説明

地盤計測方法、地盤計測プログラムおよび地盤計測装置

【課題】地盤に載荷履歴の影響を与えず、地盤本来の正確な剛性の計測が可能で、平板載荷試験等の他の現場試験法との相関性を高めることで、地盤剛性の評価を精度よく行えるようにする。
【解決手段】落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に重錘を載荷面に落下させることとし、予備載荷を行うことなく本載荷のみを落下高さを細分化して1回ずつ行うことで、徐々に地盤を締固めるので地盤に載荷履歴の影響を与えることなく、地盤本来の正確な剛性を計測でき、また、衝撃荷重は瞬間荷重であるが、落下高さを徐々に高くして1回ずつ本載荷を連続的に行い地盤の累積的な変位を計測するので、載荷する荷重ピーク点に対する変位ピーク点同士を結ぶことで平板載荷試験の単調載荷時と相関性の高い初期載荷剛性を取得できるようにした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、地盤に関する物理量を計測するための地盤計測方法、地盤計測プログラムおよび地盤計測装置に関するものであり、特に、平板載荷試験等の他の現場試験法との相関性を高めることができる地盤計測方法、地盤計測プログラムおよび地盤計測装置に関するものである。
【背景技術】
【0002】
従来より、地盤の剛性等の物理量を取得して評価する試験方法としては、平板載荷試験が最も一般的であり、図8に示した各種規格が定められている。この平板載荷試験には、各種の計測装置の組み合わせでJIS A 1215に示されるものが用いられる。図8に示した繰返し平板載荷試験では、5サイクルの繰返し載荷により、1点あたり120分の計測時間を要する。一方、FWD(Falling Weight Deflectometer)という地盤計測装置は、試験対象である地盤上に設置される載荷板に重錘を落下させ、当該重錘落下によって前記載荷板に加わる荷重値と、重錘の落下に伴う地盤の変位とを計測する装置である(例えば、特許文献1参照)。
【0003】
そして、上記のような地盤計測装置によって計測された地盤に加わる時系列の荷重値と、地盤の時系列の変位とに基づいて地盤に関する物理量を求め、物理量が所定の条件を満たすか否か等の評価を行っている。
【0004】
図9は、従来の地盤計測装置10の構成を示す側面図である。同図に示した地盤計測装置10は、載荷部11と、支持体12と、荷重計測手段13と、主軸14と、重錘15と、不動部16と、変位計測手段17とを備えている。
【0005】
載荷部11は、金属などの剛体で構成され、計測対象となる地盤Gの上面に接触するよう設置される。支持体12は、載荷部11の上側に設けてあり、金属などの剛体からなる。支持体12は、上支持板12aと下支持板12bとの間を複数の支柱12cで連結した構造体である。支持体12の上支持板12aの上面には、落下した重錘15を受けるダンパー12dが設けてある。
【0006】
荷重計測手段13は、荷重を電圧の変化として検出するロードセルなどからなる。荷重計測手段13は、支持体12の下支持板12bと載荷部11との間に介在してある。この荷重計測手段13は、支持体12に重錘15を落下したときに、載荷部11に生じた地盤Gに加わる衝撃荷重を計測する。
【0007】
主軸14は、載荷部11に対して鉛直となる軸線に沿う態様で支持体12を介して載荷部11に連結してある。重錘15は、複数の錘板を組み合わせてなるものであり、その総質量を可変できる。係合部15cは、主軸14の軸線に沿って移動可能になされており、その移動可能な位置で固定できるようになっている。重錘15は、固定された当該係合部15cに係合されることでその位置が保持されており、計測時にはかかる係合状態を解除することで重錘15が保持位置から落下し、支持体12の上側に設けられたダンパー12dに衝突する。
【0008】
不動部16は、金属などの剛体からなり、重錘15の落下とは独立しており、重錘15の落下時においてその位置が変動しないようになっている。変位計測手段17は、不動部16側に設けてあり、主軸14の位置変位を計測する。変位計測手段17は、例えば主軸14に基準位置を設け、この基準位置の移動を計測する。この変位計測手段17は、重錘15を落下させたときの主軸14の位置変位から地盤Gのたわみ(変位)量を計測する。
【0009】
以上が地盤計測装置10の構成であり、荷重および変位の計測を行う場合には、係合部15cと重錘15の係合状態を解除する。これにより、重錘15が落下しダンパー12dに衝突する。かかる重錘15の落下に伴って支持体12および載荷部11を介して地盤Gに衝撃荷重が加わり、その荷重が荷重計測手段13によって計測される。
【0010】
また、この荷重によって地盤Gが所定量だけ沈下すると、その沈下に伴って載荷部11とこれに連結される支持体12および主軸14が下方側に移動する。つまり、主軸14が地盤Gが沈下した所定量と同じだけ下方側に移動し、この移動量を変位計測手段17が計測することで地盤Gの変位を計測することができるのである。
【0011】
【特許文献1】特許第2506282号公報
【発明の開示】
【発明が解決しようとする課題】
【0012】
ところで、従来の地盤計測装置10においては、地盤剛性の計測方法として、載荷部11の設置時の端面誤差を除く目的で、本載荷と同一の落下高さに対して予備載荷を行った上で、その後の本載荷を3回以上行い、これら本載荷の平均を地盤剛性kHFWDと評価している。このため、地盤には予備載荷時の重錘落下による締固めの影響と、本載荷時の同一落下高さでの重錘落下の繰返しによる締固めの影響が生じ、地盤本来の正確な地盤剛性の評価ができない。すなわち、地盤に載荷履歴の影響が出てしまう。
【0013】
また、地盤剛性評価においては、平板載荷試験の支持力係数k30と、地盤計測装置10のような小型FWDの地盤剛性kHFWDとの相関関係比を求めることで、地盤剛性を評価するようにしている。ところが、支持力係数k30は、単調載荷によって求められるものであるのに対して、地盤剛性kHFWDは、繰返し載荷によって求められるものであり、異なる特性を持つため、地盤特性の非線形性の影響を受けて、これらの相関は低いものとなっている。
【0014】
例えば、図10は、平板載荷試験の支持力係数k30と、小型FWDの地盤剛性kHFWDとの相関関係を示す。図中、○×△□は、それぞれ地盤の種類(礫質土、砂質土等)を示している。図10によれば、両対数で図示しているにも関わらず、直線関係に載っておらず、支持力係数k30と地盤剛性kHFWDとの相関性の悪いことが判る。この結果、FWD試験によって地盤剛性を評価する場合、その精度において信頼性の低いものとなっている。
【0015】
本発明は上記に鑑みてなされたもので、地盤に載荷履歴の影響を与えず、地盤本来の正確な剛性の計測が可能で、平板載荷試験等の他の現場試験法との相関性を高めることができ、地盤剛性の評価を精度よく行うことができる地盤計測方法、地盤計測プログラムおよび地盤計測装置を提供することを目的とする。
【課題を解決するための手段】
【0016】
上記目的を達成するため、本発明は、計測対象である地盤に設置した載荷面に落下すべき重錘の落下高さを検出する検出工程と、前記検出工程で検出される前記落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に前記重錘を前記載荷面に落下させる載荷制御工程と、それぞれの落下高さから前記重錘を落下させた際に発生する荷重および前記地盤の累積的な変位に基づいて、当該地盤に関する物理量を計測する計測工程と、を含むことを特徴とする。
【0017】
また、本発明は、コンピュータに、計測対象である地盤に設置した載荷面に落下すべき重錘の落下高さを検出する検出工程と、前記検出工程で検出される前記落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に前記重錘を前記載荷面に落下させる載荷制御工程と、それぞれの落下高さから前記重錘を落下させた際に発生する荷重および前記地盤の累積的な変位に基づいて、当該地盤に関する物理量を計測する計測工程とを実行させるための地盤計測プログラムである。
【0018】
また、本発明は、計測対象である地盤に設置した載荷面に落下すべき重錘の落下高さを検出する検出手段と、前記検出手段で検出される前記落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に前記重錘を前記載荷面に落下させる載荷制御手段と、それぞれの落下高さから前記重錘を落下させた際に発生する荷重および前記地盤の累積的な変位に基づいて、当該地盤に関する物理量を計測する計測手段と、を具備することを特徴とする。
【発明の効果】
【0019】
以上説明したように、本発明によれば、落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に重錘を載荷面に落下させており、予備載荷を行うことなく本載荷のみを落下高さを細分化して1回ずつ行うことで、徐々に地盤を締固めるので地盤に載荷履歴の影響を与えることなく、地盤本来の正確な剛性を計測することができ、また、重錘落下による衝撃荷重は瞬間荷重であり荷重を掛け続けるような単調増加は難しいが、落下高さを徐々に高くして1回ずつ本載荷を連続的に行い地盤の累積的な変位を計測するので、落下高さ毎に載荷する荷重ピーク点に対する変位ピーク点を結ぶことで平板載荷試験の単調載荷時と相関性の高い初期載荷剛性の特性を得ることができ、よって、平板載荷試験等の他の現場試験法との相関性を高めることができ、地盤剛性の評価を精度よく行うことができる。
【発明を実施するための最良の形態】
【0020】
以下に添付図面を参照して、本発明にかかる地盤計測方法、地盤計測プログラムおよび地盤計測装置の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではない。
【実施例】
【0021】
図1は、本発明の一実施例にかかる地盤計測装置100の構成を示す図である。地盤計測装置100は、地盤Gに加えた荷重値と地盤Gの変位とを計測してPC(パーソナルコンピュータ)200に供給し、かかる計測結果に基づいてPC200が地盤に関する物理量を計測する。
【0022】
地盤計測装置100において、載荷部1は、金属などの剛体で構成され、計測対象となる地盤Gの上面に接触するよう設置される。支持体2は、載荷部1の上側に設けてあり、金属などの剛体からなる。支持体2は、上支持板2aと下支持板2bとの間を複数の支柱2cなどで連結した構造体であり、その上支持板2aの上面には、落下した重錘5を受けるダンパー2dが設けてある。
【0023】
荷重計測手段3は、荷重を電圧の変化として検出するロードセルなどからなる。荷重計測手段3は、支持体2の下支持板2bと載荷部1との間に介在してある。この荷重計測手段3は、支持体2に重錘5を落下したときに、載荷部1に生じた地盤Gに加わる衝撃荷重を計測する。
【0024】
主軸4は、載荷部1に対して鉛直となる軸線に沿う態様で支持体2を介して載荷部1に連結してある。重錘5は、複数の錘板を組み合わせてなるものであり、その総質量を可変できる。係合部5cは、主軸4の軸線に沿って移動可能になされており、その移動可能な位置で固定できるようになっている。重錘5は、油圧機構(図示せず)により落下位置から上昇自在であって、固定された当該係合部5cに係合されることでその位置が保持されており、計測時にはかかる係合状態を解除することで重錘5が保持位置から落下し、支持体2の上側に設けられたダンパー2dに衝突する。なお、係合部5cの固定位置を変動させることで、重錘5の落下高さを調整することができる。
【0025】
不動部6は、金属などの剛体からなり、重錘5の落下とは独立しており、重錘5の落下時においてその位置が変動しないようになっている。変位計測手段7は、不動部6側に設けてあり、主軸4の位置変位を計測する。変位計測手段7は、例えば主軸4に基準位置を設け、この基準位置の移動を計測する。この変位計測手段7は、重錘5を落下させたときの主軸4の位置変位から地盤Gのたわみ(変位)量を計測する。
【0026】
支持体2近傍に配置されたロータリエンコーダ8は、重錘5の最下位位置に連結された繰り出し自在なワイヤ部材9を有して、ダンパー2dの頂部の位置を基準とする重錘5の底面までの距離、すなわち重錘5の落下高さを無段階に検出するためのものである。一実施例では、重錘5の落下高さを細分化し、落下高さが徐々に高くなるように変化させて本載荷を1回ずつ行わせるものであり、一例として、5mm,10mm,20mm,40mm,60mm,80mm,100mm,125mm,150mm,175mm,200mm,225mm,250mm,275mm,300mmなる15段階の落下高さが設定されている。このような細分化された15段階の落下高さは、載荷する最大荷重、例えば500(kN/m2)に対して個々の本載荷で加える荷重の分割幅(荷重段階)が15分割で等ピッチ(厳密に等ピッチでなくても、ほぼ等ピッチであればよい)となるように、最大荷重時の落下高さ300mmに対して分割設定されたものである。ロータリエンコーダ8は、このように分割設定された15段階のそれぞれの落下高さに重錘5の底面が到達したか否かを逐次検出し、検出結果をPC200に対して出力する。
【0027】
つぎに、図2に示したフローチャートを参照しつつ、一実施例の動作について説明する。図2は、一実施例の全体動作を説明するフローチャートである。図2に示したステップSA1では、PC200で図3に示す設定画面Mが表示され、計測に関する設定が行われる。この設定画面Mでは、例えば15段階の本載荷(荷重段階1、荷重段階2、…、荷重段階14、荷重段階15)に対応する落下高さ(mm)が設定される。落下高さは、当該載荷で重錘5を落下させる高さである。なお、当該載荷で重錘5を落下させるサイクル回数は、いずれも1回に設定される。この設定により、例えば5mm,10mm,20mm,40mm,60mm,80mm,100mm,125mm,150mm,175mm,200mm,225mm,250mm,275mm,300mmなる15段階の落下高さが設定される。
【0028】
ステップSA2では、載荷部1が地盤Gの設置面に設置される。ついで、ステップSA3では、荷重段階数を示すmの初期値として1が設定される。ステップSA5では、PC200の制御により、m段階(ここでは、m=1)で重錘5が上昇された後、落下される。具体的には、油圧機構により重錘5を上昇させ、重錘5が所定の落下高さ(重錘5がダンパー2dから5mm上昇した位置)まで上昇したことがロータリエンコーダ8で検出されると、ロータリエンコーダ8からPC200へ検出結果が出力され、PC200は、油圧機構を停止させた後、リリース動作に移行させることで、重錘5が落下し、載荷部1に荷重がかかる。
【0029】
ステップSA6では、PC200は、変位計測手段7の計測結果に基づいて、載荷部1に加わった(衝撃)荷重Pmおよび地盤G(載荷部1)の変位δmを計測する。ステップSA7では、PC200は、支持力係数Kmを算定する。この支持力係数Kmは、荷重Pmのピーク値を、変位δmのピーク値で除算した値である。
【0030】
ステップSA8では、PC200は、載荷部1の径をB、ポアソン比をν、支持力係数をKmとして、つぎの半無限弾性地盤の理論式(1)式から地盤Gの弾性係数Emを算定する。
【0031】
m=0.25π・B(1−ν2)・Km ………………(1)
【0032】
ステップSA9では、PC200は、m段階(荷重段階1〜荷重段階15)の全ての処理が完了したか否かを判断し、この場合、m=1であり、判断結果を「No」とし、ステップSA10では、mを+1ずつインクリメントする。ステップSA4以降では、つぎの荷重段階2(m=2)の処理が実行される。以後、荷重段階3(m=3)、…、荷重段階14(m=14)、荷重段階15(m=15)の処理が連続的に順次実行される。
【0033】
具体的には、重錘5が落下高さ10mmに引き上げられた後、落下させることで荷重段階2の処理が実行され、次いで、重錘5が落下高さ20mmに引き上げられた後、落下させることで荷重段階3の処理が実行され、…、重錘5が落下高さ275mmに引き上げられた後、落下させることで荷重段階14の処理が実行され、次いで、重錘5が落下高さ300mmに引き上げられた後、落下させることで荷重段階15の処理が実行される。
【0034】
そして、m段階(m=15)の処理が完了すると、PC200は、ステップSA9の判断結果を「Yes」とする。ステップSA11では、PC200は、荷重段階1〜荷重段階15における荷重ピーク値(ステップSA5で計測された荷重のピーク値)と変位ピーク値(ステップSA5で計測された変位のピーク値)とを示す点を近似直線で結ぶことで、直線の勾配を初期載荷支持係数Kiとして算定する。
【0035】
つぎに、PC200は、初期載荷支持係数をKi、載荷部1の径をB、ポアソン比をνとして、つぎの(2)式から初期載荷弾性係数Eiを算定する。
【0036】
i=0.25π・B(1−ν2)・Ki ………………(2)
【0037】
ステップSA12では、PC200は、m段階における弾性係数Em(ステップSA8で算定)を、繰返し載荷弾性係数Erとして算定する。ステップSA13では、載荷部1が格納され、一連の計測が終了する。
【0038】
すなわち、一実施例は、図4に示すように、載荷する最大荷重500(kN/m2)に対して荷重の分割幅が15分割でほぼ等ピッチとなるように細分化させて分割設定された落下高さを低いほうから高くなるように順次変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に重錘7を載荷部1に落下させ、それぞれの落下高さから重錘7を落下させた際に発生する地盤Gの累積的な変位を荷重とともに計測するようにしたものである。
【0039】
このように、一実施例によれば、予備載荷を行うことなく本載荷のみを落下高さを細分化して徐々に高くして1回ずつ行うことで、徐々に地盤Gを締固めるので地盤Gに予備載荷や同一落下高さでの本載荷の繰返しによる載荷履歴の影響を与えることなく、地盤本来の正確な剛性(荷重を掛け続けた状態での地盤沈下に相当)を計測することができる。また、FWDの場合、加える衝撃荷重は変動の大きい瞬間荷重であり単調増加は難しいが、落下高さを徐々に高くして1回ずつ本載荷を連続的に行い載荷履歴の影響のない状態で累積された地盤Gの変位を計測するので、各段階の荷重ピーク値と対応する変位ピーク値とを示す点(図4中に示す白丸参照)を近似直線で結ぶことで、平板載荷試験の単調載荷時と相関性が高い初期載荷剛性(k値)特性(或いは、単調載荷剛性の特性)を得ることができ、よって、平板載荷試験等の他の現場試験法との相関性を高めることができ、例えば構造物基礎用の地盤剛性や地耐力の評価を精度よく行うことができる。また、当初地盤Gにおける載荷部1の設置面に凹凸(端面誤差)があったとしても、取得した初期載荷剛性の特性によって地盤Gの様子を把握することができるので、本載荷に先立ち予備載荷を別個単独で行って平らにしなくても、設置面の凹凸(端面誤差)の影響を初期載荷剛性の特性から除去することができる。
【0040】
図5−1は、平板載荷試験の結果(荷重および変位)を表す図であり、図5−2は、図1に示した地盤計測装置100による試験(SFWD試験という)の結果(荷重および変位)を表す図である。これらの図において、弾性係数Eは、載荷部1の直径B=0.45m、ポアソン比ν=0.3とした場合の前述の(1)式により求めたものである。図5−1と図5−2との対比から明らかなように、単調載荷時の地盤剛性(支持力係数k)を示す初期載荷剛性(k値)は、平板載荷試験の結果と一実施例の小型FWDの結果とで比較的類似の傾向を示しており、両者間の相関性が高いことが判る。
【0041】
一方、従来のSFWDで計測されていた地盤剛性kHFWDは、図4中に示す繰返し載荷剛性に相当するものである。図10に示したように従来のSFWDの相関性の悪かった原因は、一実施例のような初期載荷剛性(k値)特性を計測することができず、SFWDの繰返し載荷剛性と平板載荷試験の支持力係数k30(初期載荷剛性)との相関をとっていたためである。
【0042】
ここで、繰返し載荷剛性自体は、道路、空港の路床、路盤等のように自動車や飛行機による荷重が繰返し載荷される地盤に対する動的荷重特性の評価には有効である。すなわち、一実施例によれば、日本道路公団基準JHS103(図8参照)で規格化されている繰返し平板載荷試験(以下、単に平板載荷試験という)と同等な繰返し弾性係数を、短時間で得ることができる。従って、従来の繰返し平板載荷試験に代わる地盤の剛性評価手法となり得るため、時間、コストを削減することができる。
【0043】
図6−1は、平板載荷試験の結果(繰返し載荷弾性係数および荷重)を表す図であり、図6−2は、一実施例のSFWD試験の結果(繰返し載荷弾性係数および各荷重段階の荷重ピーク値)を表す図である。両図によれば、荷重に対する繰返し載荷弾性係数の増加程度(地盤が徐々に締固まっていく特性)も同様な傾向を示し、両者の相関度が高いことが判る。
【0044】
さらに、図7−1は、路盤、厚さt=0.5の改良土、厚さt=1.0mの改良土等の種々の地盤に対する平板載荷試験と一実施例のSFWDとの初期弾性係数同士の相関性を表した図であり、図7−2は、砕石、珪砂等の種々の地盤に対するCBR試験のCBRと一実施例のSFWDの弾性係数との相関性を表した図である。これらの図から、一実施例のSFWDの計測方法は、地盤剛性を調査できる平板載荷試験やCBR試験等の他の現場試験法と極めて相関性の高いことが明らかである。実施に際しては、計測対象となる現場において、事前の数点に対して平板載荷試験などとキャリブレーション試験を実施し、その後に、一実施例のようなSFWDによる調査を行うことで、実地盤の剛性を迅速・簡便にして精度よく適切に把握することができる。
【0045】
なお、一実施例では、載荷する最大荷重に対して荷重の分割幅がほぼ等ピッチとなるように荷重段階mを15段階に分割設定し、これに対応する落下高さも15段階に分割設定したが、15段階の分割設定に限らない。ただし、分割数としては、荷重の分割幅が、載荷する最大荷重に対してほぼ等ピッチで10〜20分割されるように設定することが好ましい。単調増加の場合の地盤の挙動を計測する上で、地盤の固さ等に応じて初期載荷剛性の特性には荷重レベルによって曲がり等を生じてくるものであり(図4等は、比較的硬い地盤の場合の特性を示しているが、比較的柔らかい地盤の場合には荷重レベルによって急激に変位が大きくなって荷重が飽和する非線形特性を示す)、その変曲点等の地盤の挙動を精度よく計測し、地盤の地耐力を精度よく評価する上では、10分割以上に分割設定することが好ましいためである。すなわち、9分割以下の粗い分割設定の場合、初期載荷剛性の特性における曲がりが判りにくく、地盤の地耐力評価が難しくなってしまう。また、分割数は、多ければ多いほど、より精度の高い特性計測が可能となるが、一実施例のようなSFWDは元々短時間での計測処理の完了を目的としており、例えば1回の落下処理に30秒要するとして10分程度の短時間で計測処理を完了させる上では、20分割以下程度に分割設定することが好ましいためである。
【0046】
また、上述した一実施例では、地盤計測装置100の機能を実現するためのコンピュータプログラム(地盤計測プログラム)を、インターネット等の通信回線を介してユーザに提供するようにしてもよいし、当該コンピュータプログラムをCD−ROM(Compact Disc-Read Only Memory)などのコンピュータ読み取り可能な記録媒体に記録してユーザに提供するようにしてもよい。
【産業上の利用可能性】
【0047】
以上のように、本発明にかかる地盤計測方法、地盤計測プログラムおよび地盤計測装置は、地盤に関する物理量の計測に対して有用である。
【図面の簡単な説明】
【0048】
【図1】本発明にかかる一実施例による地盤計測装置の構成を示す図である。
【図2】同一実施例の全体動作を説明するフローチャートである。
【図3】同一実施例における設定画面Mを示す図である。
【図4】同一実施例のSFWD試験の荷重および変位の関係を表す図である。
【図5−1】平板載荷試験の結果(荷重および変位)を表す図である。
【図5−2】同一実施例のSFWD試験の結果(荷重および変位)を表す図である。
【図6−1】平板載荷試験の結果(繰返し載荷弾性係数および荷重ピーク値)を表す図である。
【図6−2】同一実施例のSFWD試験の結果(繰返し載荷弾性係数および荷重ピーク値)を表す図である。
【図7−1】種々の地盤に対する平板載荷試験と同一実施例のSFWDとの初期弾性係数同士の相関性を表した図である。
【図7−2】種々の地盤に対するCBR試験のCBRと同一実施例のSFWDの弾性係数との相関性を表した図である。
【図8】従来の平板載荷試験の各種規格を示す図である。
【図9】従来の地盤計測装置の構成を示す側面図である。
【図10】平板載荷試験の支持力係数k30と、従来の小型FWDの地盤剛性kHFWDとの相関関係を示す図である。
【符号の説明】
【0049】
1 載荷部
3 荷重計測手段
5 重錘
7 変位計測手段
8 ロータリエンコーダ
100 地盤計測装置
200 PC

【特許請求の範囲】
【請求項1】
計測対象である地盤に設置した載荷面に落下すべき重錘の落下高さを検出する検出工程と、
前記検出工程で検出される前記落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に前記重錘を前記載荷面に落下させる載荷制御工程と、
それぞれの落下高さから前記重錘を落下させた際に発生する荷重および前記地盤の累積的な変位に基づいて、当該地盤に関する物理量を計測する計測工程と、
を含むことを特徴とする地盤計測方法。
【請求項2】
前記載荷制御工程では、載荷する最大荷重に対して荷重の分割幅がほぼ等ピッチとなるように前記落下高さを分割設定し、分割設定されたそれぞれの落下高さとなるように該落下高さを順次変化させることを特徴とする請求項1に記載の地盤計測方法。
【請求項3】
前記載荷制御工程では、前記荷重の分割幅を、載荷する最大荷重に対してほぼ等ピッチで10〜20分割されるように設定することを特徴とする請求項2に記載の地盤計測方法。
【請求項4】
コンピュータに、
計測対象である地盤に設置した載荷面に落下すべき重錘の落下高さを検出する検出工程と、
前記検出工程で検出される前記落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に前記重錘を前記載荷面に落下させる載荷制御工程と、
それぞれの落下高さから前記重錘を落下させた際に発生する荷重および前記地盤の累積的な変位に基づいて、当該地盤に関する物理量を計測する計測工程と、
を実行させるための地盤計測プログラム。
【請求項5】
前記載荷制御工程では、載荷する最大荷重に対して荷重の分割幅がほぼ等ピッチとなるように前記落下高さを分割設定し、分割設定されたそれぞれの落下高さとなるように該落下高さを順次変化させることを特徴とする請求項4に記載の地盤計測プログラム。
【請求項6】
前記載荷制御工程では、前記荷重の分割幅を、載荷する最大荷重に対してほぼ等ピッチで10〜20分割されるように設定することを特徴とする請求項5に記載の地盤計測プログラム。
【請求項7】
計測対象である地盤に設置した載荷面に落下すべき重錘の落下高さを検出する検出手段と、
前記検出手段で検出される前記落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に前記重錘を前記載荷面に落下させる載荷制御手段と、
それぞれの落下高さから前記重錘を落下させた際に発生する荷重および前記地盤の累積的な変位に基づいて、当該地盤に関する物理量を計測する計測手段と、
を具備することを特徴とする地盤計測装置。
【請求項8】
前記載荷制御手段は、載荷する最大荷重に対して荷重の分割幅がほぼ等ピッチとなるように前記落下高さを分割設定し、分割設定されたそれぞれの落下高さとなるように該落下高さを順次変化させることを特徴とする請求項7に記載の地盤計測装置。
【請求項9】
前記載荷制御手段は、前記荷重の分割幅を、載荷する最大荷重に対してほぼ等ピッチで10〜20分割されるように設定することを特徴とする請求項8に記載の地盤計測装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5−1】
image rotate

【図5−2】
image rotate

【図6−1】
image rotate

【図6−2】
image rotate

【図7−1】
image rotate

【図7−2】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2007−163275(P2007−163275A)
【公開日】平成19年6月28日(2007.6.28)
【国際特許分類】
【出願番号】特願2005−359306(P2005−359306)
【出願日】平成17年12月13日(2005.12.13)
【出願人】(000002299)清水建設株式会社 (2,433)
【Fターム(参考)】