説明

循環器機能測定装置、循環器機能の測定方法、プログラム

【課題】生体の鼓動以外の状態も考慮して脈波の測定を行う循環器機能測定装置を提供する。
【解決手段】体表面から体内に向けて光を照射しその反射波に基づいて容積脈波を検出する生体センサ部と、前記体内の血管に振動を与える波動を送信する送信部と、前記生体センサ部によって検出される容積脈波に基づいて、心臓の拍動とは異なる振動を与える制御信号を生成し、前記送信部に出力する振動発振部と、を有する。このように、心臓の拍動とは異なる振動が与えられた血管の挙動を把握することができるので、分析対象として用いることができる新たなデータを得ることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光電容積脈波の測定を行う循環器機能測定装置、循環器機能の測定方法、プログラム処理に関する。
【背景技術】
【0002】
生体の状態を把握するために、種々の医療機器がある。非侵襲的に生体の状態を把握するものの1つに、循環器機能を計測するものがある。例えば、生体の皮膚面から光を照射して、その反射光を受光し、血管を流れる血液の流量を検出する計測装置がある。このような計測装置においては、検出された血流量の値を微分し、循環動態の1つである加速度脈波を算出する。そして、得られた加速度脈波に基づいて、生体の状態を把握することができる。例えば、血管弾性特性を評価することで、生体の状態を把握することが行われている。
【0003】
上述の測定機器としては、例えば、超音波と光電容積脈波を用いた加速度脈波測定装置が考えられている(特許文献1参照)。この加速度脈波測定装置は、第1の循環センサ手段(超音波やレーザ)を用いて血流速を検出し、第2の循環センサ手段(レーザやLEDなどの光)で光電脈拍信号を検出し、血流速から循環情報を計測して、測定条件が同一になるよう補正を行う機能を有する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2003−275184号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、生体の鼓動は、精神状態や運動前後等の状況によって変動するため、脈波を測定する際、この鼓動の影響を受けた測定結果が得られることになる。そうすると、精神状態や運動前後等の状況によっては、その測定結果である脈波にばらつきが生じることになり、この脈波から得られる血管の弾性特性にも影響が生じる。また、生体が感じる暖かさや寒さによっても、血管の緊張・弛緩度合いが変動するため、測定結果に影響が生じることも考えられる。従って、このような心臓の心拍機能以外での血管の弾性特性を得られることが望ましい。
【0006】
本発明は、このような事情に鑑みてなされたもので、その目的は、生体の鼓動以外の状態も考慮して脈波の測定を行う循環器機能測定装置、循環器機能の測定方法、プログラムを提供することにある。
【課題を解決するための手段】
【0007】
上述した課題を解決するために、本発明は、体表面から体内に向けて光を照射しその反射波に基づいて容積脈波を検出する生体センサ部と、前記体内の血管に振動を与える波動を送信する送信部と、前記生体センサ部によって検出される容積脈波に基づいて、心臓の拍動とは異なる振動を与える制御信号を生成し、前記送信部に出力する振動発振部と、を有することを特徴とする。
【0008】
また、本発明は、上述の循環器機能測定装置に、外部に設けられる心電図モニタから出力される心電図データを受信する受信部を有し、前記振動発振部は、前記受信部が受信した心電図データに基づいて、R波から予め決められた時間を遅延させて前記送信部から波動を送信する制御信号を出力することを特徴とする。
【0009】
また、本発明は、体表面から体内に向けて光を照射しその反射波に基づいて容積脈波を検出し、前記検出される容積脈波に基づいて、心臓の拍動とは異なる振動を与える制御信号を生成して、前記体内の血管に振動を与える波動を送信し、前記波動が与えられた場合の容積脈波を検出することを特徴とする循環器機能の測定方法である。
【0010】
また、本発明は、コンピュータに、体表面から体内に向けて光を照射しその反射波に基づいて容積脈波を検出する生体センサ手段、前記体内の血管に振動を与える波動を送信する送信手段、前記生体センサ部によって検出される容積脈波に基づいて、心臓の拍動とは異なる振動を与える制御信号を生成し、前記送信部に出力する振動発振手段、として機能させるためのコンピュータプログラムである。
【0011】
以上説明したように、この発明によれば、体内の血管に振動を与える波動を送信し、この波動の影響を受けた血管の状態(容積脈波)を生体センサ部によって検出するようにしたので、心臓の拍動とは異なる振動が与えられた血管の挙動を把握することができ、分析対象として用いることができる新たなデータを得ることができる。
このように、エネルギー波を送信して血管の動態変化を光電容量脈波で検出することにより、生体の鼓動に依存しない測定を行うことができる。
また、エネルギー波の周波数や強度を変更することで血管の弾性特性を多角的に検出して解析することも可能である。
【図面の簡単な説明】
【0012】
【図1】この発明の一実施形態による循環器機能測定装置1の構成を示す概略ブロック図である。
【図2】指尖容積脈波と加速度脈波との関係を説明する図である。
【図3】指尖容積脈波と加速度脈波との関係を説明する図である。
【図4】循環器機能測定装置1の動作について説明するフローチャートである。
【図5】図4におけるステップS11の同期タイミングについて説明する図である。
【図6】波動部23によって波動を与えていない場合を与えた場合における容積脈波を表す波形である。
【図7】第2の実施形態における循環器機能測定装置の構成を表す図である。
【発明を実施するための形態】
【0013】
以下、本発明の一実施形態による循環器機能測定装置について図面を参照して説明する。
図1は、この発明の一実施形態による循環器機能測定装置1の構成を示す概略ブロック図である。
循環器機能測定装置1は、第1の生体センサ部10と、第2の生体センサ部20と、データ処理部30と、を有する。ここでは、更に、外部に心電図モニタ2が接続もできる。
第1の生体センサ部10は、発光部11と、駆動部12と、受光部13と、増幅部14とを有する。発光部11は、発光することにより、生体の体表面から体内に向けて光を照射する。駆動部12は、データ処理部30からの制御信号に基づいて、発光部11を発光させる。受光部13は、発光部11から照射され生体によって反射される光を検出する。増幅部14は、受光部13からの検出結果を増幅する。例えば、検出結果を表す電気信号を増幅し、脈波処理部31に出力する。
【0014】
第2の生体センサ部20は、振動発振部21と、波動送信部22と、波動部23とを有する。振動発振部21は、データ処理部30から指示に基づいて、振動発振させる信号を波動送信部22に出力する。振動発振部21は、脈波処理部31によって検出される容積脈波に基づいて、心臓の拍動とは異なる振動を与える制御信号を生成し、波動送信部22に出力する。また、この振動発振部21は、心電図モニタ2が外部に接続されていない場合には、容積脈波信号のピーク値(またはボトム値)を検出し、その値に対応する時刻から予め決められた時間を遅延させて波動を送信する制御信号を生成し、心電図モニタ2が外部に接続されている場合には、データ演算部32が受信した心電図データに基づいて、R波から予め決められた時間を遅延させて波動送信部22から波動を送信する制御信号を生成する。波動送信部22は、波動部23を駆動させて、体内の血管に振動を与える波動を送信する。この波動としては、例えば、音波である。波動部23は、波動を送信する。
【0015】
データ処理部30は、脈波処理部31と、データ演算部32とを有する。
脈波処理部31は、波動部23によって血管に振動が与えられた場合の容積脈波を受光部13によって検出する。
データ演算部32は、外部に設けられる心電図モニタ2から出力される心電図データを受信する受信部を備えている。また、データ演算部32は、脈波処理部31によって得られた容積脈波に基づいて、各種解析処理を行い、血管の状態診断を行う。ここでは、一例として、光電式指尖容積脈波による血管の状態診断を行う。
ここで、光電式指尖容積脈波においては、加速度脈波を用いる。加速度脈波とは光電式指尖容積脈波(photoplethysmogram;PTG)の二次微分波(second derivative ofphotoplethysmogram;SDPTG))である。元波形である指尖容積脈波の変曲点を、より明確にするために利用されており、現在では、加速度脈波として、独立した検査法として確立している。
この加速度脈波は、記録が簡単で時間もかからず、被験者に与える苦痛がないという利点がある。また、波形の解釈、意義といった点についても十分臨床応用できるようになってきている。ここでは、加速度脈波は、元波形である指尖容積脈波を2回微分(加速度)したものであり、血流の速度あるいは加速度とは直接関係ない。
【0016】
図2は、指尖容積脈波と加速度脈波との関係を説明する図である。図2(a)は、第1の生体センサ部20によって得られる指尖容積脈波の測定結果を表す波形の一例を表す図である。図2(b)は、指尖容積脈波を1回微分して得られる速度脈波の一例を表す図である。図2(c)は、指尖容積脈波を2回微分して得られる加速度脈波の一例を表す図である。データ演算部32は、微分回路を備えており、生体センサ部20によって得られる指尖容積脈波を2回微分を行い、加速度脈波を得る。
【0017】
図3は、指尖容積脈波と加速度脈波との関係を説明する図である。図3(a)は、指尖容積脈波の波形の一例であり、図3(b)は、加速度脈波の波形の一例である。図3(a)において、縦軸は、脈波の大きさを表す値、横軸は時間を表す。区間(A)は、収縮期前方成分を表す区間であり、心臓が収縮した時の血液の駆出によって生ずる駆動圧波を表している。区間(B)は、収縮期後方成分を表す区間であり、駆動圧が末梢に伝搬し、反射して戻ってきた再上昇圧波を表している。区間(A)の終わりの時間に対応する脈波の大きさを表す値をPT1、区間(B)の終わりの時間に対応する脈波の大きさを表す値をPT2、で表す。
【0018】
図3(b)において、縦軸は、脈波の大きさを表す値、横軸は時間を表す。加速度脈波には、波高a、b、c、d、eで表す5つの変曲点がある。加速度脈波の波高比(b/a、c/a、d/a、e/a)について、加速度脈波の波高成分には厳密な意味でのキャリブレーションはない。従って、波高の比較には、各波形成分を収縮初期陽性波である波高aの値で除したb/a、c/a、d/a、e/aといった波高比を用いる。この加速脈波の各波高比が加齢に伴って変化が見られる。この変化から血管の状態を診断することが可能である。例えば、加速脈波の各波高比と年齢との関係を表すデータを過去の事例等に基づいて生成してテーブル情報として記憶しておき、得られた波高比に対応する年齢を、このテーブル情報を参照することによって得る。また、加速脈波の各波高比と血管弾性特性との関係を表すデータを過去の事例等に基づいて生成してテーブル情報として記憶しておき、得られた波高比に対応する血管弾性特性を得る。このようにして、血管の状態診断を行う。
【0019】
次に、循環器機能測定装置1の動作について説明する。図4は、循環器機能測定装置1の動作について説明するフローチャートである。
まず、データ処理部30は、第1の生体センサ部20の駆動部12に、駆動指示を出力する。この駆動指示に従い、駆動部21は、発光部11を発光させ、生体に光を照射する。光が照射されると、受光部13は、この反射波を検出する。脈波処理部31は、受光部13によって検出されて増幅部14によって増幅された検出結果を入力し、容積脈波を検出し(ステップS10)、検出結果を振動発振部21に出力する。
一方、心電図モニタ2から心電図データが送信されると、データ演算部32は、この心電図データを受信し、振動発振部21に出力する。
【0020】
振動発振部21は、データ演算部32から出力される心電図データに基づいて、R波のタイミングを検出し、検出されたR波から、振動を与えるタイミングである同期タイミングを検出して(ステップS11)、R波から予め決められた時間を遅延させて波動を送信する制御信号を生成する。例えば、心電図データを解析し、R波が到来する時刻を検出し、R波が到来した時点からタイマーでカウントを開始し、カウント値に基づいて、所定の時間を経過したことを検出した場合に、同期タイミングであることを検出する。そして、この同期タイミングを検出した際に、制御信号を生成して、波動送信部22に出力する。
波動送信部22は、振動発振部21から制御信号が出力されると、この制御信号に基づいて、波動部23を駆動し、振動を出力する(ステップS13)。
【0021】
受光部13は、この振動が生体に与えられた場合の反射波を検出する(ステップS14)。脈波処理部31は、受光部13によって反射波が検出された検出結果を増幅部14を介して得る。データ演算部32は、脈波処理部31によって得られた、振動が与えられた場合の反射波を検出した検出結果に基づいて診断を行う(ステップS15)。
【0022】
図5は、図4におけるステップS11の同期タイミングについて説明する図である。図5(a)は、心電図データとして得られる心電図波形を表す。縦軸が心電図データの値を表し、横軸は時間を表す。振動発振部21は、この心電図波形に含まれるR波のピーク値を検出し、このピーク値の時刻を検出する。そして、この時刻から予め決められた時間だけ遅延させたタイミング(時刻)を検出する。図5(b)は、容積脈波の波形を表す図であり、縦軸が容積脈波を表す値、横軸が時間である。この図において、時間t1は、R波が発生した時刻T0から、容積脈波のピーク値mが発生した時刻T1までの時間である。この時間t1の値は、心臓から循環器機能測定装置1の測定部位までの距離に応じて異なる。振動発振部21は、時刻T0を起点とし、時刻T0から時刻T1までの間の何れかの時刻までの時間または、時刻T1が到来した後に所定の時間が経過した時間をメモリ内に記憶しており、R波が検出された時刻R0からこの時間を経過したときに、振動を発生させる。
【0023】
図5(c)は、図5(b)に示す容積脈波を2回微分した場合の値を表す図である。縦軸が2回微分された後の値を表し、横軸が時間を表す。データ演算部32は、脈波処理部31から得られる検出結果の値を2回微分し、波高a、b、c、d、eの値を検出する。
【0024】
図6は、波動部23によって波動を与えていない場合を与えた場合における容積脈波を表す波形である。縦軸は、容積脈波の値を表し、横軸は時間である。区間Taの容積脈波の波形が、波動部23から振動が与えられていない場合の波形であり、区間Tbの容積脈波の波形が、波動部23から振動が与えられている場合の波形である。ここでは、時刻T10において、波動部23から振動を与えた場合、符号kで表すように、容積脈波が変化した。この変化が生じた容積脈波を検出し、データ演算部32が2回微分を行うことにより、診断を行う。
【0025】
振動を与えた場合における容積脈波を2回微分した値は、振動を与えていない場合における容積脈波を2回微分した値とは異なる。このような、振動を与えた場合と与えていない場合における2回微分した値の関係と、血管弾性特性とのデータを収集して相関関係を分析し、その分析結果を求めて診断用データとして予め記憶装置に記憶しておく。そして、循環器機能測定装置1によって、振動を与えていない場合における容積脈波と振動を与えた場合における容積脈波との2回微分した場合の値を得て、この診断用データを参照し、診断を行うことができる。
【0026】
なお、図6に示すように、振動を与えていない場合の容積脈波を測定した場合の次の鼓動に対応する心臓の拍動に対して振動を与え、これら2つの測定結果から、診断を行うようにしてもよい。このように、連続する心臓の拍動を利用して診断することにより、生体が受ける精神的な変動や温度の相違等による拍動の変動を低減させて測定をすることができる。
【0027】
図7は、第2の実施形態における循環器機能測定装置の構成を表す図である。図1に対応する部分に同一の符号を付し、その説明を省略する。
第2の生体センサ部20において、受信部24は、血管中を流れる血液に反射した波動を受信する。この波動としては、例えば、光または振動である。波動増幅部25は、受信部24が受信した結果を表す電気信号を増幅する。波動送信部22aは、第1の実施形態において説明をした振動の他に、予め決められた周波数の超音波を波動部23によって生体に送信する。
データ処理部30において、血流計測部33は、波動増幅部25を介して得られる受信部24の受信結果に基づいて、血流速度を計測する。例えば、波動送信部22aによって送信された超音波の周波数と、受信部24で受信した測定結果から得られる周波数とを比較することにより、血流のドップラー効果を算出する。そして、その周波数の変化により生体の血管に流れる血流速度を算出し、その速度の時間変化を求める。
データ演算部32aは、脈波処理部31によって得られる容積脈波を、血液計測部33によって得られる血液速度に基づいて、補正を行う。例えば、受光部13によって受光した拍動成分の波形を積分した値(平均値)を算出することによって得られる値を、血液レオロジー補正用係数Kとする。そして、血液レオロジーの特徴成分の1つである最大血流速度Vmaxが、血液レオロジーと相関関係にあることから、血液レオロジーを表す指標をTとすると、Tは、最大血流速度Vmaxと血液レオロジー補正用係数Kとの積(Vmax×K)で表される。この式に基づいて、血管の緊張にとる影響を補正する。そして、この補正を行うことにより、血管緊張の影響を低減させることができ、測定精度を向上させることができる。
また、血流速度を検出してエネルギー波の状態を決定することも可能である。
【0028】
なお、上述した実施形態において、波動部25から与える振動の強さや、その振動パターンを変えて、それぞれの場合における容積脈波を測定して2回微分した値を求め、この求められた複数の結果の組み合わせから、診断を行うようにしてもよい。例えば、強さをA10、A11の2種類であって、振動パターンをB10、B11の2種類とし、これの組み合わせである4パターンによってそれぞれ容積脈波の測定を行って2回微分した値をそれぞれ求め、4パターンの各結果の相関関係から診断を行うようにしてもよい。
例えば、第1パターンと第2パターンが基準値以内の範囲に収まる場合には、血管の老化度合いが最も若いことを表していると診断結果を出力したり、血管弾性特性が、もっとも弾性特性が高いことを表す診断結果を出力したりしてもよい。なお、この相関関係は、多数の測定を行うことによって、予め分析して記憶装置内に記憶しておく。
【0029】
なお、このようにして得られた診断結果から、循環器系の診断や血管の老化度合い及び動脈硬化度合いの評価を行うことが可能になる。
【0030】
なお、上述した実施形態において、第1の生体センサ部10が、受光部13によって受光した結果に基づいて容積脈波を検出し、検出結果した容積脈波を脈波処理部31に出力するようにしてもよい。
【0031】
なお、上述した実施形態においては、心電図モニタ2が外部に接続される場合について説明したが、接続しない場合であってもよい。なお、心電図モニタ2を接続した場合には、波動を送信するタイミングをより正確に決定することができる。
【0032】
また、図1における循環器機能測定装置1の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより容積脈波の検出を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
【0033】
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
【0034】
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
【符号の説明】
【0035】
1 循環器機能測定装置
2 心電図モニタ
10 第1の生体センサ部
11 発光部
12 駆動部
13 受光部
14 増幅部
20 第2の生体センサ部
21 振動発振部
22 波動送信部
23 波動部
24 受信部
25 波動増幅部
30 データ処理部
31 脈波処理部
32、32a データ演算部
33 血流計測部

【特許請求の範囲】
【請求項1】
体表面から体内に向けて光を照射しその反射波に基づいて容積脈波を検出する生体センサ部と、
前記体内の血管に振動を与える波動を送信する送信部と、
前記生体センサ部によって検出される容積脈波に基づいて、心臓の拍動とは異なる振動を与える制御信号を生成し、前記送信部に出力する振動発振部と、
を有することを特徴とする循環器機能測定装置。
【請求項2】
外部に設けられる心電図モニタから出力される心電図データを受信する受信部を有し、
前記振動発振部は、前記受信部が受信した心電図データに基づいて、R波から予め決められた時間を遅延させて前記送信部から波動を送信する制御信号を出力する
ことを特徴とする請求項1記載の循環器機能測定装置。
【請求項3】
体表面から体内に向けて光を照射しその反射波に基づいて容積脈波を検出し、
前記検出される容積脈波に基づいて、心臓の拍動とは異なる振動を与える制御信号を生成して、前記体内の血管に振動を与える波動を送信し、
前記波動が与えられた場合の容積脈波を検出する
ことを特徴とする循環器機能の測定方法。
【請求項4】
コンピュータに、
体表面から体内に向けて光を照射しその反射波に基づいて容積脈波を検出する生体センサ手段、
前記体内の血管に振動を与える波動を送信する送信手段、
前記生体センサ部によって検出される容積脈波に基づいて、心臓の拍動とは異なる振動を与える制御信号を生成し、前記送信部に出力する振動発振手段、
として機能させるためのコンピュータプログラム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2011−167347(P2011−167347A)
【公開日】平成23年9月1日(2011.9.1)
【国際特許分類】
【出願番号】特願2010−33832(P2010−33832)
【出願日】平成22年2月18日(2010.2.18)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】