対して同極性とし、
前記第1相の前記第1巻線が巻回された前記第1磁芯と、第3相の前記第1巻線(103W)が巻回された前記第1磁芯(W1〜W4)とを、前記回転子に対して異極性とし、
前記第3相の前記第1巻線が巻回された前記第1磁芯と、これと前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(U5〜U8;W5〜W8)とを、前記回転子に対して同極性とする通電を、前記第1巻線及び前記第2巻線に対して行う、回転子の着磁方法。
【請求項2】
第2相の前記第1巻線(303V)と、これが巻回された前記第1磁芯(V1〜V4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(W5〜W8;V5〜V8)に巻回された前記第2巻線(103W;103V)とには通電しない、請求項1記載の回転子の着磁方法。
【請求項3】
前記回転子(2)は、前記永久磁石材料(202)の前記第1側で相互に磁気的に独立して前記周方向に配置された2N個の第1軟磁性体(203)と、前記永久磁石材料の前記第2側で相互に磁気的に独立した2N個の第2軟磁性体(201)とを有し、
前記回転軸方向において、前記第1軟磁性体と前記第2軟磁性体とが正対する、請求項1または請求項2記載の回転子の着磁方法。
【請求項4】
前記第2相の前記第1巻線(303V)が巻回された前記第1磁芯(V1〜V4)は、前記周方向に隣接する前記第1軟磁性体(203)の境界に正対し、
前記第2相の前記第1巻線が巻回された前記第1磁芯と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(W5〜W8;V5〜V8)は、前記周方向に隣接する前記第2軟磁性体(201)の境界に正対する、請求項3記載の回転子の着磁方法。
【請求項5】
前記第1相の前記第1巻線(301U)が巻回された前記第1磁芯(U1〜U4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(V5〜V8)には、前記回転子(2)から見て前記第2相の前記第1巻線(303V)の巻回方向と反対方向に前記第2相の前記第2巻線(103V)が巻回され、
前記第2相の前記第1巻線が巻回された前記第1磁芯(V1〜V4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(W5〜W8)には、前記回転子から見て前記第3相の前記第1巻線(303W)の巻回方向と反対方向に前記第3相の前記第2巻線(103W)が巻回され、
前記第3相の前記第1巻線が巻回された前記第1磁芯(W1〜W4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(U5〜U8)には、前記回転子から見て前記第1相の前記第1巻線の巻回方向と反対方向に前記第1相の前記第2巻線が巻回される、請求項1乃至4のいずれか一つに記載の回転子の着磁方法。
【請求項6】
前記第1相の前記第1巻線(303U)が巻回された前記第1磁芯(U1〜U4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(U5〜U8)には、前記回転子(2)から見て前記第1相の前記第1巻線の巻回方向と同じ方向に前記第1相の前記第2巻線(103U)が巻回され、
前記第2相の前記第1巻線(303V)が巻回された前記第1磁芯(V1〜V4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(V5〜V8)には、前記回転子から見て前記第2相の前記第1巻線の巻回方向と同じ方向に前記第2相の前記第2巻線(103V)が巻回され、
前記第3相の前記第1巻線(303W)が巻回された前記第1磁芯(W1〜W4)と前記回転軸方向から見て(180/N)度ずれた前記第2磁芯(W5〜W8)には、前記回転子から見て前記第3相の前記第1巻線の巻回方向と同じ方向に前記第3相の前記第2巻線(101W)が巻回される、請求項1乃至4のいずれか一つに記載の回転子の着磁方法。
【請求項7】
前記永久磁石材料(202)は、前記回転軸方向に異方性を有する、請求項1乃至請求項6のいずれか一つに記載の回転子の着磁方法。
【請求項8】
前記永久磁石材料(202)は、相互に磁気的に独立して前記周方向に配置されて2N個設けられ、
前記回転子(2)の前記周方向の位置を、隣接する前記永久磁石材料の境界を、前記第2相の前記第1巻線(303V)が巻回された前記第1磁芯(V1〜V4)に正対させてから前記通電を行う、請求項7記載の回転子の着磁方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate


【公開番号】特開2008−236835(P2008−236835A)
【公開日】平成20年10月2日(2008.10.2)
【国際特許分類】
【出願番号】特願2007−69110(P2007−69110)
【出願日】平成19年3月16日(2007.3.16)
【出願人】(000002853)ダイキン工業株式会社 (7,604)
【Fターム(参考)】