説明

接合構造

【課題】支圧破壊およびせん断すべり破壊を有効に防止できる鉄筋コンクリート柱の接合構造を提供すること。
【解決手段】接合構造1は、鉄筋コンクリート造の柱部材10と、この柱部材10を支持する鉄筋コンクリート造の支持躯体20との接合構造である。支持躯体20の上面には、凹部21が形成され、柱部材10の柱脚部は、凹部21に嵌合されて目地部40が形成される。目地部40のうち支持躯体20の表面側には、凹部21の内壁面23と柱部材10の柱脚部側の側面との間で伝達される力を遮断する溝41が設けられている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、鉄筋コンクリート柱とこの柱を支持する支持躯体との接合構造に関する。
【背景技術】
【0002】
従来より、プレキャスト鉄筋コンクリート造の構造物では、例えば、柱、梁、スラブを工場で柱部材、梁部材、スラブ部材として製造し、各部材を現場に運搬して、互いに接合する。
このうち、柱部材110は、図8に示すように、柱梁接合部、スラブ、あるいは基礎である支持躯体120に接合される。
【0003】
柱部材110の下端には、筒状の継手金物111が打ち込まれており、この継手金物111の下端縁は、柱部材110の下端面から露出している。この継手金物111の内部では、下方に向かって、柱部材の主筋112が延びている。
一方、支持躯体120の上面から上方に向かって主筋124が延びている。また、支持躯体120の上面には、スペーサ127が設けられている。
【0004】
このような構造物では、まず、柱部材110を上から支持躯体120に接近させて、支持躯体120の主筋124が継手金物111の内部に挿入されるようにして、柱部材110をスペーサの上に載せる。これにより、柱部材110と支持躯体120との間には隙間が形成される。
【0005】
次に、柱部材110と支持躯体120との隙間および継手金物111の内部空間に流動性の高いグラウトモルタルを充填する。硬化したグラウトモルタルは、目地部126となる。この目地部126は、支持躯体120の上面に沿って形成されることになる。
【0006】
ところで、近年、コンクリートとして高強度コンクリートを用いる場合がある。この場合、充填するグラウトモルタルの強度はコンクリートの強度より低いため、柱部材110の最も大きい曲げモーメントが作用する部分である目地部126が圧壊し、結果的に、柱部材の曲げ耐力が高強度コンクリートの強度ではなく、グラウトモルタルの強度で決定されてしまう。
【0007】
そこで、充填するグラウトモルタルの強度を柱部材のコンクリート強度よりも高強度とすることが考えられるが、グラウトモルタルを高強度化すると、流動性が低下してしまう。また、建物の挙動によっては、コンクリート強度によって決定される曲げ耐力以上の耐力が柱部材110に要求される場合もある。
【0008】
以上の問題を解決するため、以下のような手法が提案されている。
すなわち、図9に示すように、支持躯体120Aの上面に凹部121を設け、この凹部121に沿って目地部126を形成する方法が提案されている。(特許文献1参照)。この目地部126の上面の高さは、支持躯体120Aの上面と面一となっている。
この手法によれば、目地部126を支持躯体120Aのコンクリートで拘束できるため、柱部材110の曲げ耐力を向上できる。
【0009】
しかしながら、目地部126の上端面の高さを支持躯体の上面と面一とすると,柱部材の下端部が回転することにより、目地部の上端面の近傍が局所的に損傷する支圧破壊や、この目地部の上端面の近傍の支持躯体が破壊するせん断すべり破壊が生じる。
【0010】
また、プレキャスト鉄筋コンクリート柱を簡易に基礎に接合する方法として、基礎部に設けた凹部にプレキャスト鉄筋コンクリート柱を建て込み、凹部とプレキャスト鉄筋コンクリート柱により囲まれる空間をモルタルにより埋める方法が提案されている(特許文献2参照)。しかしながら、この場合も、モルタルの上面高さが基礎部の上面と面一であるため、上記と同様の理由で、モルタルや基礎部に支圧破壊やせん断すべり破壊が生じてしまう。
【0011】
そこで、このせん断すべり破壊を防ぐために、支持躯体の凹部の周囲の部分に補強筋を配筋する手法が提案されている(特許文献3参照)。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特開2009−114738号公報
【特許文献2】特開平6−33470号公報
【特許文献3】特公平7−65318号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
しかしながら、特許文献3に示された手法でも、目地部126の表面の高さが支持躯体120の上面と面一であるため、せん断すべり破壊面が支持躯体の表面付近に生じてしまう。そのため、補強筋の量および位置が限定されるうえに、せん断すべり破壊に抵抗するコンクリート体積が小さくなるため、せん断すべり破壊を十分に防ぐことができない。
【0014】
本発明は、支圧破壊およびせん断すべり破壊を有効に防止できる接合構造を提供することを目的とする。
【課題を解決するための手段】
【0015】
請求項1に記載の接合構造は、柱と当該柱を支持する支持躯体との接合構造であって、前記支持躯体の表面には、凹部が形成され、前記柱の一端が前記凹部に嵌合されて接合部が形成されるとともに、前記接合部のうち支持躯体の表面側には、前記凹部の内壁面と前記柱の一端側の側面との間で伝達される力を遮断または緩衝する遮断緩衝部が設けられていることを特徴とする。
【0016】
ここで、柱の一端側とは、柱の上端または下端の一端側のみに限定するものではなく、本発明が柱の上下端の両方に適用される場合を排除しない。
この発明によれば、柱の一端側を凹部に嵌合して接合部を形成し、この接合部のうち支持躯体の表面側に、凹部の内壁面と柱の一端側の側面との間で伝達される力を遮断または緩衝する遮断緩衝部を設けた。柱の一端側と凹部との接合部には大きな曲げモーメントが作用するが、接合部を介して柱の一端側を支持躯体で拘束できるので、柱の曲げ耐力を向上できる。
【0017】
また、遮断緩衝部の底面が支持躯体の表面よりも底面側に位置するので、せん断すべり破壊を有効に防止できる。これは、支持躯体のせん断すべり破壊面の発生位置が底面側に移動するので、せん断すべり破壊に対して抵抗するコンクリート面積が大きくなるうえに、十分な補強筋で抵抗でき、また、同一変形時の作用偏心支圧力が小さくなるからである。
【0018】
また、遮断緩衝部を設けることにより、柱の内法高さが大きくなるため、水平剛性が小さくなり、柱に地震時水平抵抗を設計上積極的に期待しない場合には、水平変位に対する追従性を向上できる。
また、凹部の内壁面が接合部の表面近傍を拘束するため、接合部の表面近傍の支圧破壊を有効に抑えることができる。
また、接合部により柱のコンクリート躯体が拘束されるので、柱のクリープ変形を抑制できる。
【0019】
請求項2に記載の接合構造は、前記遮断緩衝部は、前記凹部の内壁面と前記柱の一端側の側面との隙間である、あるいは、当該隙間に接着材または粘弾性体が充填されて形成されることを特徴とする。
【0020】
この発明によれば、遮断緩衝部を、凹部の内壁面と柱の一端側の側面との隙間とする。あるいは、遮断緩衝部を、この隙間に接着材または粘弾性体を充填して形成する。
この場合、接合部を、例えば、凹部と柱との隙間にグラウトモルタルを充填することで形成する。これにより、柱の側面と凹部の内壁面との隙間を確実に埋めることができる。
また、硬化したグラウトモルタル、接着材、および粘弾性体のヤング係数はコンクリートよりも小さいことが多いため、材端固定度を低くでき、柱に地震時水平抵抗を設計上積極的に期待しない場合には、これにより、水平変位に対する追従性をさらに向上できる。
【0021】
また、特に接着系材料および粘弾性体は、グラウトモルタルよりヤング係数が低いため、柱端部をそれほど拘束せず、材端固定度が低下する。よって、柱に地震時水平抵抗を設計上積極的に期待しない場合には、接着系材料や粘弾性体を用いることで、水平変位追従性をさらに向上できる。さらに、粘弾性体を用いた場合には、地震時に粘弾性体が変形して振動エネルギーを吸収するため、柱に減衰を付与することができる。
【0022】
請求項3に記載の接合構造は、前記柱は、プレキャスト鉄筋コンクリート造であり、前記柱の一端面には、穴が形成され、前記支持躯体に定着されて前記柱に向かって延びる鋼材は、前記穴の内部に挿入され、前記穴の内部には、充填材が充填されることを特徴とする。
【0023】
ここで、鋼材としては、柱主筋やダボ筋が挙げられる。
この発明によれば、柱をプレキャストコンクリート造としたので、柱を迅速に構築できる。
また、凹部と柱の一端側との間にグラウトモルタルを充填する際、穴の内部にも充填材を充填して、支持躯体から延びる鋼材を柱に定着することができるから、施工手間を軽減できる。
【0024】
請求項4に記載の接合構造は、前記柱は、プレキャスト鉄筋コンクリート造であり、前記凹部の底面には、穴が形成され、前記柱に定着されて前記凹部に向かって延びる鋼材は、前記穴の内部に挿入され、前記穴の内部には、充填材が充填されることを特徴とする。
【0025】
ここで、鋼材としては、柱主筋やダボ筋が挙げられる。
この発明によれば、柱をプレキャストコンクリート造としたので、柱を迅速に構築できる。
また、凹部と柱の一端側との間にグラウトモルタルを充填する際、穴の内部にも充填材を充填して、柱から延びる鋼材を支持躯体に定着することができるから、施工手間を軽減できる。
【0026】
請求項5に記載の接合構造は、前記遮断緩衝部の深さは、せん断すべり破壊耐力および柱部材の曲げ耐力に基づいて決定されることを特徴とする。
【0027】
遮断緩衝部の深さが浅くなるほど、危険断面が高い位置となるので、柱部材の曲げ耐力は大きくなる。一方、遮断緩衝部の深さが深くなるほど、せん断すべり破壊面が大きくなるため、せん断すべり破壊耐力は大きくなる。したがって、遮断緩衝部の深さを調整するだけで、せん断すべり破壊耐力および柱の曲げ耐力を調整できる。
【発明の効果】
【0028】
本発明によれば、遮断緩衝部の底面が支持躯体の表面よりも底面側に位置するので、せん断すべり破壊を有効に防止できる。これは、支持躯体のせん断すべり破壊面の発生位置が底面側に移動するので、せん断すべり破壊に対して抵抗するコンクリート面積が大きくなるうえに、十分な補強筋で抵抗でき、また、同一変形時の作用偏心支圧力が小さくなるからである。また、凹部の内壁面が接合部の表面近傍を拘束するため、接合部の表面近傍の支圧破壊を有効に抑えることができる。
【図面の簡単な説明】
【0029】
【図1】本発明の第1実施形態に係る接合構造の断面図である。
【図2】図1のA−A断面図である。
【図3】溝の深さと、柱の曲げ耐力およびせん断すべり破壊耐力と、の関係を示す図である。
【図4】本発明の第2実施形態に係る接合構造の断面図である。
【図5】本発明の第3実施形態に係る接合構造の断面図である。
【図6】本発明の第4実施形態に係る接合構造の断面図である。
【図7】本発明の第5実施形態に係る接合構造の断面図である。
【図8】本発明の第1の従来例に係る接合構造の断面図である。
【図9】本発明の第2の従来例に係る接合構造の断面図である。
【発明を実施するための形態】
【0030】
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の実施形態の説明にあたって、同一構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
〔第1実施形態〕
図1は、本発明の第1実施形態に係る接合構造1の断面図である。図2は、図1のA−A断面図である。
鉄筋コンクリート造柱の接合構造1は、柱としての柱部材10とこの柱部材10を支持する支持躯体20との接合構造である。
【0031】
柱部材10は、工場で製造されたプレキャスト鉄筋コンクリート造である。柱部材10の下端には、筒状の継手金物11が打ち込まれており、この継手金物11の下端縁は、柱部材10の下端面から露出している。この継手金物11により、柱部材10の下端には、穴が形成されることになる。
継手金物11の内部では、柱部材10に定着された主筋12が下方に向かって延びている。
また、柱部材10には、継手金物11の下端側の内部空間と外部とを連通する注入口13と、継手金物11の上端側の内部空間と外部とを連通する充填確認口14と、が形成されている。
【0032】
支持躯体20の上面には、凹部21が形成されている。この凹部21は、底面22と、この底面22を囲む内壁面23と、で構成される。この凹部21の底面22から上方に向かって、支持躯体20に定着された鋼材としての主筋24が延びている。
【0033】
柱部材10の柱脚部は、凹部21に嵌合されている。すなわち、支持躯体20の凹部21の底面22には、モルタルからなるスペーサ25が形成されており、柱部材10の下端面は、スペーサ25の上に載置されている。これにより、柱部材10と支持躯体20の凹部21との間には、隙間が形成される。また、支持躯体20の主筋24は、継手金物11の内部に挿入されて、柱部材10の主筋12に対向している。
【0034】
柱部材10と凹部21との隙間および継手金物11の内部空間には、流動性の高い充填材としてのグラウトモルタルが充填されている。このうち、柱部材10と凹部21との隙間に充填されたグラウトモルタルが硬化することにより、接合部としての目地部40が形成される。この目地部40は、凹部21に沿って形成される。
目地部40の表面は、支持躯体20の上面よりも低い所定位置であり、これにより、凹部21の内壁面23と柱部材10の柱脚部側の側面との間には、遮断緩衝部としての溝41が形成される。この溝41は、凹部21の内壁面23と柱部材10の柱脚部側の側面との間で伝達される力を遮断するものである。
【0035】
以上の接合構造1では、以下の手順で、柱部材10を支持躯体20に接合する。
まず、支持躯体20の凹部21に、スペーサ25を設ける。
次に、柱部材10を上方から支持躯体20に接近させて、柱部材10の柱脚部を凹部21に嵌合させる。これにより、柱部材10と凹部21との間には、隙間が形成される。
次に、柱部材10と凹部21との隙間の上部を塞ぐように、型枠27を取付ける。この型枠27の下端面の高さを、支持躯体20の上面から所定寸法だけ低い位置とする。
【0036】
次に、充填確認口14からグラウトモルタルが溢れるのを確認できるまで、注入口13にグラウトモルタルを注入して、継手金物11の内部空間にグラウトモルタルを充填するとともに、柱部材10と凹部21との隙間に目地部40を形成する。
このようにして、柱部材10は支持躯体20に一体的に接合される。
【0037】
グラウトモルタルが硬化した後、柱部材10の周囲の型枠27を脱型する。
【0038】
ここで、目地部40の表面の高さつまり溝41の深さを、柱部材10の充填高さ断面の曲げ耐力がこの柱部材10の充填高さ断面に作用する曲げモーメント以上となり、かつ、支持躯体20のせん断すべり破壊耐力が作用偏心支圧力以上となるように、決定する。
【0039】
図3は、溝の深さと、柱部材の曲げ耐力およびせん断すべり破壊耐力と、の関係を示す図である。
凹部底面から溝の底面まで範囲の柱部材の曲げ耐力は、支持躯体のコンクリートや周囲の目地部により拘束されることで十分に向上する。また、柱部材に作用する曲げモーメントは、柱の下端側に向かうに従って大きくなる。
よって、溝の深さにかかわらず、溝の底面位置での断面が危険断面となり、溝の深さが浅くなるほど、この危険断面が高い位置となるので、柱部材の曲げ耐力時せん断力は大きくなる。
【0040】
一方、溝の深さが深くなるほど、せん断すべり破壊面が大きくなるため、せん断すべり破壊耐力は大きくなり、同一変形時での作用偏心支圧力も小さくなる。
【0041】
したがって、溝の深さは、柱部材の曲げ耐力およびせん断すべり破壊耐力の両方を考慮して適切に設定する必要がある。
【0042】
なお、せん断すべり破壊耐力は、支圧強度Fに柱部材のコンクリートとモルタルの接触面積を乗じて求められる。
支圧強度Fは、以下の式(1)により求められる。
【0043】

【0044】
ここで、Fはコンクリートの圧縮強度、a、bは支承面の各辺の長さ、a’、b’は支圧面の各辺の長さであり、β、K’は以下の式(2)、(3)により求められる。
【0045】

【0046】
ここで、Kは実験によって定義する定数で、実用的には50(lb/m)である。また、Fはコンクリートの引張強度である。
【0047】
本実施形態によれば、以下のような効果がある。
(1)柱部材10の柱脚部を凹部21に嵌合して目地部40を形成し、この目地部40のうち支持躯体20の表面側に、凹部21の内壁面23と柱部材10の柱脚部の側面との間で伝達される力を遮断する溝41を設けた。柱部材10の柱脚部と凹部21との接合部である目地部40には大きな曲げモーメントが作用するが、目地部40を介して柱部材10の柱脚部を支持躯体20で拘束できるので、柱部材10の曲げ耐力を向上できる。
【0048】
また、溝41の底面が支持躯体20の上面よりも低い位置となるので、せん断すべり破壊を有効に防止できる。これは、図3に示すように、支持躯体20のせん断すべり破壊面の発生位置が低くなるので、せん断すべり破壊に対して抵抗するコンクリート面積が大きくなるうえに、十分な補強筋で抵抗でき、また、同一変形時の作用偏心支圧力が小さくなるからである。
【0049】
また、溝41を設けることにより、柱部材10の内法高さが大きくなるため、水平剛性が小さくなり、柱部材10に地震時水平抵抗を設計上積極的に期待しない場合には、水平変位に対する追従性を向上できる。
また、凹部21の内壁面23が目地部40の表面近傍を拘束するため、目地部40の表面近傍の支圧破壊を有効に抑えることができる。
また、目地部40により柱部材10のコンクリート躯体が拘束されるので、柱部材10のクリープ変形を抑制できる。
【0050】
(2)目地部40を、凹部21と柱部材10との隙間にグラウトモルタルを充填することで形成したので、柱部材10の側面と凹部21の内壁面23との隙間を確実に埋めることができる。
また、硬化したグラウトモルタルのヤング係数はコンクリートよりも低いことが多いため、材端固定度を低くでき、柱部材10に地震時水平抵抗を設計上積極的に期待しない場合には、これにより、水平変位に対する追従性をさらに向上できる。
【0051】
(3)溝41の深さを調整するだけで、せん断すべり破壊耐力および柱部材10の曲げ耐力を調整できる。
【0052】
(4)柱部材10を、工場で製造されたプレキャストコンクリート造としたので、柱を迅速に構築できる。
また、凹部21と柱部材10の柱脚部との間に充填材を充填して溝41を形成する際、継手金物11の内部空間にも充填材を充填して、支持躯体20から延びる主筋24を柱部材10に定着することができるから、施工手間を軽減できる。
【0053】
〔第2実施形態〕
図4は、本発明の第2実施形態に係る接合構造1Aの断面図である。
本実施形態では、目地部40Aの構造が、第1実施形態と異なる。
すなわち、第1実施形態における目地部40Aのうち凹部21の内壁面23に沿った部分を、グラウトモルタルの代わりに、グラウトモルタルよりもヤング係数が小さい粘弾性体からなる遮断緩衝部としての弾性変形部42とした。
この弾性変形部42は、凹部21の内壁面23と柱部材10の柱脚部側の側面との隙間に粘弾性体が充填されて形成され、凹部21の内壁面23と柱部材10の柱脚部側の側面との間で伝達される力を緩衝するものである。
【0054】
本実施形態によれば、上述の(1)〜(4)の効果に加えて、以下のような効果がある。
(5)目地部40の一部に粘弾性体からなる弾性変形部42を設けた。粘弾性体は、グラウトモルタルよりヤング係数が低いため、柱の柱脚部をそれほど拘束せず、材端固定度が低下する。よって、柱部材10に地震時水平抵抗を設計上積極的に期待しない場合には、充填材としてグラウトモルタルのみを用いた場合に比べて、水平変位追従性をさらに向上できる。
さらに、地震時に粘弾性体が変形し、振動エネルギーを吸収するため,柱部材10に減衰を付与することができる。
【0055】
〔第3実施形態〕
図5は、本発明の第3実施形態に係る接合構造1Bの断面図である。
本実施形態では、支持躯体20は柱梁接合部であり、この柱梁接合部の梁の主筋30の一部、ここでは主筋30Aは、凹部21の側方で、かつ、凹部21の底面22から柱梁接合部の上面までの範囲の高さに配置される。
【0056】
本実施形態によれば、上述の(1)〜(4)の効果に加えて、以下のような効果がある。
(6)柱梁接合部の梁の主筋30の一部を、凹部21の側方でかつ凹部21の底面22から柱梁接合部20の上面までの範囲の高さに配置した。よって、せん断すべり破壊に対して、梁の主筋30で抵抗できるから、せん断すべり破壊をさらに有効に抑制できる。
【0057】
〔第4実施形態〕
図6は、本発明の第4実施形態に係る接合構造1Cの断面図である。
本実施形態では、支持躯体20に鋼材としてのダボ筋29を設け、このダボ筋29で柱部材10Cと支持躯体20とを接合する点が、第1実施形態と異なる。
すなわち、柱部材10Cの主筋12は、柱部材10Cの下端面まで延びていない。また、柱部材10Cの下端には、筒状のシース管11Cが打ち込まれている。このシース管11Cの下端縁は、柱部材10Cの下端面から露出しており、このシース管11Cにより、柱部材10Cの下端には、穴が形成される。
支持躯体20の凹部21には、ダボ筋29が設けられ、このダボ筋29は、シース管11Cに挿入される。
【0058】
本実施形態によれば、上述の(1)〜(4)の効果に加えて、以下のような効果がある。
(7)支持躯体20内に柱部材10Cの主筋12を定着させず、ダボ筋29で柱部材10Cと支持躯体20とを接合する。よって、材端固定度が低下するため、柱部材10Cに地震時水平抵抗を設計上積極的に期待しない場合には、水平変位追従性を向上できる。
【0059】
〔第5実施形態〕
図7は、本発明の第5実施形態に係る接合構造1Dの断面図である。
本実施形態では、柱部材10Dのコンクリートを現場打設する点が、第1実施形態と異なる。この場合でも、凹部21の内壁面23と柱部材10Dとの間に隙間にグラウトモルタルを所定高さまで充填して目地部40Dを形成することで、溝41を形成する。
【0060】
本実施形態によれば、上述の(1)〜(3)の効果に加えて、以下のような効果がある。
(8)現場で配筋してコンクリートを打設することにより柱部材10Dを構築したので、施工コストを削減できる。
【0061】
なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
【0062】
例えば、上述の各実施形態では、本発明を柱部材10、10C、10Dの柱脚部と支持躯体20との接合に適用したが、これに限らず、本発明を柱部材の柱頭部と支持躯体との接合に適用してもよい。また、本発明を、柱部材の柱頭部と支持躯体との接合、および、柱部材の柱脚部と支持躯体との接合、の両方に適用してもよい。
【0063】
また、上述の第4実施形態では、支持躯体20にダボ筋29を設け、このダボ筋29で柱部材10Cと支持躯体20とを接合したが、これに限らず、柱部材10にダボ筋を設けて、このダボ筋で柱部材と支持躯体とを接合してもよい。
【0064】
また、凹部21の深さは適宜設定されてよい。例えば、柱部材10に地震時の水平力を積極的に負担させる場合には、材端固定度を高めるために凹部の深さを深くする。一方、架構中の耐震壁等が水平力の大部分を負担するため、柱部材10に水平力の負担を期待しない場合には、水平変位追従性を向上させるため、凹部の深さを浅くする。
【0065】
また、支持躯体20の凹部21の形状や形成方法は特に限定されない。
また、前記第5実施形態では、柱部材10Dのコンクリートを現場打設し、この柱部材10Dと凹部21と隙間にグラウトモルタルを充填して目地部40Dを形成することで溝41を形成したが、これに限らない。例えば、目地部40Dを柱部材10Dと一体に形成してもよいし、目地部40Dを支持躯体20と一体に形成してもよい。また、シート状の粘弾性体を凹部に設置しておき、この状態で柱部材のコンクリートを現場打設することで、柱部材と凹部との間に粘弾性体を設けてもよい。
【符号の説明】
【0066】
1、1A、1B、1C、1D 接合構造
10、10C、10D 柱部材(柱)
11 継手金物
11C シース管
12 主筋
13 注入口
14 充填確認口
20 支持躯体(柱梁接合部)
21 凹部
22 底面
23 内壁面
24 主筋(鋼材)
25 スペーサ
27 型枠
29 ダボ筋(鋼材)
30、30A 主筋
40、40A、40D 目地部(接合部)
41 溝(遮断緩衝部)
42 弾性変形部(遮断緩衝部)

【特許請求の範囲】
【請求項1】
柱と当該柱を支持する支持躯体との接合構造であって、
前記支持躯体の表面には、凹部が形成され、
前記柱の一端が前記凹部に嵌合されて接合部が形成されるとともに、
前記接合部のうち支持躯体の表面側には、前記凹部の内壁面と前記柱の一端側の側面との間で伝達される力を遮断または緩衝する遮断緩衝部が設けられていることを特徴とする接合構造。
【請求項2】
前記遮断緩衝部は、前記凹部の内壁面と前記柱の一端側の側面との隙間とする、あるいは、当該隙間に接着材または粘弾性体を充填して形成されることを特徴とする請求項1に記載の接合構造。
【請求項3】
前記柱は、プレキャスト鉄筋コンクリート造であり、
前記柱の一端面には、穴が形成され、
前記支持躯体に定着されて前記柱に向かって延びる鋼材は、前記穴の内部に挿入され、
前記穴の内部には、充填材が充填されることを特徴とする請求項1または2に記載の接合構造。
【請求項4】
前記柱は、プレキャスト鉄筋コンクリート造であり、
前記凹部の底面には、穴が形成され、
前記柱に定着されて前記凹部に向かって延びる鋼材は、前記穴の内部に挿入され、
前記穴の内部には、充填材が充填されることを特徴とする請求項1または2に記載の接合構造。
【請求項5】
前記遮断緩衝部の深さは、せん断すべり破壊耐力および柱部材の曲げ耐力に基づいて決定されることを特徴とする請求項1から4のいずれかに記載の接合構造。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−7384(P2012−7384A)
【公開日】平成24年1月12日(2012.1.12)
【国際特許分類】
【出願番号】特願2010−144239(P2010−144239)
【出願日】平成22年6月24日(2010.6.24)
【出願人】(000206211)大成建設株式会社 (1,602)
【Fターム(参考)】