説明

基板上のコンポーネントを保護するカバーの作製方法

【課題】基板上のコンポーネントを保護するためのカバーを調製する方法を提供する。
【解決手段】基板2の表面上または中に収容されたコンポーネント5を保護するためのカバー1を調製する方法であって、コンポーネント5を覆う、単層または複数の積み重ねられたサブ層6.1、6.2を有し、コンポーネント5の上に位置する領域では、基板に対する接着力よりも低い接着力を有する座屈層6を基板2の上に形成する工程と、座屈層6がコンポーネント5の上に位置する領域において空洞7の境界を画定するように座屈層を座屈する工程と、を含み、画定する工程は、形成する工程の前に、間に、または後に、しかし座屈する工程の前に実行可能であり、座屈する工程は、形成する工程の間にまたは後に実行可能である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特に、微小電子機械システム(MEMS)または光電子機械マイクロシステムとしても、また微小光電子機械システム(MOEMS)としても知られる、基板に接合された電子機械マイクロシステム型の電子的、光学的、光電子的なコンポーネントのカプセル化のために、その基板上にカバーを作製する方法に関する。以降の説明では、コンポーネントまたは時にマイクロシステムが使われる。
【背景技術】
【0002】
カプセル化の分野では、コンポーネント、特にマイクロシステム型のものは、引き続く従来の組立作業に備えて保護されねばならない脆弱な機能要素を含む。これらのマイクロシステムは、通常、半導体材料のウェーハの上に一括して作製される。カプセル化の間に、単体のカバー(それ自体ウェーハに由来する)が同様にコンポーネントのそれぞれに追加されてもよいが、薄い皮膜堆積によって、すなわち、境界が画定されるべき空洞の内部形状の境界をカバーによって画定するために、コンポーネントの上に犠牲材料(該犠牲材料は最終的に除去される)を設けることによって、次第に一括して進めるように試みられてきている。このような一括製造は相対的に時間が掛かりかつ複雑であり、犠牲材料が堆積され、モデル化されねばならず、堆積されたカバー材料、すなわち、犠牲材料は、カバー中の穴を介して除去されねばならず、かつ最終的にカバーの穴は閉鎖されねばならない。しかも、得られたカバーは、曲げに際して十分な堅牢さがなく、コンポーネントがオーバーモールド成形されるプラスチック射出工程に耐えられない恐れがある。
【0003】
ウェーハ接合の利用によるカバーの一括移着について言えば、この技法はウェーハ接合機器を必要とし、それは超小型電子技術産業の標準的な技術的資源ではない。
【非特許文献1】V. N. Gurarieらの論文「Crack-arresting compression layers produced by ion implantation」、Nuclear Instruments And Methods In Physics Research、B242(2006年)、421〜423頁
【非特許文献2】LIGER Matthieuらの論文「Robust parylene-tosilicon mechanical anchoring」、the 16th IEEE International MEMS Conference (MEMS'03)、日本、京都市、2003年1月19〜23日、602〜605頁
【非特許文献3】Shoji TAKEUCHIらの文書「Parylene flexible neural probe with micro fluidic channel」、IEEE 2004、208〜211頁
【非特許文献4】Dan S. POPESCUらの論文「Buckled membranes for microstructures」、0-7803-1833-1/94 IEEE 1994、188〜192頁
【非特許文献5】Dan S. POPESCUらの「Silicon active microvalves using buckled membranes for actuation」、Transducers '95, the 8th International Conference on solid-state sensors and actuators, and Eurosensors IX、スウェーデン、ストックホルム市、1995年6月25〜29日、305〜308頁
【非特許文献6】Rakesh Kumarらの論文「New High Temperature Polymer Thin Coating for Power Electronics」、IEEE 2004、1247〜1249頁
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明の目的はまさに、上述の欠点を有することがない、基板上のコンポーネントを保護するためのカバーを作製する方法を提案することである。
【0005】
本発明の1つの目的は、簡素な保護カバーであり、このカバーによって境界が画定される空洞の内部容積を画定するために犠牲層の使用を回避する役割をする保護カバーを作製することである。
【0006】
本発明に係る方法の他の目的は、薄い皮膜カバーよりも堅牢なカバーを作製することである。
【0007】
本発明の他の目的は、圧力が制御可能な空洞の境界を画定する封止カバーを作製することである。
【課題を解決するための手段】
【0008】
この目的のために、本発明は、基板の表面上または中に収容されたコンポーネントを保護するためのカバーを作製する方法を提案するものであり、本方法は次の工程、すなわち、
コンポーネントが位置する中心領域から外れた、基板のカバーを固定するための少なくとも1つの領域を基板の上に画定する工程と、
単層または複数の積み重ねられたサブ層を有する、中心領域の上にかつそれを越えて延びる座屈層であって、中心領域では、固定領域内で与えられた、基板に対する接着力よりも低い接着力を有する座屈層を基板の上に形成する工程と、
座屈層が中心領域において空洞の境界を画定し、かつ固定領域において基板に固定されるように座屈層を座屈する工程と、を含み、
画定する工程は、形成する工程の前に、間に、または後に、しかし座屈する工程の前に実行可能であり、座屈する工程は、形成する工程の間にまたは後に実行可能である。
【0009】
座屈層は、化学蒸着、物理蒸着、電気分解、エピタクシー、熱酸化、真空堆積、皮膜積層、スピン堆積、溶射、成形、分子結合、共晶溶接、有機接合、陽極接合のような、薄い皮膜の堆積によって形成され得る。
【0010】
座屈層の形成は、座屈層を構築する工程を含み得る。
【0011】
座屈層または座屈層のサブ層は、ベンゾシクロブテンのような感光性樹脂、またはポリエチレンテレフタラート、パリレン、ポリジメチルシロキサンから選択された有機材料、チタン、炭素、アルミニウム、またはそれらの合金から選択された金属材料、シリコン、シリコンゲルマニウム、二酸化シリコン、窒化シリコン、炭化シリコン、ダイヤモンドカーボン、窒化チタンから選択された無機材料から作製され得る。
【0012】
座屈は、熱処理に引き続いて、座屈層または座屈層の少なくとも1つのサブ層を応力下に維持することによって実行され得る。
【0013】
応力は、座屈層または座屈サブ層の熱膨張係数よりも高い熱膨張係数を有する基板によって誘発され得る。
【0014】
別法としてまたは組合せで、応力は、座屈層の別のサブ層の熱膨張係数よりも高い熱膨張係数を有する、座屈層の少なくとも1つのサブ層によって誘発されてもよい。
【0015】
本方法は、固定領域において、少なくとも1つの圧縮要素を座屈層の周辺に形成する工程を含んでもよく、該圧縮要素は、座屈層または座屈層のサブ層の少なくとも1つの熱膨張係数よりも高い熱膨張係数を有し、かつ座屈層の剛性よりも高い剛性を有し、応力は圧縮要素によって誘発される。
【0016】
別法としてまたは組合せで、座屈は、中心領域において、任意に同時および/または後続の熱的活性化と結合された、座屈層の局所イオン注入によって得られてもよい。
【0017】
本方法は、座屈後に、座屈層の熱膨張係数よりも低い熱膨張係数を有する被膜を座屈層の周辺に堆積する工程を含んでもよく、この堆積工程の後に熱処理工程が続く。
【0018】
別法としてまたは組合せで、座屈は、座屈層の少なくとも1つのサブ層のエピタキシャル応力堆積によって得られてもよく、該工程は任意に熱処理と結合される。
【0019】
別法としてまたは組合せで、座屈は、座屈層の少なくとも1つのサブ層のプラズマ硬化によって得られてもよく、該工程は任意に熱処理と結合される。
【0020】
圧縮要素は、イオン注入、プラズマ硬化、エピタキシャル応力堆積に掛けられることが可能であり得る。
【0021】
固定領域は、座屈層の形成前に、基板の中にくり抜かれた、座屈層の1つまたは複数の固定点を作製することによって中心領域を越えて画定され得る。
【0022】
別法としてまたは組合せで、固定領域は、基板に対する座屈層の接着力を増大させるために、基板および/または座屈層の局部処理によって中心領域を越えて画定されてもよい。
【0023】
この処理は、表面の粗さを増大させるための、または表面を化学的に活性化させるための酸素プラズマ印加であり得る。
【0024】
別法としてまたは組合せで、固定領域は、基板に対する座屈層の接着力を増大させるのに適切な材料を、基板および/または座屈層の上に局部的に堆積することによって中心領域を越えて画定されてもよい。
【0025】
この材料は、接着剤、共晶溶接材、接合プライマである。
【0026】
別法としてまたは組合せで、固定領域は、基板に対する座屈層の接着力を低減するのに適切な材料を、基板および/または座屈層の上に局部的に堆積することによって中心領域を越えて画定されてもよい。
【0027】
この材料は、ポリテトラフルオロエチレン、シリコーン、パリレン、ポリジメチルシロキサン、感光性樹脂から選択された微接着性または非接着性の材料でよい。
【0028】
この材料は、蒸発されるのに、または熱劣化されるのに適切な材料でよく、座屈層は、材料の蒸発または劣化の後にサブ層の少なくとも1つがカバーされる第1の多孔性サブ層を有する。
【0029】
有利なことに、該材料は水溶性であるか、またはポリカーボネートを基にした感光性樹脂、例えば、プロメルース(Promerus)からのユニティ(Unity)2203である。
【0030】
廃棄材料の除去を可能にするために、蒸発または劣化の後に、加熱処理工程または制御された加圧工程を施すことが可能である。
【0031】
別法としてまたは組合せで、固定領域は、基板に対する座屈層の接着力を低減するのに適切な局部的な処理を基板および/または座屈層に行うことによって中心領域を越えて画定されてもよい。
【0032】
この処理は、表面の粗さを増大させるためのプラズマ処理であり得る。
【0033】
別法としてまたは組合せで、固定領域の画定は、たとえ該画定が不完全であっても、重ね合わされた基板および座屈層を横切る局部的なエネルギー入力によって中心領域を越えて行われ得る。
【0034】
本発明はまた、カプセル化されたコンポーネントに関し、このコンポーネントは、基板と、少なくとも1つの固定領域の水準で基板に接合された、このコンポーネントが中に位置する空洞の境界を画定するカバーとを備え、このカバーは座屈された座屈層である。
【0035】
座屈層は、単層であってもよいし、または複数の積み重ねられたサブ層を備えてもよい。
【0036】
座屈層は構築され得る。
【0037】
座屈層または座屈層のサブ層は、ベンゾシクロブテンのような感光性樹脂、またはポリエチレンテレフタラート、パリレン、ポリジメチルシロキサンから選択された有機材料、チタン、炭素、アルミニウム、またはそれらの合金から選択された金属材料、シリコン、シリコンゲルマニウム、二酸化シリコン、窒化シリコン、炭化シリコン、ダイヤモンドカーボン、窒化チタンから選択された無機材料から作製され得る。
【0038】
1つまたは複数のサブ層が、固定領域内で基板と接触していてもよい。
【0039】
サブ層であって、その片面の少なくとも一部が空洞の内部に露出されるサブ層は、空洞が真空に掛けられている場合には、ゲッターの役割を有し得る。
【0040】
サブ層の1つであって、その片面の少なくとも一部が空洞の内部に露出されるサブ層の1つは、多孔性であり得る。
【0041】
空洞の内部の側に位置するサブ層は、基板との機械的な分離を行う役割を有し得る。
【0042】
サブ層の1つは、カバーを機械的に強化する役割を有し得る。
【0043】
基板は、座屈層の熱膨張係数よりも、または座屈層のサブ層の少なくとも1つの熱膨張係数よりも高い熱膨張係数を有することが好ましい。
【0044】
別法として、座屈層のサブ層の1つは、座屈層の別のサブ層の熱膨張係数よりも高い熱膨張係数を有してもよい。
【0045】
少なくとも1つの圧縮要素が、座屈層の周辺の上に載り得る。
【0046】
基板は、座屈層の中にくり抜かれた1つまたは複数の固定点を備え得る。
【0047】
本発明は、添付の図面を参照して、情報のために提供された非限定的な例示的実施形態の説明を読むことによってより適切に理解されよう。
【発明を実施するための最良の形態】
【0048】
説明される様々な別法は、相互に排他的ではないものとして理解されねばならない。
【0049】
以下で説明される様々な図の同一の、同様の、または均等な部分は、図から図へ容易に移行するために同じ参照数字を有する。
【0050】
図中に示された様々な部分は、図の視認性を高めるために必ずしも均一の尺度で示されているわけではない。図を埋める同じような背景が、常に同じ材料を表すとは限らない。
【0051】
ここで、コンポーネント5が表面上にまたは中に収容される基板2の上の少なくとも1つのカバー1の例示的な実施形態を説明する。図1Aを参照する。コンポーネント5は、電子機械または光電子機械システム、例えば、無線周波MEMS、加速度計、バルク音響波フィルタ、加速度計もしくはジャイロスコープ型の慣性センサであり得る。それは、明らかに電子的、光学的、または光電子的なコンポーネントであり得る。コンポーネント5が位置する中心領域4から外して、少なくとも1つの固定領域3が基板2の上に画定される。図1Bを参照する。図1Dに示されているように、カバー1が封止される必要がない限り、中心領域4を包囲するパターンを形成する複数の結合されていない固定領域3が存在してもよい。このパターンは正方形であり、8つの固定領域3が存在する。反対の場合では、図1Eに示されているように、固定領域3が連続的であってもよく、それは輪状の形態にあって中心領域4を包囲する。所与の形状は限定されていない。
【0052】
基板2は、中心領域4の中にコンポーネント5を備える半導体材料(例えば、シリコン)の基板でよい。この構成では、基板2がそれ自体の内部に、特にエッチングによって作製されたコンポーネント5を含むので、この基板は処理される。座屈層6(図1B)が、中心領域4および固定領域3の表面上に形成される。座屈層6は座屈されるが、基板2の中心領域4の上方に適切な容積を有する空洞7の境界を画定するカバー1を得るために、この座屈層は、少なくとも一部が固定領域3内で基板に接合された状態に留まりながら凸状であること(図1C)に注意を払う。複数のコンポーネントが基板2上に存在する場合に、この方式は、図8Eに示されたように1つのコンポーネント当たり1つの座屈領域でも、または座屈層が図8Fに示されたような多層であるときに、基板2全体に単一の座屈層もしくは座屈層のサブ層の1つのみであっても同様である。
【0053】
座屈層6は、図1に示されたような単層であってもよいし、または複数のサブ層が示されている、下で説明する図2に示されたような多層でもよい。
【0054】
座屈層6またはそのサブ層は、例えば、シリコン、シリコンゲルマニウム、二酸化シリコン(多結晶、微晶質、または非晶質を問わず)、窒化シリコン、炭化シリコン、ダイヤモンドカーボン、窒化チタンのような無機材料、例えば、チタン、銅、アルミニウム、またはそれらの合金のような金属材料、例えば、ベンゾシクロブテンBCBのような感光性樹脂、またはポリエチレンテレフタレートPET、ポリパラキシリレンすなわちパリレン、ポリジメチルシロキサンPDMSのような有機物から作製可能である。
【0055】
座屈層6は、薄い皮膜堆積、皮膜積層、ゾルゲル型の有機堆積物のためのスピン堆積または溶射、成形、共晶溶接を含む、任意の知られた手段によって形成可能である。薄い皮膜堆積物は、低圧化学蒸着法(LPCVD)として知られる従来の減圧下のものか、またはプラズマ促進化学蒸着(PECVD)として知られるプラズマ補助によるものかを問わない化学蒸着法(CVD)、物理蒸着法(PVD)、電気分解法、エピタクシー法、熱酸化法、真空蒸着法によって作製可能である。接合に関しては、シリコン直接接合(SDB)、共晶溶接、有機接合、陽極接合のような分子結合に言及することができる。
【0056】
図1Bは、限定的な接着力を有する単一の座屈層6を示す。これは、中心領域4では、その接着力が固定領域3において保有されているものよりも低いことを意味する。中心領域4におけるその接着力は、座屈を妨げるには低すぎる。
【0057】
座屈の作製は、座屈層6におよび企図された用途に使用された材料の両方に関係する。目的は、座屈が完了するとコンポーネント5の周囲に空洞7を得ることである。したがって、座屈層6は、コンポーネント5の動作の妨害を避けるために、もはやこのコンポーネントと接触することはできない。コンポーネントが、可動式の能動部分を備えるマイクロシステム5であるとき、その動きの妨げにならないことが重要である。同様に、座屈層6がマイクロシステム5の能動部分の上にカスを残さないことが重要である。その座屈層によって形成されたカバー1が、コンポーネント5におよびその用途に適合された機械的強度を有することも重要である。さらには、空洞7の内部が真空にまたは制御された環境下に置かれることが所望されてもよく、したがってカバー1は気密封止されねばならない。
【0058】
ここで多層の座屈層6を論じる。図2Aから2Dでは、カバー1が、2つの座屈サブ層6.1、6.2の積重ねから作製され、これらのサブ層は共に、形成中および座屈後に基板2と接触している。
【0059】
最初に、第1の座屈サブ層6.1が中心領域4および固定領域3の上に堆積される(図2A)。この第1のサブ層6.1は、少なくとも1つのリソグラフィおよびエッチング工程に耐えるために、第1の限定的な接着力を有する。第1の座屈サブ層6.1の輪郭は、この第1のサブ層が中心領域4に重なるが、実際には固定領域3の上に侵入しないように、フォトリソグラフィおよびエッチングによって範囲が画定される(図2B)。エッチングは、当業者に知られた任意の手段によって実行可能であり、それは第1のサブ層6.1の性質による。
【0060】
次いで、第2のサブ層6.2が、第1のサブ層6.1の上に堆積され、それによって範囲が画定されるが、この第2のサブ層6.2は、第1のサブ層6.1の材料の接着力よりも高い接着力を有する材料から作製される(図2C)。第2のサブ層6.2は、基板2および固定領域3と接触し、かつ第1のサブ層6.1の周囲に延びる。
【0061】
次いで2層の座屈層6は、適切な容積を有する空洞7が得られるまで座屈させられる(図2D)。座屈後に、座屈層6はカバー1となる。
【0062】
座屈層6のサブ層の一方は、図2の第1のサブ層6.1のように、空洞7の内部に露出されたその片面を有し、ゲッターの役割を有することが可能である。チタン、ジルコニウム系の合金が使用可能である。このようなサブ層6.1は、空洞7の内部が真空下で動作しなければならないときに有利である。
【0063】
図3Aから図3Dは、2つのサブ層6.1、6.2を有する別法のカバーを示す。第1のサブ層6.1は、基板2の固定領域3および中心領域4の上に堆積される(図3A)。この第1のサブ層6.1は、固定領域3において基板2に対して適切な接着力を有する。第1のサブ層6.1の輪郭は、このサブ層が固定領域3の上に位置するように、かつこのサブ層が中心領域4の上に侵入しないように、フォトリソグラフィおよびエッチングによって範囲が画定される(図3B)。第2のサブ層6.2が、第1のサブ層6.1の上に堆積され、それによって範囲が画定される(図3C)。第2のサブ層6.2は、中心領域4において基板2と接触する。第2のサブ層6.2は、第1のサブ層6.1の材料の接着力よりも低い接着力を有する材料から作製される。2つのサブ層6.1、6.2の積重ねである座屈層6(図3D)は、適切な容積の空洞7が得られるまで座屈させられる。
【0064】
明白なことであるが、基板2と接触している単一のサブ層のみを有することが可能である。2つのサブ層6.1、6.2のみが設けられている図4A、図4Bを参照する。第1のサブ層6.1、第2のサブ層6.2は連続して堆積され、第1のサブ層6.1のみが、固定領域3および中心領域4の両方の水準で基板2と接触する(図4A)。2つのサブ層6.1、6.2の積重ねである座屈層6(図4B)は、次に、適切な容積の空洞7が得られるまで座屈させられる。
【0065】
第2のサブ層6.2が、第1のサブ層6.1の接着特性と同様の接着特性を有する必要はない。この構成の目的は、カバー1の曲げ強度を高めること、またはその気密封止が必要な場合に、それを最適化することであり得る。
【0066】
座屈層6または、座屈層6が複数のサブ層を有するとき、サブ層6.1、6.2の少なくとも一方は構築されることが可能である。構築するとは、マイクロシステムが装備された基板上に当該層を堆積する前または堆積した後に、座屈層またはそのサブ層の一方を全体構成することである。この全体構成は、一定の厚さおよび実質的に平行な面を有する最初のサブ層を、様々な厚さのおよび/または非平行の面を有するサブ層に変更することから成る。構築するという用語は、最初のサブ層に対する特定の作業を含意するものであり、ホストマイクロシステムを備える基板の空間的位置関係によって誘発された効果に関係するものではない。図2Aから図2Dでは、形成されるサブ層6.2が構築されてはいないことを指摘しておく。
【0067】
構築は、座屈工程の前にまたは後に実行可能である。構築は、座屈層6の主面の一方または他方から実行されてもよい。図5A、図5Bでは、座屈層6の最大厚さ領域60が、中心領域4内のコンポーネント5の上方に位置し、より薄い領域61が固定領域3に位置する。構築作業に起因する厚さの差は、例えば、ホットエンボス法によって、基板2と反対側の座屈層6の面から得られたものである。図5Bでは、構築されたカバー1が作製されている。
【0068】
図5C、図5Dでは、座屈層6のより薄い領域61が中心領域4内のコンポーネント5の上方に位置し、より厚い領域60が固定領域3に位置する。厚さの差は、基板2の面上に位置する座屈層6の面から得られたものである。図5Dでは、構築されたカバー1が作製されている。
【0069】
図2から図5に示された4つの構成に基づいて、図6Aから図6Fに示されているように、組合せが作成され得る。図6A、図6Bでは、座屈層6が2つのサブ層6.1、6.2を備え、そのサブ層の一方のサブ層6.2、すなわち、中心領域4で基板2から最も離れた方が、固定領域3で基板2と接触している。図6C、図6Dでは、3つのサブ層6.1、6.2、6.3が存在し、その2つが、基板2の面上で重ね合わされているのではなく隣接しており、一方(参照数字6.2)は固定領域3の水準にあり、他方(参照数字6.1)は中心領域4の水準にある。第3のサブ層6.3、すなわち、基板2から最も離れたものは、第1の2つのサブ層6.1、6.2の上に延びる。
【0070】
図6E、図6Fでは、3つのサブ層6.1、6.2、6.3が存在し、すべてが固定領域3において重ね合わされている。第1の2つのサブ層6.1、6.2は、固定領域3の水準にのみ延びる。第1のサブ層6.1は、第2のサブ層6.2よりも基板2に近接している。中心領域4には、第3のサブ層6.3のみが存在する。したがって第3のサブ層6.3は、固定領域3において第1のサブ層6.1および第2のサブ層6.3の上に重ね合わされる。座屈層6の厚さは、実質的に一定である。
【0071】
サブ層の1つの材料の接着力が、その他のサブ層の少なくとも一方の接着力に対して調節可能であるので、異なる材料の3層構成が有利である。明白なことであるが、表面処理は、1つのサブ層の全部または一部に重なる別のサブ層の接着力を変更するために、サブ層の1つまたはサブ層の1つの一部に施すことが可能である。
【0072】
例えば、図6Eおよび図6Fでは、中間サブ層6.2が第1のサブ層6.1との適切な接着力を有し、かつ第3のサブ層6.3も中間サブ層6.2に対して適切な接着力を有することが可能である。この中間層が存在しなければ、第1のサブ層6.1と第3のサブ層6.3との間の接着力は十分ではないであろう。
【0073】
図6C、図6Dで、第2のサブ層6.2は、カバーが第3のサブ層6.3のみから作製されていれば、第3のサブ層6.3が基板2に対して有することになる接着力を増強する役割を有し得る一方で、第1のサブ層6.1は、カバー1が有することになる強度にカバー1の機械的強度を増強する役目を有し得る。したがって、必ずしもすべてのサブ層がカバー1の機械的強度を増強する役割を有するわけではない。
【0074】
カバー1の機械的強度に対して機能する役割を有するサブ層は、無機または金属由来の材料では数ミクロンと数十ミクロンとの間の厚さを有する。これらのサブ層の厚さは、堆積およびエッチング速度によって調整される。図10Cに示されているように、コンポーネント5に関連する電気接点スタッド21に到達するために、一般にカバー1の中にエッチング工程が施される。
【0075】
カバー1の機械的区間に対する役割が決定的に重要である有機材料のサブ層は、数ミクロンと数百ミクロンとの間の厚さを有し得る。サブ層が、例えば、図6Eおよび図6Fの第2のサブ層6.2のように、座屈層の接着力に対して機能する役割を有し、機械的役割を有しない場合には、そのサブ層の厚さは、その種類に関わりなく、1ミクロン未満でよい。
【0076】
ここで、座屈層6を座屈させる仕方を示す。座屈が行われるためには、座屈層6が局部的な応力下に維持されねばならない。この応力は圧縮力でよい。座屈は、熱処理によって実現可能である。応力は、基板2自体によって誘発され得る。
【0077】
座屈層6が単層であれば、この座屈層は、それが基板2の熱膨張係数よりも低い熱膨張係数を有するように配置されるか、またはその座屈層が多層であれば、それが基板2の熱膨張係数よりも低い熱膨張係数を有する少なくとも1つのサブ層6.2を備えるように配置される。反対に、単一のサブ層が存在する場合には、そのサブ層は座屈層6の他の部分の厚さよりも大きな厚さを有することになる。これは、そのサブ層の厚さおよびそのヤング率が、座屈層6の他の部分の厚さおよびヤング率よりも大きくなることを意味する。低い熱膨張係数を有するサブ層が最初に堆積されることが好ましい。中心領域4内の接着力を低減する働きを有するサブ層を設けることが可能である。
【0078】
単層の座屈層では、その剛性が低くなればなるほど、それだけその強度が低くなる。
【0079】
座屈は、座屈層またはサブ層の堆積が適切な温度で実行される限り、その堆積中に行われてもよい。
【0080】
サブ層には3つの別法が利用可能である。座屈は、サブ層が中心領域4の接着力に関して十分に圧縮下にあれば、低い熱膨張係数を有するサブ層の堆積中に行われてもよい。座屈は、より高い熱膨張係数を有する別のサブ層の堆積中に行われてもよく、その場合に圧縮強度が、より低い熱膨張係数を有するサブ層の中で増大する。座屈は、例えば、約10分間約300℃で真空熱処理を実行することによって座屈層の堆積後に行われてもよい。これは、最初に堆積されたサブ層の劣化が部分的な場合である。該サブ層は、座屈層に接合された状態に留まる。そのサブ層は熱処理中に脱気される。圧力が生成され、この組立体が真空下に維持されるので、膨れが、中心領域4における座屈層と基板との間の境界面に形成され、それによって座屈層の分離には好都合となる。
【0081】
別法として、最初に堆積されたサブ層の劣化が、例えば、水、炭酸プロピレンの液体サブ層、またはユニティック(Unitic)の固体サブ層では、約100℃よりも低い温度における蒸発によって完了されることが可能である。
【0082】
応力水準は、次の公式、すなわち、σ=E.ΔT.Δαによって与えられるが、前式でσ=層またはサブ層中の応力、ΔT=層またはサブ層の堆積温度と周辺温度との間の温度差、およびΔα=基板の熱膨張係数と層またはサブ層の熱膨張係数との間の差である。低い熱膨張係数を有するサブ層の堆積温度は、必要な応力水準を獲得することによって、望ましい堆積品質を獲得するためばかりでなく座屈処理を開始するためにも最適化されねばならない。例えば、図5Dを参照すると、座屈層6は二酸化シリコンSiO2から作製可能であり、基板2はシリコンから作製可能である。二酸化シリコンの熱膨張係数は約0.5×10-6mm/Kであり、シリコンの熱膨張係数は約2.6×10-6mm/Kである。
【0083】
他の実施例における場合のように、図2Dを参照すると、座屈層6は、二酸化シリコンの第2のサブ層6.2が上に載っているパリレンの第1のサブ層6.1から作製されてもよく、他方で基板2はシリコンから作製される。第1のサブ層6.1は、特に中心領域4において望ましい接着力の差を保証するように設計され、第2のサブ層6.2は機械的な役割を有するが、基板2に接着するのはこの第2のサブ層であり、さらには、その第2のサブ層は、基板2の熱膨張係数よりも低い熱膨張係数のために座屈処理の開始に寄与する。
【0084】
別法として、圧縮強度が、基板2の中ではなく、座屈層6の中で誘発されることが可能である。この構成では、座屈層6は、多層であり、座屈層の別のサブ層の熱膨張係数よりも高い熱膨張係数を有する少なくとも1つのサブ層を備える。
【0085】
図7Aに示された実施例では、座屈層6が、基板2から順に、基板2と座屈層6との間を機械的に分離するように設計された有機材料の第1のサブ層6.1と、ある熱膨張係数を有する第2の中間サブ層6.2と、第2のサブ層6.2の熱膨張係数よりも高い熱膨張係数を有する第3のサブ層6.3とを有する3層構造である。第1のサブ層6.1のみが基板2と接触している。このサブ層はその接着特性のために選択される。固定領域3における接触面積が大きければ大きいほど、それだけ漏れのおそれが低下する。
【0086】
第1のサブ層6.1は、例えば、パリレン、ベンゾシクロブテン、ポリエチレンテレフタラートから作製されもよい。第2のサブ層6.2は二酸化シリコンから作製されもよく、第3のサブ層6.3は窒化チタンTiN、窒化シリコンSi3N4、銅Cuから作製されてもよい。該3つの金属または無機材料の熱膨張係数は、二酸化シリコンの熱膨張係数よりも高い。圧縮力は、第3のサブ層6.3によって本質的に与えられ、第1のサブ層6.1は基板2との機械的な分離を行う。
【0087】
別法として、圧縮強度は、基板2によって誘発された応力と、サブ層の1つによってその堆積後に誘発された応力との足し算によって与えられてもよい。図7Bを参照することができる。第1の座屈サブ層6.1は、有機材料から作製されて図2Dに示されているように構成されるが、特に中心領域4における接着力の望ましい差を保証する役割を有する。
【0088】
第2のサブ層6.2は、第1のサブ層6.1を越えて基板2と直接的に接触している。それは図7Aに示されたものと同じ種類である。図7Aに示されたものと同じ種類の第3のサブ層6.3は、第2のサブ層6.2の熱膨張係数よりも高い熱膨張係数を有する。
【0089】
別の実施形態によれば、座屈が、一方では、応力を印加するために少なくとも1つの追加的な圧縮要素8を使用することによって、他方では座屈を引き起こすために熱処理によって実現可能である。圧縮要素8は、固定領域3における座屈層6の周辺に位置する。圧縮要素8は、座屈層6の上に載り、任意には座屈層6の周囲の基板2上に侵入する。複数の圧縮要素8が存在する場合には、これらの要素が、座屈層6の縁部に沿って非連続的な輪を形成する。連続的な輪、したがって単一の圧縮要素8が存在する場合に、封止を行うのはこの圧縮要素8である。
【0090】
圧縮要素8の熱膨張係数は座屈層6の熱膨張係数に適合され、任意に、圧縮要素8が基板2の上に載る限り、基板2の熱膨張係数に適合される。圧縮要素8の種類は、該要素と座屈層6および/または基板2との間の機械的な分離を決定する。圧縮要素8は堆積によって得られ、その堆積温度は、それが座屈層6に対して誘発されるべき応力水準に直接的に関係する限り決定的に重要である。その温度が高ければ高いほど、それだけ応力が高くなるが、他のすべてのことは等しい状態に留まる。
【0091】
ここで図8Aから図8Cを参照する。図8Aでは、座屈層6のみが堆積される。それは単層であり、例えば、二酸化シリコンから作製されることが想定されている。基板2は、例えば、シリコンから作製される。座屈層6の堆積後に、該層は、その熱膨張係数が基板2の熱膨張係数よりも低いので、自然と圧縮下にある。
【0092】
圧縮力を増大させるために、圧縮要素8は座屈層6の周辺に堆積され、この実施例における圧縮要素は、座屈層6および基板2の両方の上に延びる(図8B)。圧縮要素8の材料は、座屈層6の剛性よりも高い剛性と、座屈層6または座屈層のサブ層の少なくとも1つ(座屈層が多層であれば)の熱膨張係数より高い熱膨張係数も有することになる。圧縮要素の材料は、座屈層のほとんどのサブ層の熱膨張係数よりも高い熱膨張係数を有することが有利である。実際には、すべてのサブ層が圧縮要素の熱膨張係数よりも低い熱膨張係数を有する多層の座屈層を作製することは困難である。圧縮要素の熱膨張係数は最も剛性のサブ層の熱膨張係数よりも高いことが有利である。
【0093】
圧縮要素8の幾何学的形状の最適化が実現可能であり、その幾何学的形状は、座屈層6の幾何学的形状、固定領域3の幾何学的形状、および所望の応力水準に応じる。
【0094】
引き続く熱処理によって、座屈層が座屈され(図8C)、座屈は、圧縮要素8および基板2によって圧縮下に維持される。この場合に、座屈は、座屈層の形成中に実現されるのではなく、圧縮要素8の堆積後、堆積中に実現され、該堆積は高温で行われる。
【0095】
圧縮要素8は、窒化シリコンSi3N4(ヤング率310ギガパスカルおよび熱膨張係数3.4×10-6mm/K)または、さらに適切には、窒化チタンTiN(ヤング率600ギガパスカルおよび熱膨張係数9.4×10-6mm/K)のような無機材料から作製される。さらにより高い熱膨張係数を有する銅Cu(ヤング率130ギガパスカルおよび熱膨張係数17×10-6mm/K)のような金属材料も使用可能である。銅の下表面は、圧縮要素8の厚さを増大させることによって段が作られてもよい。
【0096】
図8Dは、基板2の上に侵入しない圧縮要素8の実施例を示す。この要素は窒化チタンTiNから作製されることが想定されている。それは座屈層6の周辺に位置する。
【0097】
図8Eは、第1のサブ層6.1の上に第2の座屈サブ層6.2が載っている2層の座屈層6を示す。第1のサブ層6.1は、基板2と座屈層6の他の部分との間に必要とされる接着力の差を与える有機材料から作製される。この第1の座屈サブ層6.1は、基板2と座屈層6との間の機械的な分離を行う。この第1のサブ層は、第2の座屈サブ層6.2のヤング率に比べて低いヤング率と、数ミクロンの厚さとを有する。この第1のサブ層は、例えば、パリレン、ベンゾシクロブテン、ポリエチレンテレフタラートから作製されてもよい。座屈層6の機械的強度は、より剛性でかつ基板2の熱膨張係数に比べて熱膨張係数が低い第2の座屈サブ層6.2によって与えられる。
【0098】
圧縮要素8は、先の実施例において述べた要件、すなわち、その熱膨張係数が、少なくとも第2のサブ層6.2の熱膨張係数よりも高ければ、かつそのヤング率が第1および第2のサブ層6.1、6.2のヤング率よりも高ければ、それらと同じ要件を満たす。第1のサブ層6.1は第2のサブ層6.2を越えて延び、圧縮要素8は、第1および第2のサブ層6.1、6.2の両方の上で座屈層6の周辺に延びるが、基板2の上には延びない。
【0099】
図8Fは、座屈層6の少なくとも1つのサブ層6.1が幾つかのマイクロシステム5の上に延びる実施形態を示す。
【0100】
他の実施形態によれば、座屈が、座屈層6の中の局部的なイオン注入によって実現可能である。図9A、図9Bを参照することができる。イオン注入は、中心領域4で行われ、固定領域3は手つかずの状態に残される。座屈層6の中に注入されたイオンは、該座屈層6の中に内部圧縮応力を誘発する。この圧縮応力が座屈を引き起こす。V. N. Gurarieらの「Crack-arresting compression layers produced by ion implantation」と称する論文、Nuclear Instruments And Methods In Physics Research、B242(2006年)、421〜423頁を参照することができる。圧縮応力の値は、注入された分量および使用されたイオンの種類に応じる。図9Bは、座屈後の座屈層6を示す。任意な熱処理が、座屈のメカニズムを活性化するように約200℃の温度で座屈層6の座屈を促進するために実行可能である。
【0101】
座屈層6の熱膨張係数が基板2の熱膨張係数よりも高い場合を検討しよう。座屈層6の堆積後に、該層は自然に張力が掛かった状態にある。座屈を活性化するために、該圧縮層は圧縮下に置かれねばならない。活性化モードは必ずしも熱的であり得るわけではない。イオン注入法が利用される場合に、注入されるべき分量および元素は、臨界座屈応力を超えて座屈層を圧縮下に置くために、堆積後にその座屈層の中に存在する張力を打ち消すように選択される。有利なことに、注入されるべき化学種は、座屈の結晶格子中のその位置が最大の圧縮応力を誘発することになるように、その重量、その種類(アニオンまたはカチオン)に関して当業者が選択することになる。当業者は、連続的な試験によって臨界圧縮応力に到達するように働く分量を採用することになる。
【0102】
有利なことに、座屈層6は、窒化シリコンSi3N4またはアルミナAl2O3のようなセラミックから作製可能である。
【0103】
単一のイオン注入工程が座屈の獲得に役立つ。座屈がイオン注入によって実現され、かつ、例えば、カバーを塗布するためのプラスチック射出中に、追加的な熱処理が必要であるとき、座屈層は、座屈がイオン注入によって得られるのではない場合に比べて、機械的な強度が高められている。事実、引き続く温度上昇の間に、座屈層6は、基板2の熱膨張係数よりも高い熱膨張係数を有し、内部圧縮力が増大し、それによって曲げ強度が高まる。
【0104】
ここで、座屈層6の熱膨張係数が基板2の熱膨張係数よりも低い場合を検討してみよう。この座屈層は二酸化シリコンまたは多結晶シリコンから作製されてもよい。
【0105】
座屈層の堆積後に、該層は自然に圧縮下にあり、堆積温度が十分であれば、臨界座屈応力よりも高い内部応力を既に有している可能性が高い。しかし、堆積の効果が不十分であれば、座屈のさらなる活性化が、イオン注入またはプラズマ硬化によって行われ得る。
【0106】
さらには、得られたデバイスが、次に約100℃を超える温度を伴う方法を利用する組立工程に掛けられてもよい。カバーの機械的剛性を維持するために、カバー1の剛性を温存または増大するのに適切な層を最初に作製することが有利である。
【0107】
この目的のために、座屈後に、二酸化シリコンSiO2または多結晶シリコンのような低い熱膨張係数を有する材料の追加的な被膜25が、座屈層6の上に堆積される。その被膜は、座屈層6の周辺のみに(図9C)配置されて輪の形状をとってもよいし、または座屈層6全体にわたって延びてもよい。この追加的な被膜25の堆積は、実行された座屈に衝撃を与えてはならないが、その堆積は、約100℃を超える温度における引き続く熱処理の間に座屈層6の中の圧縮強度を増強または温存するように設計される。
【0108】
別法として、座屈が、エピタキシャル応力堆積による座屈層または座屈層の少なくとも1つのサブ層の堆積によって実行され得る。例えば、エピタクシーによって堆積された層またはサブ層はシリコンゲルマニウムから作製されてもよく、基板またはホストサブ層はシリコンから作製されてもよい。
【0109】
他の別法は、座屈層またはそのサブ層の1つをプラズマ硬化に掛けることから成る。これらの工程を特定的に示すことはできない。幾つかの図が座屈を表し、これらの図の中に座屈を得るためのこれらの手段が示されることが想定されている。
【0110】
今説明したばかりの座屈層の圧縮様式(イオン注入、プラズマ硬化、およびエピタキシャル応力堆積)はまた、圧縮を強化するために圧縮要素8に施されてもよい。さらには、熱処理が圧縮様式と結合され得る。圧縮要素8は、異なる膨張係数を有する材料の多層でよい。
【0111】
ここで固定領域3を検討する。固定領域3は座屈を封じ込める働きをする。その幾何学的形状は再現可能でなければならない。この固定領域は、基板2に対するカバー1の固定が低下しないように、その特性を経時的に温存しなければならない。この固定領域は、カバー1の緊密さを保証することにも寄与しなければならない。
【0112】
固定は、基板2と接触する座屈層6の材料に対する基板2の接着力によって画定され得る。図2の説明を参照することができる。しかし、座屈層6の形成前に固定領域3を画定することが可能である。この固定領域3では、中心領域4におけるよりも高い接着力が求められる。
【0113】
したがって、図10Aに示されているように、基板2に対する座屈層6の接着力を高めるために、処理または堆積3.1が固定領域3の上で実行可能である。この堆積は、座屈層のサブ層または座屈層を形成する皮膜6.1を積層する前の接着性堆積物でよい(図10B)。皮膜6.1はまた、接着剤によってまたは上部の1つのサブ皮膜もしくは複数の皮膜の堆積中に直接接着することによって(適切に堆積圧および温度を調節することによって材料がこれを許容すれば)、接合されたサブ皮膜の積重ねから形成されてもよい。
【0114】
別法として、接着剤の堆積後に、次に分かるように、別の基板が追加されてもよく、該基板は引き続いて薄化され得る。
【0115】
接着剤の堆積を利用する代わりに、座屈層または接合されるべき座屈層の第1のサブ層の上に適切な接着プライマを堆積することが可能であり、その場合に、該座屈層は有機性である。
【0116】
この方式は、図7Aで符号6.1が付けられたものと同じように、第1の機械的分離サブ層に適切である。完全に有機性の座屈層は、その機械的特性が乏しいことにより不適切である。
【0117】
別法として、座屈層6を基板2に接合する代わりに、共晶溶接によって、陽極接合によって、基板を溶接することが可能であり、図の数を不必要に増やすことを避けるように、図10Bもこの別法を表し得る。
【0118】
それによって、シリコンの2つの基板2、20が組立可能であり、その一方は座屈層を設け、他方が基板を設ける。共晶混合物3.1は、第1の基板2の固定領域3の上に、または第2の基板20の上に堆積される。共晶物は物質の混合物であり、その溶融点は、混合物を構成する物質の溶融点よりもかなり低いことを思い出してもよい。共晶溶接の実施例は、金シリコンAuSi混合物または金錫AuSn混合物である。
【0119】
座屈層の接着を高めるために固定領域3に施されるべき処理の1つの実施例は、例えば、有機性の座屈層または座屈サブ層を施す前に酸素プラズマを有機基板に印加するものである。これは、わずかな表面の粗さおよび表面の化学的な準備の両方を実現する。
【0120】
固定領域3では、基板2の中に中空の固定点3.2を設けることも可能である。一方では図10Cを参照し、他方ではLIGER Matthieuらの論文「Robust parylene-tosilicon mechanical anchoring」、the 16th IEEE International MEMS Conference(MEMS'03)、日本、京都市、2003年1月19〜23日、602〜605頁を参照することができる。この中空の固定点3.2は、ウェル、トレンチでよい。これらは、基板2をエッチングすることによって得られる。座屈層または座屈サブ層6.1の材料は、堆積され、ウェルまたはトレンチ3.2を充填し、それによって基板2に固定される。図10Cはまた、コンポーネント5に電力を供給するように設計され、基板2によって担持された電気接点スタッド21に到達するための開口部63が、座屈層6の中に作製されていることを示す。
【0121】
固定領域3における接着を高めることによって基板2と座屈層6との間の固定を促進する手段は説明済みである。
【0122】
別法としてまたは追加的に、中心領域4における座屈層6と基板2との間の接着力を低減させることが可能である。
【0123】
これは、座屈層6の堆積前に、図10Dに示されているように、基板2に対する座屈層6の接着力を低減させるために、中心領域4に対する処理または堆積によって実施可能である。座屈層6の堆積前に、基板2上の中心領域4に中間材料4.1を局部的に堆積することが可能である。別法として、基板2の組立後に中間堆積物が中心領域4に位置するように、該堆積物を受け入れできるのは座屈層6である。その場合に、座屈層6はコンポーネント5と直接接触していない。一旦、座屈層が堆積されるか、または一部が堆積されるかもしくは組み立てられると、中間材料4.1は、座屈層6を解放するために蒸発または劣化される。中間層4.1の材料は、水を基にした液体材料から、または、例えば、ユニティ(Unity)2203(プロメラス社(Promerus)から入手したポリカーボネートを基にした感光性樹脂)およびチオールのような重合体から選択されてもよい。それは熱的に除去が可能である。コンポーネント5の動作を妨害する元になりやすいカスをいずれも回避するように注意が払われる。
【0124】
この目的のために、熱劣化または蒸発によって生み出されたカスは、図10Eに示されているように、第1の多孔性の座屈サブ層6.1を使用して除去される。蒸発または劣化後に、座屈層6を完成させるために、図10Fに示されているように、少なくとも1つの他のサブ層6.2が堆積される。
【0125】
蒸発または劣化工程の後で、最大のカスの除去を可能にするために、熱処理または、約10パスカル(10-1ミリバール)、典型的には約0.01パスカル(10-4ミリバール)よりも低い、制御された加圧の新たな工程が行われてもよい。この熱処理工程は、約100℃超の、有利には約100℃と400℃との間の温度で実行されてもよい。
【0126】
ポリテトラフルオロエチレン、シリコーン、パリレン、ポリジメチルシロキサン、感光性樹脂のような、座屈層のサブ層を形成する非接着性または微接着性の材料を使用することも可能である。
【0127】
中心領域4の接着力を低減するための処理として、基板2のプラズマ処理によって中心領域4の粗さを増大させることが可能である。
【0128】
有機性基板では、酸素プラズマが、接着力を追加することで、有機接合のために表面を向上および準備することが可能である。この場合には、わずかな表面粗さが生成され、表面の化学的性質が調製される。
【0129】
分子結合に掛けられるように設計されたシリコン基板では、アルゴンまたはSF6類のより強力なプラズマが、中心領域4内で使用可能である。別法として、参照数字2が付けられた最初の基板と同様のシリコンの座屈層6(それが第2の基板20に由来する限り)をプラズマによって処理することが可能であり、次いで、この座屈層は、固定領域3で第1の基板2との分子結合によって組み立てられる。図11Aを参照することができる。第2の基板20は、第1の基板2の中心領域4に面する領域20.1においてのみこの基板を粗くするために、プラズマによって処理される。固定領域3に面する部分には処置は施されない。第2の基板20が、固定領域3において分子結合によって第1の基板2に組み立てられる場合に、組み立てられるべき表面は調製されねばならないが、過剰に粗くなると、接着が行われない恐れがあるので、過剰であってはならない。
【0130】
熱処理が、図11Bに示されているように、組立体を強化するために第2の基板20の接合および薄化工程によって行われてもよい。第2の基板20は、薄化後に座屈層6となり、次いでこの座屈層が座屈される(図11C)。2つの基板2、20の自然の粗さは、組立中の固定領域3における分子結合には好都合となる。反対に、プラズマによって得られた領域20.1における第2の基板20の(または第1の基板2の)より高い粗さは、分子結合には不適合である。
【0131】
座屈層6の調製後にまたは座屈層6の調製中に、しかしすべての場合において座屈前に、固定領域3を画定することが可能である。所望の効果に応じて、固定領域3または中心領域4にエネルギー入力22を供給することが可能である。このエネルギー入力22は、適正な波長の放射(図11D)または熱入力でよい。このエネルギー入力22は、座屈層6および/または基板2から行われ得る。それは、固定領域3において座屈層6の少なくとも1つのサブ層をレーザによって局部的に溶融すること、または赤外放射によって得られる溶融を伴ってもよい。別法として、固定領域3おいて紫外放射に曝すと、基板2に対する座屈層6の接着力を増大させる。
【0132】
紫外線放射に曝すと、接着剤の接着効果を化学的に不活性化し得る。例えば、シリコンウェーハの切除に使用された日東電工株式会社(Nitto Denko)製のUV接着皮膜は、紫外放射を受けるとき容易に分離される。
【0133】
明白なことであるが、このような局所化されたエネルギー入力22は、座屈層6と基板2との間の組立前に、または座屈層6を基板2の上に堆積する前に、基板2または座屈層6に施された処理または堆積と組み合わされてもよい。
【0134】
ここで、低費用のマイクロシステムをカプセル化するように設計された、大量生産されるべき有利な実施形態を検討する。これは、例えば、バルク音響波(BAW)フィルタまたは無線周波MEMSに関するものである。図12Aを参照することができる。マイクロシステム5を組み込むシリコン基板から始める。パリレンのサブ層6.1が、ガス噴霧によって基板1の上に堆積され、マイクロシステム5をカバーする。そのパターンは、エッチングが後に続くフォトリソグラフィ工程によって範囲が画定される(図12A)。そのパターンの範囲画定は中心領域4を画定する。固定領域3は、中心領域4を越えて位置する。二酸化シリコンの第2の座屈サブ層6.2が、基板2の第1の表面の上に堆積される。そのパターンは、エッチングが次に続くフォトリソグラフィ工程によって範囲が画定される(図12B)。第2のサブ層6.2は、第1のサブ層6.1を越えて延び、固定領域3で基板2と接触する。この第2のサブ層は、固定領域3で基板2に接着する。この第2のサブ層は、固定領域3の画定に寄与する。
【0135】
任意に、フォトリソグラフィおよびエッチングによるパターン範囲画定工程の後に、第2のサブ層6.2の縁部に1つまたは複数の圧縮要素8を設ける第3のサブ層(参照数字が付けられていない)が堆積され得る(図12C)。これらの圧縮要素は、専ら固定領域3に延びる。それらは窒化チタンTiNから調製されてもよい。
【0136】
次いで、座屈層6が座屈される(図12D)。
【0137】
パリレンの第1のサブ層6.1は、座屈層6の他の部分が中心領域4で基板2に接着するのを防止する働きを有する。第1の座屈サブ層6.1の厚さは、それが機械的な役割を有していない限り、数十ミクロンから数ミクロンでよい。パリレンは、Shoji TAKEUCHIらによる文書「Parylene flexible neural probe with micro fluidic channel」、IEEE 2004、208〜211頁で報告されたように、シリコンよりも二酸化シリコンに、より適切に接着する材料である。その結果、この第1のサブ層は、座屈中に第2の酸化物サブ層6.2に接合された状態に留まり、基板2には接着しない。
【0138】
第2のサブ層6.2は、座屈を設けるばかりでなく、一旦、座屈が得られるとカバー1の機械的強度を保証し、かつカバー1を基板2に固定する働きも有する。
【0139】
膜の座屈に関する研究は、文献、例えば、Dan S. POPESCUらの論文「Buckled membranes for microstructures」、0-7803-1833-1/94 IEEE 1994、188〜192頁およびDan S. POPESCUらの「Silicon active microvalves using buckled membranes for actuation」、Transducers '95, the 8th International Conference on solid-state sensors and actuators, and Eurosensors IX、スウェーデン、ストックホルム市、1995年6月25〜29日、305〜308頁に説明されている。これらの研究では、動作に際して、膜は、これらの膜に印加される圧力に従って移動式であるように設計され、幾つかの用途では、1つ状態から次の状態に経過することが企図される。これらの研究で調査された膜は、その周辺で支持体または枠組に固定され、その主面の両方が周辺空気と接触している。
【0140】
本発明では、座屈層の片面のみが周辺空気と接触しており、他面は、座屈前に基板と接触しているが、周辺空気とは接触していない。
【0141】
正方形の膜の座屈を開始するのに必要な最小圧縮応力である臨界座屈応力は、次式を満たす。
【0142】
【数1】

【0143】
上式で、σcrは、臨界座屈応力であり、
hは膜の厚さであり、
aは固定部間の膜の長さであり、
Eは膜のヤング率であり、
かつvはポアッソン比である。
【0144】
関連する撓みW0は、膜中の応力に依存し、かつ次式を満たす。
【0145】
【数2】

【0146】
カバー1を設ける座屈層6は、膜として処理可能である。図12の本実施例で、熱酸化、PECVD堆積等である、二酸化シリコンの第2のサブ層6.2に選択された形成方法によれば、座屈層中の内部応力は、多少高く、約50と300メガパスカルの間である。熱酸化物を得るのに必要とされる温度は、約1000℃の値を有する。一般に、形成中の温度が高ければ高いほど、それだけ酸化物の内部圧縮応力が高くなる。しかし、酸化物を得るための温度は、パリレンの第1のサブ層6.1の損傷を避けるために、そのサブ層の最大使用温度と適合しなければならない。パリレンに関する最近の進展は、Rakesh Kumarらの論文「New High Temperature Polymer Thin Coating for Power Electronics」、IEEE 2004、1247〜1249頁によって示されているように、数百度の堆積温度を示唆する傾向にある。したがって、第2の酸化物サブ層6.2は、100メガパスカルの内部応力を有するように選択可能である。この値は、温度制限のために最下限に位置する。
【0147】
この内部応力は、したがって、圧縮要素が存在しないという想定に基づいて、座屈層6の座屈を開始するのに十分でなければならない。次式が得られる。
【0148】
【数3】

【0149】
マイクロシステムは、辺の寸法が200ミクロンの正方形形状を有する。二酸化シリコンのヤング率は70ギガパスカルであり、そのポアッソン比vは約0.17であるものと想定されている。このような構成では、第2のサブ層6.2の厚さhが3.56ミクロン未満でなければならないことが推論され得る。この厚さの値域は、薄い皮膜堆積およびエッチング処理と適合性がある。図12E中のグラフを参照することによって観察可能であるように、第2のサブ層6.2の厚さhが小さければ小さいほど、それだけ撓みW0が大きくなる。
【0150】
反対に、第2のサブ層6.2の厚さhが小さければ小さいほど、それだけ座屈層6の機械的強度が低くなる。よって、引き続く組立作業のような外部的な機械的負荷に耐えるために、かつ座屈層6の座屈を許容するために、厚さの点で折り合いが必要である。この折り合いは、実験的かつ反復的に決定され得る。
【0151】
外部的な機械的負荷により適切に耐えるために、第2の酸化物サブ層6.2の厚さhを増大させ、かつ座屈層6の座屈を許容し、臨界応力を超過するために1つまたは複数の圧縮要素8を追加することが有利であり得る。これらの圧縮要素8は、例えば、10-6mm/Kよりも大きい高い膨張係数と、例えば、数十または数百ギガパスカルの高いヤング率を有するように選択される。圧縮要素8のヤング率、膨張係数、および厚さが大きければ大きいほど、それだけ圧縮要素は効果的である。
【0152】
幾つかのパラメータが先の計算では無視されていることを述べておくべきである。これらには、一方で、マイクロシステム5の周囲の環境圧と座屈層6の座屈後に出現する空洞7の内側の圧力との間の圧力差と、他方で、選択された構成によれば、基板2に対する座屈層6の接着力(ゼロではない)とが含まれる。現実の臨界座屈応力は、上述の理論的な臨界座屈応力よりも高いことが予期されるべきである。
【0153】
ここで、例えば、ジャイロスコープまたは加速度計のような慣性センサ型のマイクロシステム5を保護するための少なくとも1つのカバー1の別の実施形態を検討する。図13Aから図13Dを参照することができる。この型のマイクロシステムは、真空下で動作し、相対的にコスト高であり、少量で製造される。調製が、上で説明されたものとは異なりかつより複雑である。マイクロシステム5は、例えば、5mm×5mmの値を有する辺aを備える正方形であることが想定されている。マイクロシステム5は少なくとも1つの移動式高感度要素を有し、この要素は図13で視認可能な部分である。空洞7は真空下に留まらねばならないので、脱気の恐れの故に、座屈層を作製するために有機材料を使用することは望ましくない。
【0154】
マイクロシステム5を収容する基板2から始める。その基板はシリコンから作製されることが想定されている。中心領域4が、マイクロシステム5を含む表面において画定され、最終的にカバーを屈服させることになる座屈層が上に固定される少なくとも1つの固定領域3が画定される(図13A)。
【0155】
座屈層6は、図12Aでも示されたように、シリコンサブ層6.2と熱二酸化シリコンサブ層6.1との積重ねから形成された第2の基板20から作製される。第2の基板20は、中心領域4と固定領域3との間の結合部の幾何学的形状に適合された幾何学的形状を有する。該第2の基板20は、例えば、直接シリコン間溶接、共晶溶接、陽極接合によって第1の基板2に接合される。
【0156】
熱酸化物サブ層6.1は、第1の基板2の面上に位置する(図13B)。熱酸化物サブ層6.1は約1ミクロンの厚さと、約300メガパスカル(これは高い)の内部圧縮応力とを有することが想定されている。
【0157】
空洞にその容積を与えるように鉢形状に形作られる従来のカバーとは異なり、本発明では、第2の基板20が凹みを有する必要がない。空洞7にその容積を与えるのは座屈である。第2の基板は、図11に示されたように平坦でよい。しかし、図13の実施例では、わずかな凹み23が熱酸化物の中に設けられており、その凹みは、中心領域4の上方に、したがってマイクロシステム5の上方で2つの基板2、20を接合した後に配置される。その凹みは、ドライエッチングによって、例えば、CHF3O2を基にした反応性イオンエッチング(RIE)によって得られてもよい。わずかな凹み23を設けることは、組立中に第2の基板20が、中心領域4で第1の基板2に接着しないことを保証する働きをする。凹みが存在しない場合には、熱酸化物の粗さが、上で説明されたように、中心領域4の水準に位置する第2の基板20の一部が、約100nm rms(平均表面粗度)よりも高い水準にまで増大され得る。
【0158】
座屈層6を獲得し、かつ、座屈中に所望通りに撓むようにこの座屈層に適切な厚さを与えるために、第2の基板20の薄化が、組立工程後にシリコンの面に対して施される(図13B)。シリコンサブ層6.2は、それが完全に消失するまで薄化およびエッチングされてもよい。その場合に、座屈層6は単層となり、最大応力を有することになろう。
【0159】
図13Bに説明された実施例では、熱酸化物サブ層6.1は、残存シリコンサブ層6.2と同様に温存されてもよい。上で列挙された参照文献の「Buckled membranes for microstructures」と題する論文は、座屈に必要な酸化物サブ層6.1の最小厚さhSiO2に関する方程式を開示する。
【0160】
【数4】

【0161】
上式で、hは座屈層の合計厚さであり、aは固定部間の座屈層の幅である。
【0162】
この厚みの上方に、座屈後の撓みが次式によって定義される。
【0163】
【数5】

【0164】
本実施例では、a=5mmおよびhSiO2=1μmであるものと想定されている。厚さhの関数である撓みの変化が、図13D中のグラフに示されている。座屈層6に望ましい撓みW0を得るために、残存シリコンサブ層6.2の厚さは、こうして最適化され得る。50から100μmの撓みでは、残存シリコンサブ層6.2の厚さは約5から15μmである。この撓みは、座屈後の空洞7の容積に直接関連する。実際には、座屈層6の変形は下式によって与えられる。
【0165】
【数6】

【0166】
かくして、この変形を座屈層6の全表面にわたって積分することによって、空洞7の容積が求められる。
【0167】
本発明は、2つの従来のマイクロシステムのカプセル化技術、すなわち、薄い皮膜カプセル化と基板中にエッチングされたシリコンカバーの接合によるカプセル化とに対して、別法による解決策を提案する。本発明に基づけば、数多くの別法が、保護されるべきコンポーネントに対する本システムの適用に従って識別可能である。
【0168】
本発明の第1の利点は、特に、大量生産用に企図されたマイクロシステム(無線周波MEMS、バルク音響波フィルタ)に効果的な解決策を提案することである。今日、このような範疇のマイクロシステムに推奨される方法は、薄い皮膜カプセル化である。薄い皮膜カプセル化に関する、本発明に係る方法の利点は次の通りである。もはや犠牲層を使用する必要が少しもなく、得られたカバーを塞ぐ必要がない。この簡素化は、生産費用(生産がより高度であるので)およびサイクル時間の両方に関して有益である。本発明において得られたカバーは、曲げ強度に関してより堅牢である。実際には、座屈層が応力下にあるので、その曲げ強度が高められる。したがって、それによって画定されたカバーは、より適切に外部負荷に耐える。コンポーネントの幾何学形状および座屈層の設計に応じて、プラスチック射出に耐える構成を見いだすことが可能である。従来の薄い皮膜カバーはプラスチック射出に耐えるものではない。この見込みは、本カバーがマイクロシステムの処理を可能とし、よって他の任意のコンポーネントのようにカプセル化されるので大いに有望である。機械的強度のこの可能性をもってすれば、二酸化シリコンの熱膨張係数と同様の限定的な熱膨張係数を有しながら、堆積された厚さがより大きい限り、座屈層6にゾルゲルを使用することが有利であり得る。このゾルゲルは、その粘性、その多孔性、その熱膨張係数、そのヤング率、および座屈層の積重ねにおけるその位置に従って選択される。これは標準的な生成物ではない。
【0169】
別の潜在的な解決策は、例えば、図9に説明されたようなイオン注入によって、熱以外の座屈層の圧縮様式を使用することから成る。したがって、プラスチック射出に関連する温度上昇時に(典型的には180℃で)、座屈層中の圧縮応力は、追加的な被膜のお陰で、かつ、座屈層が基板の熱膨張係数よりも高い熱膨張係数を有するように基板が選択されていれば、その基板自体のお陰で一時的に増大する。座屈層の曲げ強度は、専ら温度上昇時に高められる。集積回路技術の利用、低い温度、およびカプセル化されたマイクロシステムの限定的な厚さのような、薄い皮膜カプセル化の利点が温存される。
【0170】
本発明は、基板中に得られた接合カバーによるカプセル化に勝る利点を有する。空洞の創出時に座屈層を座屈することによって生み出されたより大きな容積は、第一次近似として、圧力×容積の積が一定であるので、空洞中の圧力低減に寄与する。この見込みは、ゲッター効果に加えて、真空下で動作するマイクロシステムに有利である。座屈層のサブ層の1つが、上で論じられたように、このゲッター機能を有することが可能である。
【0171】
空洞の最終的な容積は、座屈層中の応力水準(堆積温度、圧縮要素の厚さ等)によって、または座屈層の機械的な強度(厚さ)によって調節可能である。したがって、本発明は、空洞中の真空水準を調節し、それによって、真空水準により引き起こされる分散を制限することによって、コンポーネントの動作を均一にする役割を果たす。この調節は、製造中ばかりでなく、製造後(電気試験後)にもまたは製品の耐用期間中であっても行うことが可能である。
【0172】
この後者の場合では、圧縮要素8に関して、印加(例えば、知られている圧電駆動)によって制御された駆動を行う必要があろう。このような圧電駆動が図12Dに模式的に示されることが想定されている。
【0173】
本発明の幾つかの実施形態を提示し、かつ詳細に説明してきたが、本発明の範囲内に留まりながらも様々な変更および改良が実施可能であることが理解されるべきである。
【図面の簡単な説明】
【0174】
【図1A】本発明の方法の第1の実施例に係るカバーを調製する工程を示す図である。
【図1B】本発明の方法の第1の実施例に係るカバーを調製する工程を示す図である。
【図1C】本発明の方法の第1の実施例に係るカバーを調製する工程を示す図である。
【図1D】基板上の固定領域を示す図である。
【図1E】基板上の固定領域を示す図である。
【図2A】本発明の方法の第2の実施例に係るカバーを調製する際の工程を示す図である。
【図2B】本発明の方法の第2の実施例に係るカバーを調製する際の工程を示す図である。
【図2C】本発明の方法の第2の実施例に係るカバーを調製する際の工程を示す図である。
【図2D】本発明の方法の第2の実施例に係るカバーを調製する際の工程を示す図である。
【図3A】本発明の方法の第3の実施例に係るカバーを調製する際の工程を示す図である。
【図3B】本発明の方法の第3の実施例に係るカバーを調製する際の工程を示す図である。
【図3C】本発明の方法の第3の実施例に係るカバーを調製する際の工程を示す図である。
【図3D】本発明の方法の第3の実施例に係るカバーを調製する際の工程を示す図である。
【図4A】本発明の方法の第4の実施例に係るカバーを調製する際の工程を示す図である。
【図4B】本発明の方法の第4の実施例に係るカバーを調製する際の工程を示す図である。
【図5A】本発明の方法の第5の実施例に係るカバーを調製する際の工程を示す図である。
【図5B】本発明の方法の第5の実施例に係るカバーを調製する際の工程を示す図である。
【図5C】本発明の方法の第6の実施例に係るカバーを調製する際の工程を示す図である。
【図5D】本発明の方法の第6の実施例に係るカバーを調製する際の工程を示す図である。
【図6A】本発明の方法の第7の実施例に係るカバーを調製する際の工程を示す図である。
【図6B】本発明の方法の第7の実施例に係るカバーを調製する際の工程を示す図である。
【図6C】本発明の方法の第8の実施例に係るカバーを調製する際の工程を示す図である。
【図6D】本発明の方法の第8の実施例に係るカバーを調製する際の工程を示す図である。
【図6E】本発明の方法の第9の実施例に係るカバーを調製する際の工程を示す図である。
【図6F】本発明の方法の第9の実施例に係るカバーを調製する際の工程を示す図である。
【図7A】本発明に係るカプセル化されたコンポーネントの1つの新規の実施例を示す図である。
【図7B】本発明に係るカプセル化されたコンポーネントの1つの新規の実施例を示す図である。
【図8A】本発明の方法の新規の実施例に係るカバーを調製する工程を示す図である。
【図8B】本発明の方法の新規の実施例に係るカバーを調製する工程を示す図である。
【図8C】本発明の方法の新規の実施例に係るカバーを調製する工程を示す図である。
【図8D】同様に本発明に係るカプセル化されたコンポーネントの1つの新規の実施例を示す図である。
【図8E】同様に本発明に係るカプセル化されたコンポーネントの1つの新規の実施例を示す図である。
【図8F】同様に本発明に係るカプセル化されたコンポーネントの1つの新規の実施例を示す図である。
【図9A】イオン注入による座屈層の実施例を示す図である。
【図9B】イオン注入による座屈層の実施例を示す図である。
【図9C】イオン注入による座屈層の実施例を示す図である。
【図10A】固定領域を画定するための堆積の実施例を示す図である。
【図10B】固定領域を画定するための堆積の実施例を示す図である。
【図10C】固定領域を画定するための堆積の実施例を示す図である。
【図10D】固定領域を画定するための堆積の実施例を示す図である。
【図10E】固定領域を画定するための堆積の実施例を示す図である。
【図10F】固定領域を画定するための堆積の実施例を示す図である。
【図11A】固定領域を画定するための処理の実施例を示す図である。
【図11B】固定領域を画定するための処理の実施例を示す図である。
【図11C】固定領域を画定するための処理の実施例を示す図である。
【図11D】固定領域を画定するための処理の実施例を示す図である。
【図12A】大量生産されたマイクロシステム用のカバーの実施例を調製する際の工程を示す図である。
【図12B】大量生産されたマイクロシステム用のカバーの実施例を調製する際の工程を示す図である。
【図12C】大量生産されたマイクロシステム用のカバーの実施例を調製する際の工程を示す図である。
【図12D】大量生産されたマイクロシステム用のカバーの実施例を調製する際の工程を示す図である。
【図12E】座屈層の酸化物皮膜の厚さの関数として、撓みにおける変化を示すグラフである。
【図13A】マイクロシステム用の封止カバーの実施例を調製する際の工程を示す図である。
【図13B】マイクロシステム用の封止カバーの実施例を調製する際の工程を示す図である。
【図13C】マイクロシステム用の封止カバーの実施例を調製する際の工程を示す図である。
【図13D】座屈層の厚さの関数として、撓みにおける変化を示すグラフである。
【符号の説明】
【0175】
1 カバー
2 基板
3 固定領域
3.2 中空の固定点
4 中心領域
4.1 中間材料
5 コンポーネント(マイクロシステム)
6 座屈層
6.1 第1の座屈サブ層
6.2 第2の座屈サブ層
6.3 第3の座屈サブ層
7 空洞
8 圧縮要素
20 第2の基板
20.1 第1の基板の中心領域に面する領域
21 電気接点スタッド
22 エネルギー入力
23 第2の基板中のわずかな凹み
25 追加的な被膜
60 座屈層の最大厚さ領域
61 座屈層のより薄い領域
63 電気接点スタッドに到達するための開口部

【特許請求の範囲】
【請求項1】
基板(2)の上または中に収容されたコンポーネント(5)を保護するカバー(1)の作製方法であって、
前記コンポーネント(5)が位置する中心領域(4)から外れた、前記基板(2)の前記カバー(1)を固定するための少なくとも1つの領域(3)を前記基板の上に画定する工程と、
単層または複数の積層サブ層(6.1、6.2、6.3)を有する、前記中心領域(4)の上にかつそれを越えて延びる座屈層(6)であって、前記中心領域(4)では、前記固定領域(3)内で与えられた、前記基板に対する接着力よりも低い接着力を有する前記座屈層(6)を前記基板(2)の上に形成する工程と、
前記座屈層(6)が前記中心領域(4)において空洞(7)の境界を画定し、かつ前記固定領域(3)において前記基板(2)に固定されるように前記座屈層(6)を座屈する工程と、を含み、
前記画定する工程は、前記形成する工程の前に、間に、または後であるが、前記座屈する工程の前に実行可能であり、前記座屈する工程は、前記形成する工程の間にまたは後に実行可能である、方法。
【請求項2】
前記座屈層(6)は、化学蒸着、物理蒸着、電気分解、エピタクシー、熱酸化、真空堆積、皮膜積層、スピン堆積、溶射、成形、分子結合、共晶溶接、陽極接合、有機接合のような、薄い皮膜の堆積によって形成される、請求項1に記載の方法。
【請求項3】
前記座屈層(6)の前記形成は、前記座屈層(6)を構築する工程を含む、請求項1又は2のいずれかに記載の方法。
【請求項4】
前記座屈層(6)または前記座屈層の前記サブ層(6.1、6.2)は、ベンゾシクロブテンのような感光性樹脂、またはポリエチレンテレフタラート、パリレン、ポリジメチルシロキサンから選択された有機材料と、チタン、炭素、アルミニウム、またはそれらの合金から選択された金属材料と、シリコン、シリコンゲルマニウム、二酸化シリコン、窒化シリコン、炭化シリコン、ダイヤモンドカーボン、窒化チタンから選択された無機材料とから作製される、請求項1から3のいずれか一項に記載の方法。
【請求項5】
前記座屈は、熱処理に引き続いて、前記座屈層(6)または前記座屈層(6)の少なくとも1つのサブ層(6.1、6.2)を応力下に維持することによって実行される、請求項1から4のいずれか一項に記載の方法。
【請求項6】
前記応力は、前記座屈層(6)または前記座屈サブ層(6.1、6.2)の熱膨張係数よりも高い熱膨張係数を有する前記基板(2)によって誘発される、請求項5に記載の方法。
【請求項7】
前記応力は、前記座屈層(6)の別のサブ層(6.3)の熱膨張係数よりも高い熱膨張係数を有する前記座屈層(6)の少なくとも1つのサブ層(6.2)によって誘発される、請求項5又は6のいずれかに記載の方法。
【請求項8】
前記固定領域(3)において、少なくとも1つの圧縮要素(8)を前記座屈層(6)の周辺に形成する工程を含み、前記圧縮要素(8)は、前記座屈層(6)または前記座屈層の前記サブ層の少なくとも1つ(6.1、6.2)の熱膨張係数よりも高い熱膨張係数を有し、かつ前記座屈層(6)の剛性よりも高い剛性を有し、前記応力は前記圧縮要素(8)によって誘発される、請求項5から7のいずれか一項に記載の方法。
【請求項9】
前記座屈は、前記中心領域(4)において、任意に同時および/または後続の熱的活性化と結合された、前記座屈層(6)の局所イオン注入によって得られる、請求項1から4のいずれか一項に記載の方法。
【請求項10】
前記座屈後に、前記座屈層(6)の熱膨張係数よりも低い熱膨張係数を有する被膜(23)を前記座屈層(6)の周辺に堆積する工程を含み、前記堆積工程の後に熱処理工程が続く、請求項9に記載の方法。
【請求項11】
前記座屈は、前記座屈層の少なくとも1つのサブ層のエピタキシャル応力堆積によって得られ、前記工程は任意に熱処理を伴って行われる、請求項1から4のいずれか一項に記載の方法。
【請求項12】
前記座屈は、前記座屈層の少なくとも1つのサブ層のプラズマ硬化によって得られ、前記工程は任意に熱処理と結合される、請求項1から4のいずれか一項に記載の方法。
【請求項13】
前記圧縮要素は、イオン注入、プラズマ硬化、エピタキシャル応力堆積に掛けられる、請求項8から12のいずれか一項に記載の方法。
【請求項14】
前記固定領域(3)は、前記座屈層の前記形成前に、前記基板(2)の中にくり抜かれた、前記座屈層の1つまたは複数の固定点を調製することによって前記中心領域(4)を越えて画定される、請求項1から13のいずれか一項に記載の方法。
【請求項15】
前記固定領域(3)は、前記基板(2)に対する前記座屈層(6)の前記接着力を増大させるために、前記基板(2)および/または前記座屈層(6)の局部処理によって前記中心領域(4)を越えて画定される、請求項1から14のいずれか一項に記載の方法。
【請求項16】
前記処理は、表面の粗さを増大させるための、または表面を化学的に活性化させるための酸素プラズマ印加である、請求項15に記載の方法。
【請求項17】
前記固定領域(3)は、前記基板(2)に対する前記座屈層(6)の前記接着力を増大させるのに適した材料を、前記基板(2)および/または前記座屈層(6)の上に局部的に堆積することによって前記中心領域(4)を越えて画定される、請求項1から16のいずれか一項に記載の方法。
【請求項18】
前記材料は、接着剤、共晶溶接材、接合プライマである、請求項17に記載の方法。
【請求項19】
前記固定領域(3)は、前記基板(2)に対する前記座屈層(6)の前記接着力を低減するのに適した材料を、前記基板(2)および/または前記座屈層(6)の上に局部的に堆積することによって前記中心領域(4)を越えて画定される、請求項1から18のいずれか一項に記載の方法。
【請求項20】
前記材料は、ポリテトラフルオロエチレン、シリコーン、パリレン、ポリジメチルシロキサン、感光性樹脂から選択された微接着性または非接着性の材料である、請求項19に記載の方法。
【請求項21】
前記材料は、蒸発されるのに、または熱劣化されるのに適切な材料であり、前記座屈層は、前記材料の前記蒸発または前記劣化の後に前記サブ層の少なくとも1つ(6.2)でカバーされる第1の多孔性サブ層(6.1)を有する、請求項19に記載の方法。
【請求項22】
前記材料は水溶性であるか、またはポリカーボネートを基にした感光性樹脂である、請求項21に記載の方法。
【請求項23】
廃棄材料の除去を可能にするために、前記蒸発または前記劣化の後に、加熱処理工程または制御された加圧工程が施される、請求項21又は22のいずれかに記載の方法。
【請求項24】
前記固定領域(3)は、前記基板(2)に対する前記座屈層(6)の前記接着力を低減するのに適した局部的な処理を前記基板(2)および/または前記座屈層(6)に行うことによって前記中心領域(4)を越えて画定される、請求項1から23のいずれか一項に記載の方法。
【請求項25】
前記処理は、表面の粗さを増大させるためのプラズマ処理である、請求項24に記載の方法。
【請求項26】
前記固定領域(3)の画定は、たとえ前記画定が不完全であっても、前記重ね合わされた基板(2)および座屈層(6)を横切る局部的なエネルギー入力(22)によって前記中心領域(4)を越えて画定される、請求項1から25のいずれか一項に記載の方法。
【請求項27】
カプセル化されたコンポーネント(5)であって、基板(2)と、少なくとも1つの固定領域(3)の水準で前記基板(2)に接合された、前記コンポーネント(5)が中に位置する空洞(7)の境界を画定するカバー(1)とを備え、前記カバー(1)は座屈された座屈層(6)であることを特徴とするコンポーネント(5)。
【請求項28】
前記座屈層(6)は、単層であるか、または複数の積み重ねられたサブ層(6.1、6.2)を備える、請求項27に記載のコンポーネント(5)。
【請求項29】
前記座屈層(6)は構築される、請求項27又は28のいずれかに記載のコンポーネント(5)。
【請求項30】
前記座屈層(6)または前記座屈層(6)の前記サブ層(6.1、6.2)は、ベンゾシクロブテンのような感光性樹脂、またはポリエチレンテレフタラート、パリレン、ポリジメチルシロキサンから選択された有機材料、チタン、炭素、アルミニウム、またはそれらの合金から選択された金属材料、シリコン、シリコンゲルマニウム、二酸化シリコン、窒化シリコン、炭化シリコン、ダイヤモンドカーボン、窒化チタンから選択された無機材料から作製される、請求項28又は29のいずれかに記載のコンポーネント(5)。
【請求項31】
1つまたは複数のサブ層(6.1、6.2)が、前記固定領域(3)内で前記基板(2)と接触している、請求項28から30のいずれか一項に記載のコンポーネント(5)。
【請求項32】
前記サブ層の1つ(6.1)であって、その片面の少なくとも一部が前記空洞(7)の内部に露出される前記サブ層の1つは、ゲッターの役割を有する、請求項28から31のいずれか一項に記載のコンポーネント(5)。
【請求項33】
前記サブ層の1つ(6.1)であって、その片面の少なくとも一部が前記空洞(7)の内部に露出される前記サブ層の1つは、多孔性である、請求項28から32のいずれか一項に記載のコンポーネント(5)。
【請求項34】
前記空洞(7)の内部の側に位置する前記サブ層の1つ(6.2)は、前記基板(2)との機械的な分離を行う役割を有する、請求項28から33のいずれか一項に記載のコンポーネント(5)。
【請求項35】
前記サブ層の1つ(6.2)は、前記カバー(1)を機械的に強化する役割を有する、請求項28から34のいずれか一項に記載のコンポーネント(5)。
【請求項36】
前記基板(2)は、前記座屈層(6)の熱膨張係数よりも、または前記座屈層の前記サブ層の少なくとも1つの(6.2)の熱膨張係数よりも高い熱膨張係数を有する、請求項28から35のいずれか一項に記載のコンポーネント(5)。
【請求項37】
前記座屈層(6)の前記サブ層の1つ(6.2)は、前記座屈層(6)の別のサブ層(6.3)の熱膨張係数よりも高い熱膨張係数を有する、請求項28から36のいずれか一項に記載のコンポーネント(5)。
【請求項38】
少なくとも1つの圧縮要素(8)が、前記座屈層(6)の周辺の上に載る、請求項27から37のいずれか一項に記載のコンポーネント(5)。
【請求項39】
前記基板(2)は、前記座屈層(6)の中にくり抜かれた1つまたは複数の固定点(3.2)を備える、請求項27から38のいずれか一項に記載のコンポーネント(5)。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図1D】
image rotate

【図1E】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図2D】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図3D】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図5D】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図6D】
image rotate

【図6E】
image rotate

【図6F】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate

【図8D】
image rotate

【図8E】
image rotate

【図8F】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図9C】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate

【図10D】
image rotate

【図10E】
image rotate

【図10F】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図11C】
image rotate

【図11D】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図12C】
image rotate

【図12D】
image rotate

【図12E】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図13C】
image rotate

【図13D】
image rotate


【公開番号】特開2008−194816(P2008−194816A)
【公開日】平成20年8月28日(2008.8.28)
【国際特許分類】
【外国語出願】
【出願番号】特願2008−15500(P2008−15500)
【出願日】平成20年1月25日(2008.1.25)
【出願人】(590000514)コミツサリア タ レネルジー アトミーク (429)
【Fターム(参考)】