説明

感光性ペースト、絶縁性パターンの形成方法および平面ディスプレイ用パネルの製造方法

【課題】 良好な隔壁パターンの形成が可能であるとともに、焼成後に得られる隔壁の反射率が高く、かつ、その面内均一性が高い隔壁を形成できる感光性ペーストを提供する。また、反射率の高い隔壁を形成し、輝度や色純度等の表示特性に優れた平面ディスプレイを提供する。
【解決手段】少なくとも無機成分ならびに感光性有機成分を含有する感光性ペーストであって、無機成分として屈折率が1.40〜1.80の範囲内である酸化物粒子により構成される平均2次粒子径が0.1〜5μmの範囲内である凝集粒子および低軟化点ガラス粉末を含有することを特徴とする感光性ペーストとする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラズマディスプレイパネル、フィールドエミッションディスプレイ、および蛍光表示管等の平面ディスプレイ等に用いる絶縁性パターンの形成に好適な感光性ペースト、それを用いた絶縁性パターンの形成方法、および平面ディスプレイ用パネルの製造方法に関するものである。
【背景技術】
【0002】
近年、プラズマディスプレイパネル、フィールドエミッションディスプレイ、蛍光表示管、液晶表示装置、エレクトロルミネッセンスディスプレイ、発光ダイオードなどの平面ディスプレイの開発が急速に進められている。これらのうち、プラズマディスプレイは、前面ガラス基板と背面ガラス基板との間に設けられた放電空間内で対向するアノード電極とカソード電極間にプラズマ放電を生じさせ、上記放電空間内に封入されているガスから発生した紫外線を、放電空間内に設けた蛍光体に照射することにより表示を行うものである。プラズマディスプレイや蛍光表示管などのガス放電タイプのディスプレイは、放電空間を仕切るための絶縁性の隔壁を必要とする。また、フィールドエミッションディスプレイなどの電界放射型ディスプレイは、ゲート電極とカソードを隔絶するための絶縁性の隔壁を必要とする。
【0003】
これらの隔壁を形成する方法として、隔壁ペーストをスクリーン印刷版によりパターン状に繰り返し塗布した後、焼成を行うスクリーン印刷法、乾燥させた隔壁材料の層上にレジストでマスキングし、サンドブラスト処理により削った後、焼成を行うサンドブラスト法、乾燥させた隔壁材料を焼成した後、その層上にレジストでマスキングを行い、エッチングするエッチング法、隔壁ペーストの塗布膜にパターンを有する金型を押し当ててパターンを形成した後、焼成を行う型転写法(インプリント法)、感光性ペースト材料からなる隔壁材料を塗布、乾燥し、露光、現像処理を行った後、焼成を行う感光性ペースト法(フォトリソグラフィー法)などが知られている。これらのパターン形成法の中でも感光性ペースト法は、高精細で大面積化に対応できる方法であり、また、コストメリットの高い手法である。
【0004】
一方、隔壁は単に発光区域を区分するのみでなく、発光輝度、色純度などのディスプレイの表示特性に影響を与えるものである。特にプラズマディスプレイパネルにおいて、蛍光体層からの発光効率を向上させるため、隔壁の反射率を高くしたいという要求がある。つまり、隔壁の光透過率が高く反射率が低いと、隔壁側面や隔壁間の底面に塗布されている蛍光体層から発光される表示光の反射が不足し、さらに、隣の隔壁間の蛍光体層の表示光の洩れ込みが起こり、輝度が高く色純度の良好なディスプレイを得ることができない。
【0005】
そこで、蛍光体層からの発光効率を向上し色純度を高めるため、感光性ペースト法により反射率の高い隔壁を形成する手法が提案されている(特許文献1、2参照)。特許文献1、2では、高屈折率の無機微粒子(ナノ粒子)を均一に分散させた感光性ペーストによりパターン形成した後、焼成時にナノ粒子を凝集させることで反射率の高い隔壁を形成している。しかし、本手法では、ペースト中に分散させたナノ粒子を焼成工程で再び凝集させるため、凝集粒子の粒子径を制御することが困難であり、反射率がパネル面内でばらついてしまうことが課題であった。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2001−229838
【特許文献2】特開2001−27802
【発明の概要】
【発明が解決しようとする課題】
【0007】
そこで本発明は、上記従来技術の問題点に着目し、反射率が高く、かつ、そのパネル面内均一性が高い隔壁を形成できる感光性ペーストを提供することを目的とする。また、反射率の高い隔壁を形成し、輝度や色純度等の表示特性に優れた平面ディスプレイを提供することにある。
【課題を解決するための手段】
【0008】
上記課題を解決するために本発明は以下の構成を有する。
(1)少なくとも無機成分ならびに感光性有機成分を含有する感光性ペーストであって、無機成分として屈折率が1.40〜1.80の範囲内である酸化物粒子により構成される平均2次粒子径が0.1〜5μmの範囲内である凝集粒子および低軟化点ガラス粉末を含有することを特徴とする感光性ペースト。
(2)酸化物が遷移アルミナであることを特徴とする(1)に記載の感光性ペースト。
(3)無機成分に占める酸化物粒子の割合が2〜8体積%であることを特徴とする(1)または(2)に記載の感光性ペースト。
(4)(1)〜(3)のいずれかに記載の感光性ペーストを乾燥後の膜厚みが100μm以上となるよう塗布した後、少なくとも乾燥、露光、現像、焼成することを特徴とする絶縁性パターンの形成方法。
(5)基板上に(1)〜(3)のいずれかに記載の感光性ペーストを乾燥後の膜厚みが100μm以上となるよう塗布した後、少なくとも乾燥、露光、現像、焼成して絶縁性パターンを形成することを特徴とする平面ディスプレイ用パネルの製造方法。
【発明の効果】
【0009】
本発明によれば、反射率が高く、かつ、そのパネル面内均一性が高い隔壁を形成できる感光性ペーストを提供できる。また、反射率の高い隔壁を形成し、輝度や色純度等の表示特性に優れたプラズマディスプレイを安定に提供できる。
【発明を実施するための形態】
【0010】
本発明でいう感光性ペーストとは、塗布、乾燥を行った後の塗膜に対し活性光線を照射することによって、照射部分が光架橋、光重合、光解重合、光変性などの反応を通し化学構造が変化して現像液による現像が可能になるようなペーストをいう。本発明は特に、活性光線の照射により照射部分が現像液に不溶となり、しかる後現像液によって非照射部分のみを除去することによってパターン形成を行うことが可能なネガ型感光性ペーストとすることにより良好な特性を得ることができる。ここでいう活性光線とはこのような化学反応を起こさせる250〜1100nmの波長領域の光線を指し、具体的には超高圧水銀灯、メタルハライドランプなどの紫外光線、ハロゲンランプなどの可視光線、ヘリウム−カドミウムレーザー、ヘリウム−ネオンレーザー、アルゴンイオンレーザー、半導体レーザー、YAGレーザー、炭酸ガスレーザーなどの特定波長のレーザー光線等を挙げることができる。
【0011】
発明者らは、反射率が高く、かつ、そのパネル面内均一性が高い隔壁の形成方法について鋭意検討を行った結果、少なくとも無機成分ならびに感光性有機成分を含有する感光性ペーストにおいて、無機成分として屈折率が1.40〜1.80の範囲内である酸化物粒子により構成される平均2次粒子径0.1〜5μmの凝集粒子および低軟化点ガラス粉末を含有することが必要であることを明らかにした。
【0012】
本発明の感光性ペーストは後述の低軟化点ガラス粉末を必須成分とする。低軟化点ガラス粉末を含有することにより、低軟化点ガラス粉末の軟化温度以上の温度で焼成し、後述の感光性有機成分等の有機成分を除去し、無機成分からなるパターンを得ることができる。
【0013】
本発明の感光性ペーストはフィラー成分として、少なくとも酸化物粒子を含有することを特徴とする。本発明におけるフィラー成分とは、パターンの強度や、焼成収縮率を改善したり、反射率を上げるために添加されるものであり、焼成温度でも溶融流動しにくい無機粒子を指す。具体的には、600℃以下で軟化温度や融点、分解温度を有さず、600℃において固体として存在するような無機粒子をいう。フィラー成分を添加することで、パターンの焼成による収縮を抑制したり、パターンの強度を向上させたり、反射率を上げたりすることができる。
【0014】
本発明のペーストで用いる酸化物粒子の屈折率は1.40〜1.80であることが必要である。無機成分と有機成分の屈折率を整合させ、光散乱を抑制することによりパターン加工が容易になる。屈折率がこの範囲にある酸化物としては、シリカ、アルミナ、マグネシアやシリカ系複合酸化物、アルミナ系複合酸化物などが挙げられる。シリカ系複合酸化物およびアルミナ系複合酸化物を構成する金属酸化物成分としては、シリカ、アルミナ以外にリチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタニウム、ジルコニウム、ゲルマニウム、ハフニウム、錫または鉛などの金属の酸化物が挙げられる。これらの酸化物粒子は低コストであり、安定して使用できる。酸化物粒子の持つ機能や、用いる有機成分との反応性などから最適な酸化物粒子を選択することができる。上記の酸化物以外では、高コストであり、安定して使用することが困難なので好ましくない。屈折率が1.40〜1.75であることがより好ましい。
【0015】
本発明における酸化物粒子および低軟化点ガラス粉末の屈折率は、ベッケ線検出法により測定することができ、25℃での波長436nm(水銀ランプのg線)における屈折率を本発明における屈折率とした。平均2次粒子径が小さくベッケ線検出法により測定できない場合は、元素分析およびX線回折測定により、酸化物およびその結晶構造を同定し、同一の組成かつ同一の結晶構造で平均2次粒子径が大きな凝集粒子をベッケ線検出法で測定し、本発明における屈折率とした。
【0016】
本発明における酸化物粒子として、遷移アルミナ粒子を用いることが好ましい。遷移アルミナとは、中間アルミナとも呼ばれ、通常、アルミナ水和物の脱水・熱分解過程に生成するρアルミナ、γアルミナ、ηアルミナ、δアルミナ、θアルミナ、χアルミナ、κアルミナ等の総称であり、最終的に、加熱により高温安定相であるαアルミナを生成する中間体である。この遷移アルミナは通常1次粒子径が数十nm程度の超微粒子であり、また、その屈折率が、水酸化アルミニウムとαアルミナの間の1.58〜1.76の範囲にある粒子である。
【0017】
本発明の感光性ペーストには、酸化物粒子により構成される平均2次粒子径0.1〜5μmの凝集粒子を含有することが必要である。凝集粒子の平均2次粒子径が0.1μm未満になると、ペースト中に微少な酸化物粒子を均一に分散した場合と同じく、焼成時に粒子の凝集成長が起きてしまい、粒子凝集を制御できず、反射率のパネル面内均一性が低くなる。平均2次粒子径が5μmより大きくなると、乾燥した膜を露光する際に凝集物が露光光のペースト膜への透過を阻害することにより光硬化反応が抑制され、隔壁パターンの欠けや幅や高さの寸法ばらつきが生じやすくなったり、異常突起の原因となったりする。凝集粒子の平均粒子径は、例えば感光性ペーストを塗布、乾燥して得られるペースト乾燥膜を透過型電子顕微鏡観察することによって求めることができる。ペースト乾燥膜の膜面に垂直な断面を、透過型電子顕微鏡(例えば、日本電子株式会社製「JEM−4000EX」)により観察し、凝集粒子の観察写真を画像処理し、凝集粒子の見かけの面積と同面積の円に換算した際の直径を求め、50個の凝集粒子について観察・画像処理を行い、それらの平均値を凝集粒子の平均2次粒子径とする。平均2次粒子径は、1〜5μmであることがより好ましい。
【0018】
本発明における平均2次粒子径0.1〜5μmの凝集粒子は、平均1次粒子径が0.05μm以下の酸化物粒子により構成されることが好ましい。
【0019】
本発明において、酸化物粒子により構成される平均2次粒子径が0.1〜5μmの範囲内の凝集粒子を含有することで、反射率が高く、かつ、そのパネル面内均一性が高い隔壁を形成できるという顕著な効果が発現する理由は明らかではないが、以下のような機構が考えられる。
【0020】
一般的に感光性ペーストに凝集粒子を含む場合、粒子そのもの、あるいは、凝集粒子中に存在する空隙が露光時に光散乱源となり、解像度が高く、アスペクト比の高いパターンを得ることが困難になる。しかし、屈折率が感光性ペースト中に含まれる感光性有機成分の屈折率と整合した酸化物粒子により構成される凝集粒子を感光性ペーストに含有させた場合は、酸化物粒子と感光性有機成分との屈折率が近いため、酸化物粒子そのものによる散乱は抑制される。また、凝集粒子中に存在する空隙は、ペースト構成成分である感光性有機成分が浸み込むことで消失し、散乱源とはならず、感光性ペーストの塗布膜を露光する時に良好な光の透過性を示し、解像度が高く、アスペクト比の高いパターンを得ることができる。なお、露光、現像を行った後に焼成を行う際には、凝集粒子の隙間に浸み込んだ感光性有機成分や溶媒は焼き飛び、凝集粒子の隙間が空隙となる。この空隙が、空気と無機成分の屈折率差により光散乱源となり反射率の高い隔壁を形成することができる。また、反射率のパネル面内均一性が高い理由としては、ペースト中に凝集粒子で存在しているため、反射率ばらつきの原因であった焼成時の再凝集を抑制できることにより、パネル面内均一性が高くなると推定される。
【0021】
本発明の感光性ペーストにおいて、無機成分に占める酸化物粒子の割合が2〜8体積%であることが好ましい。酸化物粒子の割合が2体積%未満であると、添加による反射率向上の効果が十分得られないおそれがあるため好ましくない。また、8体積%を超えると、パターン形成が阻害されたり、焼成時に低融点ガラスの焼結が阻害され、空隙率が高くなり、隔壁強度が低下するおそれがあるため好ましくない。より好ましくは2〜5体積%である。無機成分中の酸化物粒子の割合は、ペースト作成時の各成分の配合量から算出することができるが、感光性ペーストを塗布、乾燥して得られるペースト乾燥膜もしくは乾燥膜を焼成することによって得られるペースト焼成膜の断面を走査型電子顕微鏡観察することによっても求めることができる。ペースト乾燥膜もしくはペースト焼成膜の膜面に垂直な断面を、透過型電子顕微鏡(例えば、日本電子株式会社製「JEM−4000EX」)により観察し、像の濃淡により無機成分の種類を区別し、画像解析を行えばよい。像の濃淡と無機成分の関係は、X線による元素分析を使用することにより特定することができる。透過型電子顕微鏡の評価エリアとしては、例えば、20μm×100μm程度の面積を対象とし、1000〜3000倍程度で観察すればよい。
【0022】
本発明における無機成分としては、上記の酸化物粒子以外に、低軟化点ガラス粉末を必須成分とする。本発明において低軟化点ガラス粉末とは、荷重軟化温度が400〜600℃の範囲であるガラス粉末を指す。荷重軟化温度がこの範囲にあることで焼結時にパターンの変形がなく、溶融性も適切となるためである。より好ましい荷重軟化温度の範囲は450〜550℃である。また、低軟化温度ガラス粉末の無機成分に占める割合は60体積%〜98体積%が好ましい。含有割合が60体積%より小さくなると、焼成時の焼結が困難になり、焼成後のパターンの空隙率の大きくなるため好ましくない。98体積%より大きくなると、焼成時の無機成分全体の流動性が大きくなってしまうため焼成後のパターン形状の制御が困難になる、焼成後のパターンの機械的強度が小さく衝撃によってパターンの欠けが発生する、などの問題が発生する場合があるため好ましくない。
【0023】
低軟化点ガラス粉末の屈折率は1.50〜1.65であることが好ましい。無機成分と有機成分の屈折率を整合させ、光散乱を抑制することにより高精度のパターン加工が容易になる。また、低軟化点ガラス粉末の粒子径は、作製しようとするパターンの形状を考慮して選ばれるが、重量分布曲線における50%粒子径(平均粒子径)d50が0.1〜3.0μm、最大粒子径dmaxが10μm以下であることが好ましい。
【0024】
好ましく使用できる低軟化点ガラス粉末は例えば酸化物表記で下記の組成を有するものである。
酸化リチウム、酸化ナトリウムまたは酸化カリウム 3〜15質量%
酸化ケイ素 5〜30質量%
酸化ホウ素 20〜45質量%
酸化バリウムまたは酸化ストロンチウム 2〜15質量%
酸化アルミニウム 10〜25質量%
酸化マグネシウムまたは酸化カルシウム 2〜15質量%
上記のように、酸化リチウム、酸化ナトリウムまたは酸化カリウムのアルカリ金属酸化物のうち少なくとも1種を用い、その合計量が3〜15質量%、さらには3〜10質量%であることが好ましい。
【0025】
アルカリ金属酸化物は、ガラスのガラス転移温度、熱膨張係数のコントロールを容易にするのみならず、ガラスの屈折率を低くすることができるため、感光性有機成分との屈折率差を小さくすることが容易になる。アルカリ金属酸化物の合計量が3質量%以上とすることでガラスの低軟化点化の効果を得ることができ、15質量%以下とすることでガラスの化学的安定性を維持すると共に熱膨張係数を小さく抑えることができる。アルカリ金属としては、ガラスの屈折率を下げることやイオンのマイグレーションを防止することができることからリチウムを選択するのが好ましい。
【0026】
酸化ケイ素の配合量は5〜30質量%が好ましく、より好ましくは10〜30質量%である。酸化ケイ素は、ガラスの緻密性、強度や安定性の向上に有効であり、またガラスの低屈折率化にも効果がある。また、基材としてガラス基板を用いる場合、熱膨張係数をコントロールしてガラス基板とのミスマッチによる剥離などの問題の発生を防ぐこともできる。5質量%以上とすることで、熱膨張係数を小さく抑えガラス基板に焼き付けたときにクラックが生じ難くすることができる。また、屈折率を低く抑えることができる。30質量%以下とすることで、ガラス転移点を低く抑え、ガラス基板への焼き付け温度を低くすることができる。
【0027】
酸化ホウ素は低屈折率化に有効であり、20〜45質量%、さらには20〜40質量%の範囲で配合することが好ましい。20質量%以上とすることで、ガラス転移点を低く抑えガラス基板への焼き付けを容易にする。また、45質量%以下とすることでガラスの化学的安定性を維持することができる。
【0028】
酸化バリウムおよび酸化ストロンチウムは、このうち少なくとも1種を用い、その合計量が2〜15質量%、さらには2〜10質量%であることが好ましい。これらの成分は、熱膨張係数の調整に有効であり、電気絶縁性、形成されるパターンの安定性や緻密性を確保できる点においても好ましい。2質量%以上とすることで結晶化による失透を防ぐこともできる。また、15質量%以下とすることにより、熱膨張係数や屈折率を低く抑えることができ、ガラスの化学的安定性も維持できる。
【0029】
酸化アルミニウムはガラス化範囲を広げてガラスを安定化する効果があり、ペーストのポットライフ延長にも有効である。10〜25質量%の範囲で配合することが好ましく、この範囲内とすることでガラス転移温度を低く保ち、ガラス基板上への焼き付けを容易にすることができる。
【0030】
さらに、酸化マグネシウムおよび酸化カルシウムは、このうち少なくとも1種を用い、その合計量が2〜15質量%であることが好ましい。これらの成分は、ガラスを溶融しやすくすると共に熱膨張係数の制御に有効であり、合計量を2質量%以上とすることで結晶化によるガラスの失透を防ぎ、15質量%以下とすることでガラスの化学的安定性を維持することができる。
【0031】
また、上記の組成には表記されていないが、酸化亜鉛や酸化チタン、酸化ジルコニウムなどを含有させることも好ましい。
【0032】
低軟化点ガラス粉末の作製法としては、例えば原料である酸化リチウム、酸化ケイ素、酸化ホウ素、酸化バリウム、酸化アルミニウムおよび酸化マグネシウムなどを所定の配合組成となるように混合し、900〜1200℃で溶融後、吸冷し、ガラスフリットにしてから粉砕して1〜5μmの微細な粉末にする。原料は高純度の炭酸塩、酸化物、水酸化物などを使用できる。また、ガラス粉末の種類や組成によっては99.99%以上の超高純度なアルコキシドや有機金属の原料を使用し、ゾルゲル法で均質に作製した粉末を使用すると、高電気抵抗かつ緻密で気孔の少ない、高純度な焼成膜が得られるので好ましい。
【0033】
また、本発明の必須成分である酸化物粒子は、フィラー成分としての機能を発揮する。本発明では、フィラー成分として、前記酸化物粒子以外に荷重軟化温度が600〜1200℃である高軟化点ガラス粉末や、コーディエライト、ジルコニアなどのセラミックス粉末から選ばれた少なくとも1種を前記酸化物粒子と同時に用いることができるが、平均粒子径や平均屈折率の調節のしやすさの点から高軟化点ガラス粉末の使用が好ましい。
【0034】
酸化物粒子以外のフィラー成分は感光性ペースト中への分散性や充填性、露光時の光散乱の抑制を考慮し、平均粒子径d50が0.1〜3.0μm、平均屈折率が1.50〜1.65であるものを好ましく使用することができる。
【0035】
本発明における感光性ペーストには、感光性有機成分を含有することが必要である。また、必要に応じて、非感光性ポリマ成分、酸化防止剤、有機染料、光重合開始剤、増感剤、増感助剤、可塑剤、増粘剤、分散剤、有機溶媒、沈殿防止剤などの有機成分を必要に応じて加えることができる。感光性有機成分としては、感光性モノマ、感光性オリゴマ、感光性ポリマのうち少なくとも1種類から選ばれる。
【0036】
感光性ポリマとしてアルカリ可溶性のポリマを好ましく用いることができる。ポリマがアルカリ可溶性を有することで現像液として環境に問題のある有機溶媒ではなくアルカリ水溶液を用いることができるためである。アルカリ可溶性のポリマとしては、アクリル系共重合体を好ましく用いることができる。アクリル系共重合体とは、共重合成分に少なくともアクリル系モノマを含む共重合体であり、アクリル系モノマの具体的な例としては、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、sec−ブチルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、n−ペンチルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシトリエチレングリコールアクリレート、シクロへキシルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2−エチルへキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、ヘプタデカフロロデシルアクリレート、2−ヒドロキシエチルアクリレート、イソボニルアクリレート、2−ヒドロキシプロピルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2−メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アクリルアミド、アミノエチルアクリレート、フェニルアクリレート、1−ナフチルアクリレート、2−ナフチルアクリレート、チオフェノールアクリレート、ベンジルメルカプタンアクリレートなどのアクリル系モノマ、及びこれらのアクリレートをメタクリレートに代えたものなどが挙げられる。アクリル系モノマ以外の共重合成分としては、炭素−炭素2重結合を有する化合物が使用可能であるが、好ましくはスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、α−メチルスチレン、クロロメチルスチレン、ヒドロキシメチルスチレンなどのスチレン類や、1−ビニル−2−ピロリドン等が挙げられる。
【0037】
アクリル系共重合体にアルカリ可溶性を付与するためには、モノマとして不飽和カルボン酸等の不飽和酸を加えることにより達成される。不飽和酸の具体的な例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸、酢酸ビニル、またはこれらの酸無水物が挙げられる。これらを付加した後のポリマの酸価は50〜150の範囲であることが好ましい。
【0038】
アクリル系共重合体を用いる場合、感光性ペーストの露光による硬化反応の反応速度を大きくするためには、側鎖または分子末端に炭素−炭素2重結合を有するアクリル系共重合体とすることが好ましい。炭素−炭素2重結合を有する基としては、ビニル基、アリル基、アクリル基、メタクリル基等が挙げられる。このような官能基をアクリル系共重合体に付加させるには、アクリル系共重合体中のメルカプト基、アミノ基、水酸基、カルボキシル基に対して、グリシジル基やイソシアネート基と炭素−炭素2重結合有する化合物や、アクリル酸クロライド、メタクリル酸クロライドまたはアリルクロライドを付加反応させてつくる方法がある。
【0039】
グリシジル基と炭素−炭素2重結合を有する化合物としては、グリシジルメタクリレート、グリシジルアクリレート、アリルグリシジルエーテル、グリシジルエチルアクリレート、クロトニルグリシジルエーテル、グリシジルクロトネート、グリシジルイソクロトネートなどが挙げられる。イソシアネート基と炭素−炭素2重結合を有する化合物としては、アクリロイルイソシアネート、メタクリロイルイソシアネート、アクリロイルエチルイソシアネート、メタクリロイルエチルイソシアネート等が挙げられる。
【0040】
さらに、本発明の感光性ペーストは、有機成分として非感光性のポリマ成分、例えばメチルセルロース、エチルセルロース等のセルロース化合物、高分子量ポリエーテルなどを含有しても良い。
【0041】
また、感光性モノマは、炭素−炭素不飽和結合を含有する化合物であり、その具体的な例として、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、イソプロピルアクリレート、n−ブチルアクリレート、sec−ブチルアクリレート、イソブチルアクリレート、tert−ブチルアクリレート、n−ペンチルアクリレート、アリルアクリレート、ベンジルアクリレート、ブトキシエチルアクリレート、ブトキシトリエチレングリコールアクリレート、シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2−エチルヘキシルアクリレート、グリセロールアクリレート、グリシジルアクリレート、ヘプタデカフロロデシルアクリレート、2−ヒドロキシエチルアクリレート、イソボニルアクリレート、2−ヒドロキシプロピルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2−メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アリル化シクロヘキシルジアクリレート、1,4−ブタンジオールジアクリレート、1,3−ブチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジトリメチロールプロパンテトラアクリレート、グリセロールジアクリレート、メトキシ化シクロヘキシルジアクリレート、ネオペンチルグリコールジアクリレート、プロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリグリセロールジアクリレート、トリメチロールプロパントリアクリレート、アクリルアミド、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、ベンジルアクリレート、1−ナフチルアクリレート、2−ナフチルアクリレート、ビスフェノールAジアクリレート、ビスフェノールA−エチレンオキサイド付加物のジアクリレート、ビスフェノールA−プロピレンオキサイド付加物のジアクリレート、チオフェノールアクリレート、ベンジルメルカプタンアクリレート、また、これらの芳香環の水素原子のうち、1〜5個を塩素または臭素原子に置換したモノマ、もしくは、スチレン、p−メチルスチレン、o−メチルスチレン、m−メチルスチレン、塩素化スチレン、臭素化スチレン、α−メチルスチレン、塩素化α−メチルスチレン、臭素化α−メチルスチレン、クロロメチルスチレン、ヒドロキシメチルスチレン、カルボシキメチルスチレン、ビニルナフタレン、ビニルアントラセン、ビニルカルバゾール、および、上記化合物の分子内のアクリレートを一部もしくはすべてをメタクリレートに置換したもの、γ−メタクリロキシプロピルトリメトキシシラン、1−ビニル−2−ピロリドンなどが挙げられる。また、多官能モノマにおいて、不飽和結合を有する基はアクリル基、メタクリル基、ビニル基、アリル基が混在していてもよい。本発明ではこれらを1種または2種以上使用することができる。
【0042】
本発明で用いられる感光性ペーストは、さらにウレタン化合物を含有することが好ましい。ウレタン化合物を含有することにより、ペースト乾燥膜の柔軟性が向上し、焼成時の応力を小さくでき、亀裂や断線などの欠陥を効果的に抑制できるためである。また、ウレタン化合物を含有することにより、熱分解性が向上し、焼成工程において焼成残渣が発生しにくくなる。本発明で好ましく使用するウレタン化合物として、例えば、下記一般式(1)で示される化合物が挙げられる。
【0043】
【化1】

【0044】
ここで、RおよびRはエチレン性不飽和基を含む置換基、水素、炭素数1〜20のアルキル基、アリ−ル基、アラルキル基およびヒドロキシアラルキル基からなる群から選ばれたものであり、それぞれ同じであっても異なっていても良い。R3はアルキレンオキサイド基またはアルキレンオキサイドオリゴマー、R4はウレタン結合を含む有機基である。nは1〜10の整数である。
【0045】
このようなウレタン化合物としては、エチレンオキサイド単位を含む化合物が好ましい。より好ましくは、一般式(1)中、Rがエチレンオキサイド単位(以下、EOと示す)とプロピレンオキサイド単位(以下、POと示す)を含むオリゴマであり、かつ、該オリゴマ中のEO含有量が8〜70質量%の範囲内である化合物である。EO含有量が70質量%以下であることにより、柔軟性がさらに向上し、焼成応力を小さくできるため、欠陥を効果的に抑制できる。さらに、熱分解性が向上し、後の焼成工程において、焼成残渣が発生しにくくなる。また、EO含有量が8%以上であることにより、他の有機成分との相溶性が向上する。
【0046】
また、ウレタン化合物が炭素−炭素二重結合を有することも好ましい。ウレタン化合物の炭素−炭素二重結合が他の架橋剤の炭素−炭素二重結合と反応して架橋体の中に含有されることにより、さらに重合収縮を抑制することができる。
【0047】
本発明で好ましく用いられるウレタン化合物の具体例としては、UA−2235PE(分子量18000、EO含有率20%)、UA−3238PE(分子量19000、EO含有率10%)、UA−3348PE(分子量22000,EO含有率15%)、UA−5348PE(分子量39000、EO含有率23%)(以上、新中村化学(株)製)などが挙げられるが、これらに限定されるものではない。また、これらの化合物は混合して用いてもよい。
【0048】
ウレタン化合物の含有量は、溶媒を除く有機成分の0.1〜20質量%であることが好ましい。含有量を0.1質量%以上とすることで、ペースト乾燥膜の柔性を向上することができ、ペースト乾燥膜を焼成する際の焼成収縮応力を緩和することができる。含有量が20質量%を超えると、有機成分と無機成分の分散性が低下し、また相対的にモノマおよび光重合開始剤の濃度が低下するので、欠陥が生じやすくなる。
【0049】
光重合開始剤は活性光源の照射によってラジカルを発生する光ラジカル開始剤を好ましく用いることができ、その具体的な例として、ベンゾフェノン、o−ベンゾイル安息香酸メチル、4,4−ビス(ジメチルアミン)ベンゾフェノン、4,4−ビス(ジエチルアミノ)ベンゾフェノン、4,4−ジクロロベンゾフェノン、4−ベンゾイル−4−メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−2−フェニル−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチルプロピオフェノン、p−t−ブチルジクロロアセトフェノン、チオキサントン、2−メチルチオキサントン、2−クロロチオキサントン、2−イソプロピルチオキサントン、ジエチルチオキサントン、ベンジル、ベンジジメチルケタノール、ベンジルメトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2−t−ブチルアントラキノン、2−アミルアントラキノン、β−クロルアントラキノン、アントロン、ベンズアントロン、ジベンゾスベロン、メチレンアントロン、4−アジドベンザルアセトフェノン、2,6−ビス(p−アジドベンジリデン)シクロヘキサノン、2,6−ビス(p−アジドベンジリデン)−4−メチルシクロヘキサノン、2−フェニル−1,2−ブタジオン−2−(o−メトキシカルボニル)オキシム、1−フェニル−プロパンジオン−2−(o−エトキシカルボニル)オキシム、1,3−ジフェニル−プロパントリオン−2−(o−エトキシカルボニル)オキシム、1−フェニル−3−エトキシ−プロパントリオン−2−(o−ベンゾイル)オキシム、ミヒラーケトン、2−メチル−[4−(メチルチオ)フェニル]−2−モルフォリノ−1−プロパノン、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、N−フェニルチオアクリドン、4,4−アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホルフィン、カンファーキノン、四臭素化炭素、トリブロモフェニルスルホン、過酸化ベンゾインおよびエオシン、メチレンブルーなどの光還元性の色素とアスコルビン酸、トリエタノールアミンなどの還元剤の組合せなどがあげられる。本発明ではこれらを1種または2種以上使用することができる。光重合開始剤は、感光性モノマと感光性ポリマの合計量に対し、0.05〜20質量%、より好ましくは、0.1〜15質量%の範囲で添加される。重合開始剤の量が少なすぎると、光感度が不良となるおそれがあり、光重合開始剤の量が多すぎれば、露光部の残存率が小さくなりすぎるおそれがある。
【0050】
また、光重合開始剤と共に増感剤を使用し、感度を向上させたり、反応に有効な波長範囲を拡大することができる。増感剤の具体例としては、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2−イソプロピルチオキサントン、2,3−ビス(4−ジエチルアミノベンザル)シクロペンタノン、2,6−ビス(4−ジメチルアミノベンザル)−4−メチルシクロヘキサノン、ミヒラ−ケトン、4,4−ビス(ジエチルアミノ)カルコン、p−ジメチルアミノシンナミリデンインダノン、p−ジメチルアミノベンジリデンインダノン、2−(p−ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3−ビス(4−ジメチルアミノベンザル)アセトン、1,3−カルボニルビス(4−ジエチルアミノベンザル)アセトン、3,3−カルボニルビス−(7−ジエチルアミノクマリン)、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノ−ルアミン、N−フェニル−N−エチルエタノールアミン、N−フェニルエタノールアミン、N−トリルジエタノールアミン、4−ジメチルアミノ安息香酸メチル、4−ジメチルアミノ安息香酸エチル、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、安息香酸(2−ジメチルアミノ)エチル、4−ジメチルアミノ安息香酸(n−ブトキシ)エチル、4−ジメチルアミノ安息香酸−2−エチルへキシル、3−フェニル−5−ベンゾイルチオテトラゾール、1−フェニル−5−エトキシカルボニルチオテトラゾールなどが挙げられる。本発明ではこれらを1種または2種以上使用することができる。なお、増感剤の中には光重合開始剤としても使用できるものがある。増感剤を本発明の感光性ペーストに添加する場合、その添加量は溶媒を除く有機成分に対して好ましくは0.05〜10質量%、より好ましくは0.1〜10質量%である。増感剤の添加量をこの範囲内とすることにより、露光部の残存率を保ちつつ良好な光感度を得ることができる。
【0051】
本発明では酸化防止剤が好ましく添加される。酸化防止剤とは、ラジカル連鎖禁止作用、三重項の消去作用、ハイドロパーオキサイドの分解作用を持つものである。感光性ペーストに酸化防止剤を添加すると、酸化防止剤がラジカルを捕獲したり、励起された光重合開始剤や増感剤のエネルギー状態を基底状態に戻したりすることにより散乱光による余分な光反応が抑制され、酸化防止剤で抑制できなくなる露光量で急激に光反応が起こることにより、現像液への溶解、不溶のコントラストを高くすることができる。具体的にはp−ベンゾキノン、ナフトキノン、p−キシロキノン、p−トルキノン、2,6−ジクロロキノン、2,5−ジアセトキシ−p−ベンゾキノン、2,5−ジカプロキシ−p−ベンゾキノン、ヒドロキノン、p−t−ブチルカテコール、2,5−ジブチルヒドロキノン、モノ−t−ブチルヒドロキノン、2,5−ジ−t−アミルヒドロキノン、ジ−t−ブチル−p−クレゾール、ヒドロキノンモノメチルエーテル、α−ナフトール、ヒドラジン塩酸塩、トリメチルベンジルアンモニウムクロリド、トリメチルベンジルアンモニウムオキザレート、フェニル−β−ナフチルアミン、パラベンジルアミノフェノール、ジ−β−ナフチルパラフェニレンジアミン、ジニトロベンゼン、トリニトロベンゼン、ピクリン酸、キノンジオキシム、シクロヘキサノンオキシム、ピロガロール、タンニン酸、トリエチルアミン塩酸塩、ジメチルアニリン塩酸塩、クペロン、2,2’−チオビス(4−t−オクチルフェノレート)−2−エチルへキシルアミノニッケル−(II)、4,4’−チオビス−(3−メチル−6−t−ブチルフェノール)、2,2’−メチレンビス−(4−メチル−6−t−ブチルフェノール)、トリエチレングリコール−ビス[3−(t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、1,6−ヘキサンジオール−ビス[(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,2,3−トリヒドロキシベンゼンなどが挙げられるがこれらに限定されない。本発明ではこれらを1種以上使用することができる。酸化防止剤の添加量は、感光性ペースト中に好ましくは0.01〜30質量%、より好ましくは0.05〜20質量%の範囲である。酸化防止剤の添加量をこの範囲内とすることにより、感光性ペーストの光感度を維持し、また重合度を保ちパターン形状を維持しつつ、露光部と非露光部のコントラストを大きくとることができる。
【0052】
本発明の感光性ペーストに紫外線吸収剤を含有させることで、露光光によるペースト内部の散乱光を吸収し、散乱光を弱めることができる。紫外線吸収剤としては、g線、h線およびi線付近の波長の吸光性が優れていれば特に効果があり、具体例としてはベンゾフェノン系化合物、シアノアクリレート系化合物、サリチル酸系化合物、ベンゾトリアゾール系化合物、インドール系化合物、無機系の微粒子酸化金属などが挙げられる。これらの中でもベンゾフェノン系化合物、シアノアクリレート系化合物、ベンゾトリアゾール系化合物、インドール系化合物が特に有効である。これらの具体例としては、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−スルホベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’カルボキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノントリヒドレート、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−オクタデシロキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、4−ドデシロキシ−2−ヒドロキシベンゾフェノン、2−ヒドロキシ−4−(2−ヒドロキシ−3−メタクリロキシ)プロポキシベンゾフェノン、2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−4’−n−オクトキシフェニル)ベンゾトリアゾール、2−エチルへキシル−2−シアノ−3,3−ジフェニルアクリレート、2−エチル−2−シアノ−3,3−ジフェニルアクリレート、インドール系の紫外線吸収剤であるBONASORB UA−3901(オリエント化学社製)、BONASORB UA−3902(オリエント化学社製)、BONASORB UA−3911(オリエント化学社製)、SOM−2−0008(オリエント化学社製)、ベーシックブルー、スダンブルー、スダンR、スダンI、スダンII、スダンIII、スダンIV、オイルオレンジSS、オイルバイオレット、オイルイエローOB(以上、アルドリッチ社)などが挙げられるがこれらに限定されない。さらに、これら紫外線吸収剤の骨格にメタクリル基などを導入し反応型として用いても良い。本発明ではこれらを1種または2種以上使用することができる。
【0053】
本発明における紫外線吸収剤として、光褪色性化合物を用いることもできる、光褪色性化合物とは、活性光線の波長領域の光を照射したときに、活性光線の波長領域の光を吸収し、光分解や光変性などの化学構造の変化を通し、活性光源の波長領域での吸光度が照射前に比べて小さくなるものをいう。通常、フォトリソグラフィ技術に用いられる露光は、超高圧水銀灯のg線(436nm)、h線(405nm)、i線(365nm)を利用して露光がなされているので、本発明に用いる光褪色性化合物もg線、h線、i線領域に吸収があることが好ましい。光褪色性化合物を感光性ペーストに添加することによって、パターン設計上、露光光の照射を受けない部分である非露光部への露光光の侵入を防ぎ、パターンの底部太りを抑制することができる。また、露光部においては光褪色性化合物が露光光のエネルギーを吸収し、光分解や光変性を経て次第に吸光しなくなるため、下層まで十分な露光光が到達しやすくなる。従って、非露光部と露光部の光硬化のコントラストが明確となり、露光量マージンを確実に向上させることができる。具体的には光褪色性染料、光酸発生剤、光塩基発生剤、ニトロン化合物などの光分解性化合物や、アゾ系染料、フォトクロミック化合物などの光変性化合物が挙げられる。光酸発生剤の具体例としては、オニウム塩、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、スルホンイミド化合物、ジアゾケトン化合物などを例として挙げることができる。
【0054】
紫外線吸収剤の含有量は、感光性ペースト中に0.001〜1質量%が好ましく、より好ましくは0.001〜0.5質量%である。紫外線吸収剤の添加量をこの範囲にすることにより、散乱光を吸収して、パターンの底部太りを抑制すると共に、露光光に対する感度を保つことができる。
【0055】
また、本発明では、露光、現像の目印として有機系染料を添加することができる。染料を添加して着色することにより視認性が良くなり、現像時にペーストが残存している部分と除去された部分との区別が容易になる。有機染料としては、特に限定はされないが、焼成後の絶縁膜中に残存しないものが好ましい。具体的にはアントラキノン系染料、インジゴイド系染料、フタロシアニン系染料、カルボニウム系染料、キノンイミン系染料、メチン系染料、キノリン系染料、ニトロ系染料、ニトロソ系染料、ベンゾキノン系染料、ナフトキノン系染料、フタルイミド系染料、ペリノン系染料などが使用できる。特に、h線とi線付近の波長の光を吸収するもの、例えばベーシックブルー等のカルボニウム系染料を選択するのが好ましい。有機染料の添加量は溶媒を除く有機成分に対して0.001〜1質量%であることが好ましい。
【0056】
感光性ペーストを基板に塗布する時の粘度を塗布方法に応じて調整するために有機溶媒が使用される。このとき使用される有機溶媒としてはメチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ブチルカルビトール、エチルカルビトール、ブチルカルビトールアセテート、エチルカルビトールアセテート、メチルエチルケトン、ジオキサン、アセトン、シクロヘキサノン、シクロペンタノン、イソブチルアルコール、イソプロピルアルコール、テトラヒドロフラン、ジメチルスルホキシド、γ−ブチロラクトン、ブロモベンゼン、クロロベンゼン、ジブロモベンゼン、ジクロロベンゼン、ブロモ安息香酸、クロロ安息香酸などや、これらのうちの1種以上を含有する有機溶媒混合物が用いられる。
【0057】
本発明の感光性ペーストは、少なくとも低軟化点ガラス粉末および酸化物粒子を含有する無機成分、感光性有機成分、紫外線吸収剤、酸化防止剤、有機染料、分散剤、および溶媒などからなる有機成分の各成分を所定の組成となるように調合した後、3本ローラーなどの混練機器を用いて本混練を行って、感光性ペーストを作製する。また、本混練を終えた感光性ペーストを適宜、濾過、脱泡しておくことも好ましい。
【0058】
本発明はかくして得られた本発明の感光性ペーストを乾燥後の膜厚みが100μm以上となるよう塗布した後、少なくとも乾燥、露光、現像、焼成してなる絶縁性パターンの形成方法に関する。本発明の絶縁性パターン形成方法を用いることによって、良好な隔壁パターンの形成が可能であるとともに、焼成後に得られる隔壁の反射率が高く、反射率の面内均一性が高い隔壁を形成できる。本発明の感光性ペーストは、上述の通り露光光の散乱が少なく感度が高いため乾燥後の厚みが100μm以上の場合であっても1回の露光でパターン化が可能である。
【0059】
さらに、本発明は上述のパターン形成方法を用いて隔壁パターンを形成する工程を含む平面ディスプレイ用パネルの製造方法に関する。本発明の平面ディスプレイ用パネルの製造方法により、反射率の高い隔壁を形成し、輝度等の表示特性に優れた平面ディスプレイ用パネルを精度良く安定に製造することができる。
【0060】
以下にプラズマディスプレイ部材およびプラズマディスプレイの作製手順を述べる。ここでは、プラズマディスプレイとして最も一般的な交流(AC)型プラズマディスプレイを例に取りその基本的構造などについて説明するが、必ずしもこれに限定されない。
【0061】
プラズマディスプレイは、前面板および/または背面板に形成された蛍光体層が内部空間内に面しているように、該前面板と該背面板を封着してなる部材において、前記内部空間内に放電ガスが封入されてなるものである。すなわち、前面板には、表示面側の基板上に表示用放電のための透明電極(サスティン電極、スキャン電極)が形成されている。より低抵抗な電極を形成する目的で透明電極の背面側にバス電極を形成してもよい。但し、バス電極は材質がAg、Cr/Cu/Cr等で構成されていて、不透明であることが多い。従って、前記透明電極とは異なり、セルの表示の邪魔となるので、表示面の外縁部に設けることが好ましい。AC型プラズマディスプレイの場合、電極の上層に透明誘電体層およびその保護膜としてMgO薄膜が形成される場合が多い。背面板には、表示させるセルをアドレス選択するための電極(アドレス電極)が形成されている。セルを仕切るための隔壁や蛍光体層は前面板、背面板のどちらかまたは両方に形成してもよいが、背面板のみに形成される場合が多い。プラズマディスプレイは、前記前面板と前記背面板は封着され、両者の間の内部空間には、Xe−Ne、Xe−Ne−He等の放電ガスが封入されているものである。
【0062】
まず、部材作製工程に関し、前面板の作製方法について述べる。基板としては、ソーダガラスやプラズマディスプレイ用の耐熱ガラスである“PP8”(日本電気硝子社製)、“PD200”(旭硝子社製)を用いることができる。ガラス基板のサイズは特に限定はなく、厚みは1〜5mmのものを用いることができる。
【0063】
まず、ガラス基板上に、インジウム−スズ酸化物(ITO)をスパッタし、フォトエッチング法によりパターン形成する。次いで、黒色電極用の黒色電極ペーストを印刷する。黒色電極ペーストは、有機バインダー、黒色顔料、導電性粉末と、フォトリソグラフィ法で用いる場合は感光性成分が主成分となる。黒色顔料としては、金属酸化物が好ましく用いられる。金属酸化物としては、チタンブラックや、銅、鉄、マンガンの酸化物やそれらの複合酸化物、コバルト酸化物などがあるが、ガラスと混合して焼成したときに退色が少ない点でコバルト酸化物が優れている。導電性粉末としては、金属粉末または金属酸化物粉末が挙げられる。金属粉末としては電極材料として通常用いられる金、銀、銅、ニッケルなどを特に制限無く用いることが出来る。この黒色電極は抵抗率が大きいので、抵抗率の小さい電極を作製してバス電極を形成するため、導電性の高い電極用ペースト(例えば銀を主成分とするもの)を、黒電極ペーストの印刷面上に印刷する。この導電性ペーストとしては、アドレス電極で用いる電極ペーストも好適に用いることができる。そして、一括露光/現像してバス電極パターンを作製する。導電性を確実に確保するため、現像前に導電性の高い電極ペーストを再び印刷し、再露光後一括現像してもよい。バス電極パターンを形成後、焼成する。その後、コントラスト向上のため、ブラックストライプやブラックマトリクスを形成するのが好ましい。焼成後の黒色電極ペーストおよび焼成後の導電性ペーストの膜厚はそれぞれ、1〜5μmの範囲であることが好ましい。また、焼成後の線幅は20〜100μmであることが好ましい。
【0064】
次に、透明誘電体ペーストを用いて透明誘電体層を形成する。透明誘電体ペーストは、有機バインダー、有機溶剤、ガラスが主成分であるが、適宜可塑剤などの添加物を加えても良い。透明誘電体層の形成方法は特に限定されないが、例えば,スクリーン印刷、バーコーター、ロールコーター、ダイコーター、ブレードコーター、スピンコーターなどにより、電極形成基板上に透明誘電体ペーストを全面塗布または、部分的に塗布した後に、通風オーブン、ホットプレート、赤外線乾燥炉、真空乾燥など任意なものを用いて乾燥し、厚膜を形成することができる。また、透明誘電体ペーストをグリーンシート化し、これを電極形成基板上にラミネートすることも可能である。厚みは、0.01〜0.03mmが好ましい。
【0065】
次に焼成炉にて焼成を行う。焼成雰囲気や温度は、ペーストや基板の種類により異なるが、空気中や窒素、水素等の雰囲気下で焼成する。焼成炉としては、バッチ式の焼成炉やローラー搬送式の連続型焼成炉を用いることができる。焼成温度は、使用する樹脂が十分に脱バインダーする温度で行うのがよい。通常、アクリル系樹脂を用いる場合は430〜650℃での焼成を行う。焼成温度が低すぎると樹脂成分が残存しやすく、高すぎるとガラス基板に歪みが生じ割れてしまうことがある。
【0066】
さらに、保護膜を形成する。保護膜としてはMgO、MgGd、BaGd、Sr0.6Ca0.4Gd、Ba0.6Sr0.4Gd、SiO、TiO、Al、前述の低軟化点ガラスの群から少なくとも1種類用いるのがよいが、特にMgOが好ましい。保護膜の作製方法は、電子ビーム蒸着やイオンプレーティング法など公知の技術を用いることができる。
【0067】
続いて背面板の作製方法を説明する。ガラス基板は、前面板の場合と同様に、ソーダガラス、“PD200”、“PP8”等を用いることができる。ガラス基板上に銀やアルミニウム、クロム、ニッケルなどの金属により、アドレス用のストライプ状電極パターンを形成する。形成方法としては、これらの金属の粉末と有機バインダーを主成分とする金属ペーストをスクリーン印刷でパターン印刷する方法や、有機バインダーとして感光性有機成分を用いた感光性金属ペーストを塗布した後に、フォトマスクを用いてパターン露光し、不要な部分を現像工程で溶解除去し、さらに通常350〜600℃に加熱・焼成して電極パターンを形成する感光性ペースト法を用いることができる。また、ガラス基板上にクロムやアルミニウムを蒸着した後に、レジストを塗布し、レジストをパターン露光・現像した後にエッチングにより不要な部分を取り除く、エッチング法を用いることができる。さらに、アドレス電極上に誘電体層を設けることが好ましい。誘電体層を設けることによって、放電の安定性向上や、誘電体層の上層に形成する隔壁の倒れや剥がれを抑止することができる。また、誘電体層を形成する方法としては、ガラス粉末や高融点ガラス粉末などの無機成分と有機バインダーを主成分とする誘電体ペーストをスクリーン印刷、スリットダイコーター等で全面印刷または塗布する方法などがある。
【0068】
次に、フォトリソグラフィ法による隔壁の形成方法について説明する。隔壁のパターンは特に限定されないが、格子状、ワッフル状などが好ましい。まず、誘電体を形成した基板上に本発明の感光性ペーストからなる隔壁ペーストを塗布する。塗布方法は、バーコーター、ロールコーター、スリットダイコーター、ブレードコーター、スクリーン印刷等の方法を用いることができる。塗布厚みは、所望の隔壁の高さとペーストの焼成による収縮率を考慮して決めることができる。塗布厚みは、塗布回数、スクリーンのメッシュ、ペーストの粘度等によって調整できる。本発明においては、乾燥後の塗布厚みは100μm以上となるように塗布することが好ましい。100μm以上とすることで、十分な放電空間が得られ、蛍光体の塗布範囲を広げてプラズマディスプレイの輝度を向上することができる。
【0069】
塗布した隔壁ペーストは乾燥後、露光を行う。露光は通常のフォトリソグラフィで行われるように、フォトマスクを介して露光する方法が一般的である。また、フォトマスクを用いずに、レーザー光などで直接描画する方法を用いてもよい。露光装置としては、ステッパー露光機、プロキシミティ露光機などを用いることができる。この際使用される活性光源は、例えば、近紫外線、紫外線、電子線、X線、レーザー光などが挙げられる。これらの中で紫外線が最も好ましく、その光源として、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプ、殺菌灯などが使用できる。これらのなかでも、超高圧水銀灯が好適である。露光条件は塗布厚みにより異なるが、通常、1〜100mW/cm2の出力の超高圧水銀灯を用いて0.01〜30分間露光を行う。
【0070】
露光後、露光部分と非露光部分の現像液に対する溶解度の差を利用して現像を行うが、通常、浸漬法やスプレー法、ブラシ法等で行う。現像液としては感光性ペースト中の有機成分が溶解可能である有機溶媒を用いることができるが、感光性ペースト中にカルボキシル基などの酸性基を持つ化合物が存在する場合、アルカリ水溶液で現像できる。アルカリ水溶液としては水酸化ナトリウムや、炭酸ナトリウム、水酸化カリウム水溶液等を使用できるが、有機アルカリ水溶液を用いた方が焼成時にアルカリ成分を除去しやすいので好ましい。
【0071】
有機アルカリとしては、一般的なアミン化合物を用いることができる。具体的にはテトラメチルアンモニウムヒドロキサイド、トリメチルベンジルアンモニウムヒドロキサイド、モノエタノールアミン、ジエタノールアミンなどが挙げられる。
【0072】
アルカリ水溶液の濃度は通常0.05〜5質量%、より好ましくは0.1〜1質量%である。アルカリ濃度が低すぎれば可溶部が除去されにくく、アルカリ濃度が高すぎればパターンを剥離させたり腐食させるおそれがあり好ましくない。また、現像時の現像温度は20〜50℃で行うことが工程管理上好ましい。
【0073】
また、隔壁は2層以上で構成されていても良い。2層以上の構造体とすることで、隔壁形状の構成範囲を3次元的に拡大することができる。例えば、2層構造の場合、1層目を塗布し、ストライプ状に露光した後、2層目を塗布し、1層目とは垂直方向のストライプ状に露光し、現像を行うことで段違い状の井桁構造を有する隔壁の形成が可能である。 次に、焼成炉にて520〜620℃の温度で10〜60分間保持して焼成を行い、隔壁を形成する。
【0074】
本発明の感光性ペーストは上述の隔壁の形成に好適であり、本発明の感光性ペーストにより、反射率が高く、かつ、その面内均一性が高い隔壁を精度良く形成することができ、優れた特性を有するプラズマディスプレイを製造できる。
【0075】
次に、蛍光体ペーストを用いて蛍光体を形成する。感光性蛍光体ペーストを用いたフォトリソグラフィ法、ディスペンサー法、スクリーン印刷法等によって形成できる。蛍光体の厚みは特に限定されるものではないが、10〜30μm、より好ましくは15〜25μmである。蛍光体粉末は特に限定されないが、発光強度、色度、色バランス、寿命などの観点から、以下の蛍光体が好適である。青色は2価のユーロピウムを賦活したアルミン酸塩蛍光体(例えば、BaMgAl1017:Eu)やCaMgSiである。緑色では、パネル輝度の点からZnSiO:Mn、YBO:Tb、BaMgAl1424:Eu,Mn、BaAl1219:Mn、BaMgAl14O23:Mnが好適である。さらに好ましくはZnSiO:Mnである。赤色では、同様に(Y、Gd)BO:Eu、Y:Eu、YPVO:Eu、YVO:Euが好ましい。さらに好ましくは(Y、Gd)BO:Euである。焼成する工程を経て蛍光体を形成する場合、上述の誘電体層や隔壁の焼成と同時に行っても良い。
【0076】
次にプラズマディスプレイパネルの製造方法について説明する。背面板と前面板を封着後、2枚の基板間隔に形成された空間を加熱しながら真空排気を行った後に、He、Ne、Xeなどから構成される放電ガスを封入して封止する。放電電圧と輝度の両面からは.Xeが5〜15体積%のXe−Ne混合ガスが好ましい。紫外線の発生効率を大きくするために、さらにXeを30体積%程度まで高くしてもよい。
【0077】
最後に、駆動回路を装着し、エージングすることによって、プラズマディスプレイ用パネルを作製できる。
【実施例】
【0078】
以下に、本発明を実施例により具体的に説明する。ただし、本発明はこれに限定されるものではない。
(実施例1〜6、比較例1〜3)
A.ガラス粉末の粒径分布評価
粒度分布測定装置(日機装製「MT3300」)を用いて、ガラス粉末の平均粒子径d50と、最大粒子径dmaxを評価した。水を満たした試料室にガラス粉末を投入し、300秒間、超音波処理を行った後に測定を行った。
B.酸化物粒子の屈折率評価
酸化物粒子O−1〜5について、光学顕微鏡の光源部にハロゲンランプをつけ、g線用の干渉フィルターを用いて観察し、測定温度25℃、ベッケ線検出法により屈折率を評価した。酸化物粒子O−6については、カタログ値を用いた。
C.感光性ペーストの作製
隔壁用感光性ペーストに用いた原料は次の通りである。
感光性モノマM−1:トリメチロールプロパントリアクリレート
感光性モノマM−2:テトラプロピレングリコールジメタクリレート
感光性ポリマ:メタクリル酸/メタクリル酸メチル/スチレン=40/40/30からなる共重合体のカルボキシル基に対して0.4当量のグリシジルメタクリレートを付加反応させたもの(重量平均分子量43000、酸価100)
光重合開始剤:2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1(チバスペシャリティーケミカルズ社製IC369)。
増感剤:2,4−ジエチルチオキサントン
酸化防止剤:1,6−ヘキサンジオール−ビス[(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート])
紫外線吸収剤:スダンIV(東京応化工業株式会社製、吸収波長;350nmおよび520nm)
低軟化点ガラス粉末:酸化リチウム7質量%、酸化ケイ素22質量%、酸化ホウ素33質量%、酸化亜鉛3質量%、酸化アルミニウム19質量%、酸化マグネシウム6質量%、酸化バリウム5質量%、酸化カルシウム5質量%(ガラス転移温度491℃、d50:2μm、dmax:10μm)
高軟化点ガラス粉末:酸化ナトリウム/1質量%、酸化ケイ素/40質量%、酸化ホウ素/10質量%、酸化アルミニウム/33質量%、酸化亜鉛/4質量%、酸化カルシウム/9質量%、酸化チタン/3質量%(ガラス転移温度;652℃、d50:2μm、dmax:10μm)
酸化物粒子O−1:遷移アルミナ(θアルミナ、住友化学株式会社製AKP−G008、屈折率:1.67、平均1次粒子径<0.05μm)
酸化物粒子O−2:遷移アルミナ(γアルミナ、住友化学株式会社製AKP−G015、屈折率:1.67、平均1次粒子径<0.05μm)
酸化物粒子O−3:遷移アルミナ(θアルミナ、大明化学工業株式会社製TM−100、屈折率:1.67、平均1次粒子径:0.014μm)
酸化物粒子O−4:遷移アルミナ(γアルミナ、大明化学工業株式会社製TM−300、屈折率:1.67、平均1次粒子径:0.007μm)
酸化物粒子O−5:遷移アルミナ(θアルミナ、大明化学工業株式会社製TM−100D、屈折率:1.67、平均1次粒子径:0.014μm)
酸化物粒子O−6:酸化チタン(ルチル型、石原産業株式会社製、TTO−51(A)、屈折率:2.71、平均1次粒子径:0.02μm)
感光性ペーストは以下の要領で作製した。
【0079】
感光性モノマ、感光性ポリマ、光重合開始剤、増感剤、酸化防止剤および紫外線吸収剤を表1記載の量秤量した後、溶媒としてγ−BLを適宜添加して粘度を調整した。次に、表2に記載した比率で無機成分を調整、添加した後3本ローラー混練機にて混練し、感光性ペーストとした。
【0080】
【表1】

【0081】
【表2】

【0082】
D.評価用サンプルの作製
評価用サンプルは以下の手順にて作製した。旭硝子株式会社製 “PD−200”ガラス基板(42インチ)上に、感光性銀ペーストを用いたフォトリソグラフィ法によりアドレス電極パターンを形成した。次いで、アドレス電極が形成されたガラス基板上に誘電体層をスクリーン印刷法により20μmの厚みで形成した。しかる後、感光性ペーストをスクリーン印刷法によりアドレス電極パターンおよび誘電体層が形成された背面板ガラス基板上に所望の厚みになるまで均一に塗布した。塗布膜にピンホールなどの発生を回避するために塗布・乾燥を数回以上繰り返し行い、乾燥後の厚みが150μmとなるようにした。途中の乾燥は100℃で10分行った。次に露光マスクを介して露光を行った。露光マスクは、ピッチ300μm、線幅50μm、プラズマディスプレイにおけるストライプ状の隔壁パターン形成が可能になるように設計したクロムマスクである。露光は、50mW/cmの出力の超高圧水銀灯で300mJ/cm紫外線露光を行った。その後、モノエタノールアミンの0.3質量%水溶液をシャワーで150秒間かけることにより現像し、シャワースプレーを用いて水洗浄して光硬化していないスペース部分を除去した。さらに、590℃で30分保持して焼成し、サンプルとした。
E.反射率の評価
評価用サンプルを、コニカミノルタ株式会社製分光測色計「CM−2002」で、波長550nmにおけるSCIモードでの反射率を測定した。サンプル面内50箇所を測定し、反射率の標準偏差を求め、反射率の面内均一性の指標とした。反射率が45%以上である場合を可とし、45%未満である場合を不可とした。反射率標準偏差が、1.5未満である場合をばらつきが小さく良好であるとし、1.5以上である場合をばらつきが大きく不可とした。
F.隔壁形状の評価
D.で作製した評価用基板を、走査型電子顕微鏡(株式会社日立製作所製、S−2400)により隔壁の断面観察を行い、隔壁形状および突起異物の有無を評価した。倍率は800倍で、隔壁断面50箇所を観察し、隔壁形状が矩形あるいは頂部が細い台形形状であり、かつ、10μm以上の突起異物がなければ、○とし、そうでない場合を×とした。
F.凝集粒子の平均2次粒子径の評価
D.に記載の方法で、露光を行う前の塗布、乾燥までの工程でペースト乾燥膜を得た後、膜面に垂直な断面で割断し、透過型電子顕微鏡(日本電子株式会社製、JEM−4000EX)により観察し、凝集粒子の観察写真を画像処理し、凝集粒子の見かけの面積と同面積の円に換算した際の直径を求め、50個の凝集粒子について観察・画像処理を行い、それらの平均値を凝集粒子の平均2次粒子径とした。
【0083】
実施例1〜6、および比較例1〜3で得られた感光性ペーストおよび隔壁の評価結果を表3に示す。
【0084】
【表3】

【0085】
実施例1〜4では、酸化物粒子により構成される凝集粒子の平均2次粒子径が0.1〜5μmの範囲にあり、いずれの場合も反射率が高く、かつ、反射率の面内均一性が高い隔壁を形成できた。
【0086】
実施例5は、酸化物粒子の添加割合が小さいので、実施例1〜4に比べて反射率が若干低下したが、許容レベルであった。反射率の面内均一性も良好であった。
【0087】
実施例6は、酸化物粒子の添加割合が大きいので、隔壁の空隙率が高くなったため、実施例1〜4に比べて反射率が高くなり、反射率標準偏差が大きくなったが、許容レベルであった。
【0088】
酸化物粒子を添加しなかった比較例1は、反射率が低いため、不可であった。
【0089】
酸化物粒子により構成される凝集粒子の平均2次粒子径が5μmより大きい比較例2は、隔壁に10μm以上の突起異物があり、不可であった。
【0090】
酸化物粒子として、屈折率が1.8より大きい酸化チタンを添加した比較例3は、屈折率が整合しなくなったため露光時の光散乱が著しく大きくなり、矩形あるいは頂部が細い台形形状の隔壁パターンが得られず、不可であった。
【0091】
(比較例4)酸化物粒子O−1をペースト作製前に分散処理を施した。酸化物粒子O−1、分散剤(ポリカルボン酸アンモニウム塩)、γ−BLを混合、撹拌後、超音波破砕機(Sonics&Materials社製、VCX−500、出力500W)を用いて氷冷下で超音波を照射することにより、20wt%スラリーを得た。酸化物粒子として、このスラリーを用いた以外は、実施例1と同様に実施した。実施例1に添加した酸化物粒子O−1を使用しているが、ペースト作製前に分散処理を施し、凝集粒子の平均2次粒子径が0.1μmより小さくなったため、反射率の面内均一性が低く、不可であった。
【産業上の利用可能性】
【0092】
本発明は、反射率が高く、かつ、その面内均一性が高い隔壁を形成するための感光性ペーストとして有用に利用できる。また、反射率の高い隔壁を形成し、輝度等の表示特性に優れたプラズマディスプレイとして有用に利用できる。

【特許請求の範囲】
【請求項1】
少なくとも無機成分ならびに感光性有機成分を含有する感光性ペーストであって、無機成分として屈折率が1.40〜1.80の範囲内である酸化物粒子により構成される平均2次粒子径が0.1〜5μmの範囲内である凝集粒子および低軟化点ガラス粉末を含有することを特徴とする感光性ペースト。
【請求項2】
酸化物が遷移アルミナであることを特徴とする請求項1に記載の感光性ペースト。
【請求項3】
無機成分に占める酸化物粒子の割合が2〜8体積%であることを特徴とする請求項1または2に記載の感光性ペースト。
【請求項4】
請求項1〜3のいずれかに記載の感光性ペーストを乾燥後の膜厚みが100μm以上となるよう塗布した後、少なくとも乾燥、露光、現像、焼成することを特徴とする絶縁性パターンの形成方法。
【請求項5】
基板上に請求項1〜3のいずれかに記載の感光性ペーストを乾燥後の膜厚みが100μm以上となるよう塗布した後、少なくとも乾燥、露光、現像、焼成して絶縁性パターンを形成することを特徴とする平面ディスプレイ用パネルの製造方法。

【公開番号】特開2011−75612(P2011−75612A)
【公開日】平成23年4月14日(2011.4.14)
【国際特許分類】
【出願番号】特願2009−223903(P2009−223903)
【出願日】平成21年9月29日(2009.9.29)
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】