説明

接続構造及び制振構造物

【課題】支持面における上方構造物を支持する部分での法線が上方構造物の重心の下方の所定の場所に向く場合であっても、上方構造物を下方から安定して支持する接続構造及び制振構造物を提供する。
【解決手段】上方構造物2と、上方構造物の下方に設けられ上方構造物を支持する下方構造物3との間に設けられる接続構造4a、4bであって、上方構造物の重心Gを含む鉛直面S1上において、下方構造物の上部に設けられ、上方構造物の重心を含む鉛直線L1に対して対称に配置された一対の支持部7a、7bと、上方構造物の下部に設けられ、鉛直線に対して対称に配置されるとともに、上方に向かうに従って互いに離間するように配置された一対の支持面8a、8bと、を備え、一対の支持面は、鉛直面上を一対の支持部にそれぞれ当接しながら移動する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、構造物を支持する接続構造及び制振構造物に関する。
【背景技術】
【0002】
これまで、地震や風等の外力に対して、上方に配置された上方構造物を下方から安定して支持するために、様々な接続構造が検討されてきた。構造物が高層ビル等の建築構造物である場合には、上方構造物を制振させる接続構造として、種々のダンパが用いられている。
ダンパには、鉛を用いた履歴ダンパ、オイルを利用した粘性ダンパ等がある。これらのダンパは局所的な変形抑制には効果があるが、構造物全体の共振特性を大きく変えることはなく、補助装置として考えるべきである。
このようなダンパが有効に働かない代表的な例として高層構造物がある。高層構造物の振動は長周期の曲げ振動が卓越するが、曲げ振動は高剛性である軸長方向(鉛直方向)の剛性に依存するうえに層間変位も小さい。粘性ダンパ、履歴ダンパなどは、低剛性部分に用いるか、層間変位が大きい部分に用いるか、振動周波数が高いときに用いる場合には効きが良いが、高層ビルの場合にはこのいずれにも当てはまらないため、ダンパを挿入しても効果が低い。従って、長周期地震の影響を受け易い高層ビルは、振動減衰を大きく設計することが困難であるため、長周期地震が問題となっている。
【0003】
近年、高層構造物の制振で注目されているのは、以下に示す構造的なダンパである。
例えば1つめの例として、特許文献1に示す動的制振装置は、建築物上部と下部を分断することによりマスダンパ効果で制振する手法であり、この手法は中間免震にも部類される。
この動的制振装置の原理は、中間免震とすることで構造物全体の固有周期を長くすることにより、通常着目する地震周期領域でのビルの振動が、節の無い1次モードではなく中間免震部付近を節とする2次モードで振動するように設計したものであり、振動の2次モードが1次モードより振幅が小さいことを利用して制振する手法である。
しかし、一般の複数周期の混入した振動で2次モードが卓越して表れなければ、上記動的制振装置は、単に固有周期を長周期側にシフトしたに過ぎず、逆に長周期地震の影響が顕著に表れる可能性がある。また、この動的制振装置は強風に対しても有効とされているが、強風による振動では卓越モードが顕著に表れるため、地震動で意図したような2次モードでは振動せず1次モードでの振動となり、逆に振幅を増大させる可能性がある。これらの理由は、2次モードが卓越する構造となっていないことによる。
【0004】
また、2つ目の例として、特許文献2では、固有周期の異なる構造物を連結した構築構造が提案されている。しかし、構造物を連結することにより1つの構造物となるため、異なる周期振動によるダンピング効果は期待できない。連結構造で得られるのは、連結したことによる曲げ剛性の向上、連結部での大きな運動による連結部のダンパの減衰性能の向上などであり、高層構造物で問題となる共振特性を大きく変えるものではない。
【0005】
これに対し、高層の構造物を中心として用いられる新しい概念の接続構造として、上方構造物が鉛直下向きに凸の円弧軌道を描くように、上方構造物の下方においてこの上方構造物の重心を含む鉛直面に対して対称に配置された一対又は複数対のアイソレータを備えるものが提案されている(例えば、特許文献3及び特許文献4参照)。これらのアイソレータに作用する合力は、上方構造物の重心を向いている(以下、アイソレータのこの配置を「特異配置」と称する)。
上記特許文献3及び特許文献4に示す多層構造物では、地震振動、風振動の主体となる水平方向が剛となる構造を用いているため、従来の高層構造物より小振幅高周波振動となる。この水平方向の振動の実態は縦剪断振動である。そして、縦剪断振動から円弧振動への内部共振により高次モードが卓越した多節振動となるため、低剛性の円弧方向でのダンピングで構造物全体の減衰を得ている。
【0006】
しかし、アイソレータを特異配置とした場合では減衰性能向上に関して幾つかの課題を残していた。まず第1に、減衰応答の速応性、すなわち減衰応答の速さである。特許文献3及び特許文献4に示す多層構造物では、減衰を得るプロセスとして、縦剪断振動から円弧振動への内部共振を用いている。このため、振動初期には減衰が小さく、内部共振により円弧方向へのエネルギー遷移が十分になったときに減衰効果が顕著となるため、減衰応答が遅い。
第2に、減衰量自体の大きさの改善である。アイソレータを特異配置とした場合では、内部共振により円弧方向が高次モード振動となった場合の層間変位により減衰を得るが、内部共振で得たエネルギー量は構造物全体の振動を減衰させるエネルギーとしては不足である。従って、遷移した高次円弧振動の減衰は速いが、十分に円弧方向にエネルギー遷移していない縦剪断振動の減衰は大きくはないため、定常的には縦剪断振動だけが残ることが考えられる。
【0007】
そこで、上記特許文献3及び特許文献4の制振性能を向上させるため、特許文献5に示された制振構造物が提案されている。この特許文献5に示された制振構造物では、各層におけるアイソレータは、上記の特異配置だけでなく、一対又は複数対のアイソレータに作用する合力が上方構造物の重心の上方、下方の所定の場所に向く配置(以下、アイソレータのこの配置を「上方配置」、「下方配置」と称する)が組み合わせて用いられている。
この制振構造物は、水平方向の振動である縦剪断振動の擾乱により、高次円弧振動に類似した各層が逆方向に運動する振動モードとなる。これより、ダイレクトに高次円弧振動を励振する速応性、両振動の類似性から得られる大きな層間変位から、内部共振という間接的なエネルギー遷移手段を経ずに高減衰を得ている。さらに、上記特許文献3及び特許文献4に示された多層構造物に無い減衰効果として、縦剪断振動と高次円弧振動の重ね合わせにより、構造物全体の振動を減少させている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特公平06−60538号公報
【特許文献2】特公平04−26385号公報
【特許文献3】特開2007−231718号公報
【特許文献4】特願2008−151030号
【特許文献5】特願2008−192421号
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、上記特許文献5に示す制振構造物では、アイソレータの上方配置という安定な振子構造の他に、アイソレータの下方配置という不安定な倒立振子型の構造を用いている。重力下において、アイソレータを下方配置としたときに、このアイソレータに円弧方向の剛性があればその剛性により倒立振子の不安定性をカバーするよう設計できるが、円弧方向の接続が平面(支持面)による滑りあるいは転がりなどの場合には、円弧方向剛性の設計自由度が小さいため不安定になり易い。
【0010】
本発明は、このような問題点に鑑みてなされたものであって、支持面における上方構造物を支持する部分での法線が上方構造物の重心の下方の所定の場所に向く場合(下方配置)であっても、上方構造物を下方から安定して支持する接続構造及び制振構造物を提供するものである。
【課題を解決するための手段】
【0011】
上記課題を解決するために、この発明は以下の手段を提案している。
本発明の接続構造は、上方構造物と、該上方構造物の下方に設けられ当該上方構造物を支持する下方構造物との間に設けられる接続構造であって、前記上方構造物の重心を含む鉛直面上において、前記下方構造物の上部に設けられ、前記上方構造物の重心を含む鉛直線に対して対称に配置された一対の支持部と、前記上方構造物の下部に設けられ、前記鉛直線に対して対称に配置されるとともに、上方に向かうに従って互いに離間するように配置された一対の支持面と、を備え、該一対の支持面は、前記鉛直面上を前記一対の支持部にそれぞれ当接しながら移動することを特徴としている。
なお、以下では、本請求項における、上方構造物の重心を含む鉛直面上において、下方構造物の上部に設けられ、上方構造物の重心を含む鉛直線に対して対称に配置された一対の支持部と、上方構造物の下部に設けられ、鉛直線に対して対称に配置された一対の支持面とによる接続構造の構成を、「上接続」と称する。また、以下では、上方に向かうに従って互いに離間するように配置された一対の支持面の配置を、「下に凸」と称する。
【0012】
この発明によれば、上方構造物の重心を含む鉛直面上において、上方構造物は、下部に設けられた一対の支持面を一対の支持部にそれぞれ当接させながら移動する。そして、上方構造物が傾いて所定方向回りに回転したときに、上方構造物に作用する重力により、上方構造物に所定方向とは逆方向回りのトルクが作用する。
従って、この鉛直面上で上方構造物が回転することを抑えて、上方構造物を下方から安定して支持することができる。
なお、ここで言う安定とは、着目する範囲内での局所的な安定を意味する。
【0013】
また、上記の接続構造において、前記鉛直面上で、前記一対の支持面の前記一対の支持部にそれぞれ当接する当接部間の距離を2w、前記当接部から前記前記上方構造物の重心までの鉛直方向の高さをh、水平面と前記支持面がなす角度をθ、前記上方構造物の前記鉛直線に対する回転角をφとしたときに、(1)式を満たすように設定されていることがより好ましい。
【0014】
【数1】

【0015】
この発明によれば、上方構造物の重心を含む鉛直面上において、所定方向回りに回転した上方構造物に、所定方向とは逆方向回りのトルクをより確実に作用させることができる。
【0016】
また、上記の接続構造は、前記鉛直面上で、前記支持部に当接する部分での前記一対の支持面の法線が、前記上方構造物の重心の下方の所定の場所にそれぞれ向くように設定されていても良い。
この発明によれば、支持面における支持部に当接する部分での法線が、上方構造物の重心の下方の所定の場所に向く(以下では、支持面のこの配置を「下方配置」と称する。)という、倒立振子に類似した構成となる場合であっても、上方構造物を下方から安定して支持することができる。
【0017】
また、本発明の接続構造は、上方構造物と、該上方構造物の下方に設けられ当該上方構造物を支持する下方構造物との間に設けられる接続構造であって、前記上方構造物の重心を含む鉛直面上において、前記下方構造物の上部に設けられ、前記上方構造物の重心を含む鉛直線に対して対称に配置されるとともに、上方に向かうに従って互いに接近するように配置された一対の支持面と、前記上方構造物の下部に設けられ、前記鉛直線に対して対称に配置された一対の支持部と、を備え、該一対の支持部は、前記鉛直面上を前記一対の支持面にそれぞれ当接しながら移動することを特徴としている。
なお、以下では、本請求項における、上方構造物の重心を含む鉛直面上において、下方構造物の上部に設けられ、上方構造物の重心を含む鉛直線に対して対称に配置された一対の支持面と、上方構造物の下部に設けられ、鉛直線に対して対称に配置された一対の支持部とによる接続構造の構成を、「下接続」と称する。また、以下では、上方に向かうに従って互いに接近するように配置された一対の支持面の配置を、「上に凸」と称する。
【0018】
この発明によれば、上方構造物の重心を含む鉛直面上において、上方構造物は、下部に設けられた一対の支持部を一対の支持面にそれぞれ当接させながら移動する。そして、上方構造物が傾いて所定方向回りに回転したときに、上方構造物に作用する重力により、上方構造物に所定方向とは逆方向回りのトルクが作用する。
従って、この鉛直面上で上方構造物が回転することを抑えて、上方構造物を下方から安定して支持することができる。
【0019】
また、上記の接続構造において、前記鉛直面上で、前記一対の支持面の前記一対の支持部にそれぞれ当接する当接部間の距離を2w、前記当接部から前記前記上方構造物の重心までの鉛直方向の高さをh、水平面と前記支持面がなす角度をθ、前記上方構造物の前記鉛直線に対する回転角をφとしたときに、(2)式を満たすように設定されていることがより好ましい。
【0020】
【数2】

【0021】
この発明によれば、上方構造物の重心を含む鉛直面上において、所定方向回りに回転した上方構造物に、所定方向とは逆方向回りのトルクをより確実に作用させることができる。
【0022】
また、本発明の制振構造物は、前記上方構造物と、前記下方構造物と、該上方構造物と該下方構造物との間に設けられた上記のいずれかに記載の接続構造と、を備えることがより好ましい。
この発明によれば、上方構造物の重心を含む鉛直面上で上方構造物が回転することを抑えて、上方構造物を下方構造物で下方から安定して支持することができる。
【発明の効果】
【0023】
本発明の接続構造及び制振構造物によれば、支持面における上方構造物を支持する部分での法線が上方構造物の重心の下方の所定の場所に向く場合(下方配置)であっても、上方構造物を下方から安定して支持することができる。
【図面の簡単な説明】
【0024】
【図1】本発明の第1実施形態のアイソレータが上接続の高層構造物で、一対の支持面が下に凸の場合を模式的に示した正面図である。
【図2】同高層構造物をモデル化した図である。
【図3】モデル化した同高層構造物の上層構造物が回転した状態を示す図である。
【図4】モデル化した同高層構造物のアイソレータの周辺の拡大図である。
【図5】本発明の第1実施形態のアイソレータが上接続の高層構造物で、一対の支持面が上に凸の場合を模式的に示した正面図である。
【図6】同高層構造物をモデル化した図である。
【図7】モデル化した同高層構造物の上層構造物が傾いた状態を示す図である。
【図8】モデル化した同高層構造物のアイソレータの周辺の拡大図である。
【図9】同高層構造物の重心に対する中心の位置の位置を示す説明図である。
【図10】同高層構造物の安定性を上層構造物の高さが20(m)の場合でシミュレーションした結果を示す図である。
【図11】同高層構造物の安定性を上層構造物の高さが200(m)の場合でシミュレーションした結果を示す図である。
【図12】本発明の第2実施形態のアイソレータが下接続の高層構造物で、一対の支持面が下に凸の場合を模式的に示した正面図である。
【図13】同高層構造物をモデル化した図である。
【図14】モデル化した同高層構造物の上層構造物が傾いた状態を示す図である。
【図15】モデル化した同高層構造物のアイソレータの周辺の拡大図である。
【図16】本発明の第2実施形態のアイソレータが下接続の高層構造物で、一対の支持面が上に凸の場合を模式的に示した正面図である。
【図17】同高層構造物をモデル化した図である。
【図18】モデル化した同高層構造物の上層構造物が傾いた状態を示す図である。
【図19】モデル化した同高層構造物のアイソレータの周辺の拡大図である。
【図20】同高層構造物の安定性を上層構造物の高さが20(m)の場合でシミュレーションした結果を示す図である。
【図21】同高層構造物の安定性を上層構造物の高さが200(m)の場合でシミュレーションした結果を示す図である。
【発明を実施するための形態】
【0025】
(第1実施形態)
以下、本発明に係る制振構造物の第1実施形態を、図1から図11を参照しながら説明する。本実施形態では、制振構造物が高層構造物である場合を例にとって説明する。
図1に示すように、本実施形態の高層構造物1は、複数の層からなる上層構造物(上方構造物)2と、上層構造物2の下方に設けられ上層構造物2を支持する下層構造物(下方構造物)3と、上層構造物2と下層構造物3との間に設けられた一対のアイソレータ(接続構造)4a、4bと、を備えている。
図中に示すように、鉛直方向をYとし、鉛直方向Yに直交するとともに互いに直交するX方向とZ方向を定める。なお、図中、Y1方向が下方となっている。
本実施形態では、上層構造物2は、Z方向に直交する平面での断面形状が一定であり、上層構造物2の重心Gを含みX方向に直交する鉛直面に対して対称に形成されている。
このため、以下では、高層構造物1を2次元状のモデルとして説明を行う。
また、本実施形態では、アイソレータ4a、4bが上接続の場合について説明するが、まず、後述する支持面8aと支持面8bが上述の下に凸の場合について説明し、次に、支持面8aと支持面8bが上に凸について説明する。
【0026】
アイソレータ4aは、上層構造物2の重心Gを含みZ方向に直交する鉛直面S1上において、下層構造物3の上部に設けられた支持部7aと、上層構造物2の下部に設けられた支持面8aと、を有する。支持部7aは、球状の回転体9aと、一端が下層構造物3の天面に固定され、他端に回転体9aを回転可能に支持する支持体10aとを備えている。
同様に、アイソレータ4bは、鉛直面S1上において、下層構造物3の上部に設けられた支持部7bと、上層構造物2の下部に設けられた支持面8bと、を有する。支持部7bは、球状の回転体9bと、一端が下層構造物3の天面に固定され、他端に回転体9bを回転可能に支持する支持体10bとを備えている。
なお、支持面8aと支持面8bの鉛直面S1による断面は、それぞれ直線状になっている。
【0027】
支持部7aと支持部7b、支持面8aと支持面8bは、それぞれ上層構造物2の重心Gを含む鉛直線L1に対して対称に配置されている。支持面8aにおける支持部7aに当接する部分である当接部11aでの法線、及び支持面8bにおける支持部7bに当接する部分である当接部11bでの法線は、鉛直線L1上の中心Cに向くように配置されている。すなわち、それぞれの法線が中心Cを通っている。
回転体9a、9bの軸線は、Z方向と平行になるように配置されている。さらに、支持面8aと支持面8bは、下に凸となるように配置されている。
そして、上層構造物2の下部に設けられた一対の支持面8a、8bは、鉛直面S1上を、一対の支持部7a、7bにそれぞれ当接しながら移動するように構成されている。なお、上層構造物2を鉛直面S1上で移動させるために、上記のアイソレータ4a、4bをZ方向に複数備えても良い。
上層構造物2、下層構造物3、支持部7a、7bは、例えばコンクリートや鉄筋等の硬質の材料で形成され、変形は無視できるものとする。
【0028】
ここで、当接部11a、11bから鉛直線L1までの距離をそれぞれwとする(このとき、当接部11aと当接部11bの間の距離は2wとなる)。さらに、当接部11a、11bから重心Gまでの鉛直方向Yの高さをh、水平面と支持面8a、8bがなす角度をθとする。
なお、後述する図10、図11、図20、及び図21では角度の単位を(°)とし、これら以外の図では角度の単位を(rad)としている。
また、当接部11aと当接部11bの間の距離は、一般的に、実際の上層構造物2の幅より狭くなる。
【0029】
本実施形態の高層構造物1をモデル化したものを図2に示す。
当接部11aと当接部11bを点A、点Bとし、支持面8aと支持面8bが交差する点を点Oとする。支持面8aにおける当接部11aでの法線が中心Cを通るので、角OACは直角になる。同様に、角OBCも直角になる。
ここで、図3に、モデル化した上層構造物2が方向D1回りに回転し、上層構造物2が傾いたときの状態を示す。移動後の鉛直線L1’と元の位置の鉛直線L1がなす角を回転角φとする(図中に示すφの向きを正とする)。なお、回転角φは、上層構造物2の鉛直線L1に対する角度とみることもできる。
重心G’、中心C’、点A’、点B’、及び点O’は、それぞれ重心G、中心C、点A、点B、及び点Oの移動後の点である。支持面8a、8bは、支持部7a、7bにそれぞれ当接しながら移動するので、点Aは直線O’A’上に位置し、点Bは直線O’B’上に位置する。そして、角OAC及び角OBCが直角なので、角O’AC’及び角O’BC’もそれぞれ直角になる。
図4に示すように、上層構造物2が回転したときに直線OB上を点B’が移動した距離をdとする。
距離dを角度θと回転角φの関数として表すため、三角形O’ABに正弦定理を用いる。このとき、次式が成り立つ。
【0030】
【数3】

【0031】
BC’(点Bと中心C’との距離のこと。以下同様に示す。)を、角度θと回転角φの関数として表すため、三角形ABC’に正弦定理を用いる。このとき、次式が成り立つ。
【0032】
【数4】

【0033】
ここで、図4に示すように、X方向及び鉛直方向Yにそれぞれ平行にx軸及びy軸を定める。このとき、点G’から点C’に向かうベクトルG’C’のx軸成分(以下、「(G’C’)x」のように示す。)及びy軸成分(G’C’)yは、次式のようになる。
【0034】
【数5】

【0035】
次に、アイソレータ4a、4bが上接続である本実施形態において、支持面8aと支持面8bが上に凸となるように配置されている場合について説明する。なお、前述の場合と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
この場合におけるアイソレータ4a、4bは、図5に示すような構成となる。
支持面8aにおける当接部11aでの法線が中心Cを通るので、図6において、角OACは直角になる。同様に、角OBCも直角になる。また、支持面8a、8bは、支持部7a、7bにそれぞれ当接しながら移動するので、図7において、点Aは直線O’A’上に位置し、点Bは直線O’B’上に位置する。そして、角OAC及び角OBCが直角なので、角O’AC’及び角O’BC’もそれぞれ直角になる。
図8において、距離dを角度θと回転角φの関数として表すため、三角形O’ABに正弦定理を用いる。このとき、次式が成り立つ。
【0036】
【数6】

【0037】
また、BC’を、角度θと回転角φの関数として表すため、三角形ABC’に正弦定理を用いる。このとき、次式が成り立つ。
【0038】
【数7】

【0039】
また、この場合の(G’C’)x及び(G’C’)yは、次式のようになる。
【0040】
【数8】

【0041】
ここで、(17)式及び(18)式において、θ=−θ’と置換すると(9)式及び(10)式に一致することが解る。従って、図5に示すように支持面8aと支持面8bが上に凸となる場合は、図1に示すように支持面8aと支持面8bが下に凸となる場合において、θが負の場合として扱えばよいことになる。これより、以下で上層構造物2の安定性を検討するときには、(9)式及び(10)式で統一して行う。
【0042】
本発明で安定とは、着目する範囲内での局所的な安定を意味し、上層構造物2が回転した方向D1とは逆方向D2回りのトルクが上層構造物2に作用する場合を安定とする。具体的には、図3のように上層構造物2が回転したときに、中心C’に対して重心G’がx軸の正の方向(図4におけるx軸の矢印の方向)にあれば、上層構造物2に逆方向D2回りのトルクが作用する。
従って、上層構造物2の対称性も考えて、上層構造物2が安定する条件は、次式のようになる。
【0043】
【数9】

【0044】
ここで、本実施形態において、上層構造物2の中心Cと重心Gとの位置関係について説明する。図9(a)〜図9(c)に示すように、重心Gと中心Cはそれぞれ鉛直線L1上に配置されるが、支持面が水平面となす角度により、アイソレータ4a、4bは3種類に分類される。
図9(a)は、重心Gに中心Cが一致する場合で、アイソレータのこの配置が上述の「特異配置」である。図9(b)は、重心Gの上方に中心Cが配置される場合で、アイソレータのこの配置が上述の「上方配置」である。図9(c)は、重心Gの下方に中心Cが配置される場合で、アイソレータのこの配置が上述の「下方配置」である。
【0045】
上層構造物2のX方向の幅を40(m)とし、上層構造物2の高さを20(m)及び200(m)としたモデルで検討を行った。この場合、当接部11a、11bから鉛直線L1までの距離wは20(m)、当接部11a、11bから重心Gまでの高さhは10(m)及び100(m)となる。
本実施形態では、回転角φとして許容される角度の範囲を、上層構造物2において、−10(°)以上10(°)以下とした。なお、高層構造物1は上層構造物2の重心Gを含みX方向に直交する鉛直面に対して対称に配置されているので、回転角φは、0(°)以上10(°)以下の範囲だけシミュレーションを行った。
シミュレーションの結果を、上層構造物2の高さが20(m)の場合を図10に、200(m)の場合を図11に示す。図10及び図11において、横軸は(G’C’)x、縦軸は(G’C’)yである。
【0046】
角度θとして、−80(°)から80(°)までの、0(°)を除く10(°)刻みの値を用いた。さらに、アイソレータが特異配置のときの角度θを求め、図中に示した。アイソレータが特異配置となるのは、tanθの値と(w/h)の値とが等しくなるときなので、上層構造物2の高さが20(m)の場合は角度θが63.43(°)とき、上層構造物2の高さが200(m)の場合は角度θが11.31(°)ときである。
【0047】
図10及び図11は、重心G’を基準とした中心C’の変位を示している。このため、例えば図10において、角度θが63.43(°)のグラフより上方に示されている((G’C’)yの値が大きい)グラフに対応する角度θの範囲(角度θが10、20、30、40、50、60(°))のときにアイソレータ4a、4bは上方配置となる。また、角度θが63.43(°)のグラフより下方に示されている((G’C’)yの値が小さい)グラフに対応する角度θの範囲(角度θが−80、−70、−60、−50、−40、−30、−20、−10、70、80(°))のときにアイソレータ4a、4bは下方配置となる。
同様に、図11において、角度θが11.31(°)のグラフより上方に示されているグラフに対応する角度θの範囲(角度θが10(°))のときにアイソレータ4a、4bは上方配置となる。また、角度θが11.31(°)のグラフより下方に示されているグラフに対応する角度θの範囲(角度θが−80、−70、−60、−50、−40、−30、−20、−10、20、30、40、50、60、70、80(°))のときにアイソレータ4a、4bは下方配置となる。
【0048】
シミュレーションを行った範囲においては、(20)式の両辺をφsinφで除して得られる次式を満たす場合に上層構造物2が安定する。
【0049】
【数10】

【0050】
図10に示すように、上層構造物2の高さが比較的低いときには、角度θが正の場合、すなわち、支持面8aと支持面8bが下に凸となる図1に示す場合に(21)式を満たし、上層構造物2が安定する。一方、支持面8aと支持面8bが上に凸となる図5に示す場合には、上層構造物2は安定しない。
上層構造物2が安定する範囲を詳細に検討すると、シミュレーションを行った上記の角度θの範囲において、(21)式を満たす場合に上層構造物2が安定する。すなわち、図10の場合には、角度θが10、20、30、40、50、60、70、80(°))のときに上層構造物2が安定する。また、図11の場合には、角度θが10、20、80(°))のときに上層構造物2が安定する。
なお、シミュレーションを行った上記の角度θの範囲において、アイソレータ4a、4bが下方配置であって上層構造物2が安定するのは、図10の場合には角度θが70、80(°)のとき、図11の場合には角度θが20、80(°)のときである。
【0051】
こうして、本発明の第1実施形態の高層構造物1によれば、鉛直面S1上において、上層構造物2は、下部に設けられた一対の支持面8a、8bを一対の支持部7a、7bにそれぞれ当接させながら移動する。そして、上層構造物2が傾いて方向D1回りに回転したときに、上層構造物2に作用する重力により、上層構造物2に方向D1とは逆方向の方向D2回りのトルクが作用する。
従って、鉛直面S1上で上層構造物2が回転することを抑えて、上層構造物2を下方から安定して支持することができる。
また、アイソレータ4a、4bが下方配置とされる、倒立振子に類似した構成となる場合であっても、上層構造物2を下方から安定して支持することができる。
【0052】
(第2実施形態)
次に、本発明に係る第2実施形態について説明するが、前記実施形態と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
図12に示すように、本実施形態の高層構造物21は、上記実施形態の高層構造物1の上接続の構成とされたアイソレータ4a、4bに代えて、下接続の構成とされたアイソレータ(接続構造)24a、24bを備えている。
また、本実施形態において、まず、後述する支持面27aと支持面27bが下に凸の場合について説明し、次に、支持面27aと支持面27bが上に凸の場合について説明する。
【0053】
アイソレータ24aは、鉛直面S1上において、下層構造物3の上部に設けられた支持面27aと、上層構造物2の下部に設けられた支持部28aと、を有する。支持部28aは、球状の回転体29aと、一端が上層構造物2の底面に固定され、他端に回転体29aを回転可能に支持する支持体30aとを備えている。
同様に、アイソレータ24bは、鉛直面S1上において、下層構造物3の上部に設けられた支持面27bと、上層構造物2の下部に設けられた支持部28bと、を有する。支持部28bは、球状の回転体29bと、一端が上層構造物2の底面に固定され、他端に回転体29bを回転可能に支持する支持体30bとを備えている。
なお、支持面27aと支持面27bの鉛直面S1による断面は、それぞれ直線状になっている。
【0054】
支持面27aと支持面27b、支持部28aと支持部28bは、それぞれ鉛直線L1に対して対称に配置されている。支持面27aにおける支持部28aに当接する部分である当接部31aでの法線、及び支持面27bにおける支持部28bに当接する部分である当接部31bでの法線は、鉛直線L1上の中心Cに向くように配置されている。すなわち、それぞれの法線が中心Cを通っている。
回転体29a、29bの軸線は、Z方向と平行になるように配置されている。さらに、支持面27aと支持面27bは、下に凸となるように配置されている。
そして、上層構造物2の下部に設けられた一対の支持部28a、28bは、鉛直面S1上を、一対の支持面27a、27bにそれぞれ当接しながら移動するように構成されている。
本実施形態のアイソレータ24a、24bは硬質の材料で形成され、変形は無視できるものとする。
【0055】
ここで、当接部31a、31bから鉛直線L1までの距離をそれぞれwとする(このとき、当接部31aと当接部31bの間の距離は2wとなる)。さらに、当接部31a、31bから重心Gまでの鉛直方向Yの高さをh、水平面と支持面27a、27bがなす角度をθとする。
【0056】
本実施形態の高層構造物21をモデル化したものを図13に示す。
当接部31aと当接部31bを点A、点Bとし、支持面27aと支持面27bが交差する点を点Oとする。支持面27aにおける当接部31aでの法線が中心Cを通るので、角OACは直角になる。同様に、角OBCも直角になる。
ここで、図14に、モデル化した上層構造物2が方向D1回りに回転し、上層構造物2が傾いたときの状態を示す。移動後の鉛直線L1’と元の位置の鉛直線L1がなす角を回転角φとする(図中に示すφの向きを正とする)。
重心G’、中心C’、点A’、及び点B’は、それぞれ重心G、中心C、点A、及び点Bの移動後の点である。支持部28a、28bは、支持面27a、27bにそれぞれ当接しながら移動するので、点A’は直線OA上に位置し、点B’は直線OB上に位置する。そして、角OAC及び角OBCが直角なので、角OA’C’及び角OB’C’もそれぞれ直角になる。
図15に示すように、上層構造物2が傾いたときに直線OB上を点B’が移動した距離をdとする。
B’C’を、角度θと回転角φの関数として表すため、三角形A’B’C’に正弦定理を用いる。このとき、次式が成り立つ。
【0057】
【数11】

【0058】
ここで、図15に示すように、X方向及び鉛直方向Yにそれぞれ平行にx軸及びy軸を定める。このとき、(G’C’)x及び(G’C’)yは、次式のようになる。
【0059】
【数12】

【0060】
次に、アイソレータ24a、24bが下接続である本実施形態において、支持面27aと支持面27bが上に凸となる場合について説明する。なお、前述の場合と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
この場合におけるアイソレータ24a、24bは、図16に示すような構成となる。
支持面27aにおける当接部31aでの法線が中心Cを通るので、図17において、角OACは直角になる。同様に、角OBCも直角になる。また、支持部28a、28bは、支持面27a、27bにそれぞれ当接しながら移動するので、図18において、点A’は直線OA上に位置し、点B’は直線OB上に位置する。そして、角OAC及び角OBCが直角なので、角OA’C’及び角OB’C’もそれぞれ直角になる。
図19において、B’C’を、角度θと回転角φの関数として表すため、三角形A’B’C’に正弦定理を用いる。このとき、次式が成り立つ。
【0061】
【数13】

【0062】
また、この場合の(G’C’)x及びは(G’C’)yは、(27)式を用いて次式のようになる。
【0063】
【数14】

【0064】
ここで、(28)式及び(29)式において、θ=−θ’と置換すると(24)式及び(25)式に一致することが解る。従って、図16に示すように支持面27aと支持面27bが上に凸となる場合は、図12に示すように支持面27a、27bが下に凸となる場合において、θが負の場合として扱えばよいことになる。これより、以下で上層構造物2の安定性を検討するときには、(24)式及び(25)式で統一して行う。
本実施形態の場合、上層構造物2が安定する条件は、次式のようになる。
【0065】
【数15】

【0066】
上記実施形態と同様に、上層構造物2のX方向の幅を40(m)とし、上層構造物2の高さを20(m)及び200(m)としたモデルで検討を行った。
本実施形態では、回転角φとして許容される角度の範囲を、上記実施形態と同様に、上層構造物2において、−10(°)以上10(°)以下とした。なお、高層構造物21は上層構造物2の重心Gを含みX方向に直交する鉛直面に対して対称に配置されているので、回転角φは、0(°)以上10(°)以下の範囲だけシミュレーションを行った。
シミュレーションの結果を、上層構造物2の高さが20(m)の場合を図20に、上層構造物2の高さが200(m)の場合を図21に示す。図20及び図21において、横軸は(G’C’)x、縦軸は(G’C’)yである。
【0067】
角度θとして、−80(°)〜80(°)までの、0(°)を除く10(°)刻みの値を用いた。さらに、アイソレータが特異配置のときの角度θを求め、図中に示した。アイソレータが特異配置となるのは、上層構造物2の高さが20(m)の場合は角度θが63.43(°)とき、上層構造物2の高さが200(m)の場合は角度θが11.31(°)ときである。
【0068】
図20において、角度θが63.43(°)のグラフより上方に示されているグラフに対応する角度θの範囲(角度θが10、20、30、40、50、60(°))のときにアイソレータ24a、24bは上方配置となる。また、角度θが63.43(°)のグラフより下方に示されているグラフに対応する角度θの範囲(角度θが−80、−70、−60、−50、−40、−30、−20、−10、70、80(°))のときにアイソレータ24a、24bは下方配置となる。
同様に、図21において、角度θが11.31(°)のグラフより上方に示されているグラフに対応する角度θの範囲(角度θが10(°))のときにアイソレータ24a、24bは上方配置となる。また、角度θが11.31(°)のグラフより下方に示されているグラフに対応する角度θの範囲(角度θが−80、−70、−60、−50、−40、−30、−20、−10、20、30、40、50、60、70、80(°))のときにアイソレータ24a、24bは下方配置となる。
【0069】
シミュレーションを行った範囲においては、(31)式の両辺をφsinφで除して得られる次式を満たす場合に上層構造物2が安定する。
【0070】
【数16】

【0071】
図20及び図21に示すように、角度θが正の場合、すなわち、支持面27aと支持面27bが下に凸となる図12に示す場合に、本実施形態の高層構造物21は安定しないことが分かる。
上層構造物2が安定する範囲を詳細に検討すると、シミュレーションを行った上記の角度θの範囲において、(32)式を満たす場合に上層構造物2が安定する。すなわち、図20の場合には、角度θが−80、−70、−60、−50、−40、−30(°))のときに上層構造物2が安定する。また、図21の場合には、角度θが−80(°))のときに上層構造物2が安定する。
このように、上層構造物2が安定するのは、支持面8aと支持面8bが上に凸となる図16に示す場合、より詳しくは、(32)式を満たす場合となる。
【0072】
こうして、本発明の第2実施形態の高層構造物21によれば、鉛直面S1上において、上層構造物2は、下部に設けられた一対の支持部28a、28bを一対の支持面27a、27bにそれぞれ当接させながら移動する。そして、上層構造物2が傾いて方向D1回りに回転したときに、上層構造物2に作用する重力により、上層構造物2に方向D1とは逆方向の方向D2回りのトルクが作用する。
従って、鉛直面S1上で上層構造物2が傾くことを抑えて、上層構造物2を下方から安定して支持することができる。
【0073】
なお、本実施形態に比較して上記第1実施形態では、アイソレータを上方配置及び下方配置にした場合のいずれにおいても安定であることが分かった。これにより、アイソレータの上方配置及び下方配置にする場合には、上記第1実施形態のアイソレータの上接続の仕様にすることが好ましい。
【0074】
以上、本発明の第1実施形態及び第2実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更等も含まれる。
例えば、上記第1実施形態及び第2実施形態では、上層構造物2は、Z方向に直交する平面での断面形状が一定であり、上層構造物2の重心Gを含みX方向に直交する鉛直面に対して対称に形成されているとした。しかし、上層構造物の重心を含む鉛直面上(鉛直面上とは、この鉛直面における断面のことを意味する)において、アイソレータが前記上接続又は下接続の構成になっていれば良い。
また、上層構造物の水平面による断面が、正六角形、正八角形等の、辺の数が偶数である正多角形でも良い。また、上層構造物の水平面による断面は、円形であっても良い。この場合、アイソレータは、上層構造物の重心を含む鉛直線回りに回転対称となるように設けても良い。
【0075】
また、上記第1実施形態及び第2実施形態では、支持部は、球状の回転体と支持体とを備えていた。しかし、支持部の構成はこれに限ることなく、上層構造物の重心を含む鉛直面上において、支持部が支持面と一点で当接するように構成され、支持面がこの一点に当接しながら移動するように構成されるものであれば良い。
例えば、支持部は円柱状に形成され、支持体によりZ方向に平行な回転軸回りに回転可能に支持されていても良い。
また、支持部が多角柱状で硬質の材料で形成され、その軸線に平行な一辺で支持面と当接し、その支持部の一つの側面が上層構造物2又は下層構造物3に支持されていても良い。
【0076】
また、上記第1実施形態及び第2実施形態では、制振構造物が高層構造物である場合について説明したが、制振構造物はこれに限ることなく、例えば荷物を支持する荷台としても良い。
また、上記第1実施形態及び第2実施形態では、制振構造物が高層構造物である場合に、上層構造物2の回転角φの許容範囲を−10(°)以上10(°)以下とした。しかし、回転角φの許容範囲は高層構造物の仕様に応じて適宜設定することができる。また、制振構造物が荷台等の場合にも、その仕様や目的に応じて適宜設定することができる。
【0077】
また、上記実施形態の接続構造及び制振構造物は、地球上の構造物だけでなく、月といった衛星や、火星等の惑星上でも用いることができる。
【符号の説明】
【0078】
1、21 高層構造物(制振構造物)
2 上層構造物(上方構造物)
3 下層構造物(下方構造物)
4a、4b、24a、24b アイソレータ(接続構造)
7a、7b、28a、28b 支持部
8a、8b、27a、27b 支持面
11a、11b、31a、31b 当接部
G 重心
L1 鉛直線
S1 鉛直面
θ 角度
φ 回転角

【特許請求の範囲】
【請求項1】
上方構造物と、該上方構造物の下方に設けられ当該上方構造物を支持する下方構造物との間に設けられる接続構造であって、
前記上方構造物の重心を含む鉛直面上において、
前記下方構造物の上部に設けられ、前記上方構造物の重心を含む鉛直線に対して対称に配置された一対の支持部と、
前記上方構造物の下部に設けられ、前記鉛直線に対して対称に配置されるとともに、上方に向かうに従って互いに離間するように配置された一対の支持面と、を備え、
該一対の支持面は、前記鉛直面上を前記一対の支持部にそれぞれ当接しながら移動することを特徴とする接続構造。
【請求項2】
請求項1に記載の接続構造において、
前記鉛直面上で、
前記一対の支持面の前記一対の支持部にそれぞれ当接する当接部間の距離を2w、前記当接部から前記前記上方構造物の重心までの鉛直方向の高さをh、水平面と前記支持面がなす角度をθ、前記上方構造物の前記鉛直線に対する回転角をφとしたときに、(1)式を満たすように設定されていることを特徴とする接続構造。
【数1】

【請求項3】
請求項1又は請求項2に記載の接続構造において、
前記鉛直面上で、
前記支持部に当接する部分での前記一対の支持面の法線が、前記上方構造物の重心の下方の所定の場所にそれぞれ向くように設定されていることを特徴とする接続構造。
【請求項4】
上方構造物と、該上方構造物の下方に設けられ当該上方構造物を支持する下方構造物との間に設けられる接続構造であって、
前記上方構造物の重心を含む鉛直面上において、
前記下方構造物の上部に設けられ、前記上方構造物の重心を含む鉛直線に対して対称に配置されるとともに、上方に向かうに従って互いに接近するように配置された一対の支持面と、
前記上方構造物の下部に設けられ、前記鉛直線に対して対称に配置された一対の支持部と、を備え、
該一対の支持部は、前記鉛直面上を前記一対の支持面にそれぞれ当接しながら移動することを特徴とする接続構造。
【請求項5】
請求項4に記載の接続構造において、
前記鉛直面上で、
前記一対の支持面の前記一対の支持部にそれぞれ当接する当接部間の距離を2w、前記当接部から前記前記上方構造物の重心までの鉛直方向の高さをh、水平面と前記支持面がなす角度をθ、前記上方構造物の前記鉛直線に対する回転角をφとしたときに、(2)式を満たすように設定されていることを特徴とする接続構造。
【数2】

【請求項6】
前記上方構造物と、
前記下方構造物と、
該上方構造物と該下方構造物との間に設けられた請求項1から請求項5のいずれかに記載の接続構造と、
を備えることを特徴とする制振構造物。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2010−281427(P2010−281427A)
【公開日】平成22年12月16日(2010.12.16)
【国際特許分類】
【出願番号】特願2009−137325(P2009−137325)
【出願日】平成21年6月8日(2009.6.8)
【出願人】(000002299)清水建設株式会社 (2,433)
【Fターム(参考)】