説明

改質ガス利用システム

【課題】 改質ガス利用装置の安定動作を可能とする改質ガス利用システムを提供すること
【解決手段】 PSR型改質器10又はPSR型改質器20で改質生成された改質ガスと水素分離膜型燃料電池40から排出されたアノードオフガスとの間で熱交換器30において熱授受が行われ、改質ガスの温度が水素分離膜型燃料電池40の作動温度近傍に調節された後に改質ガスが水素分離膜型燃料電池40に供給される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は改質ガス利用システムに関し、特に触媒を用いた燃料改質反応と触媒を加熱再生する再生反応(発熱反応)とを切替えて行なう改質反応装置を備えた改質ガス利用システムに関する。
【背景技術】
【0002】
化石燃料等の改質用燃料を改質して改質ガス(水素リッチなガス)を発生させる改質反応装置と、得られた改質ガスを利用して作動する改質ガス利用装置と、を備えた改質ガス利用システムとして、例えば、触媒を用いて吸熱反応である燃料の水蒸気改質反応と水蒸気改質反応で低下した触媒温度を再生する発熱反応とを切替えて繰り返し行なう複数の改質反応器を備えた改質反応装置を有する燃料電池システムが提案されている(例えば、特許文献1参照。)。また、上記以外に関連する技術として開示されているものがある(例えば、特許文献2乃至4参照。)。
【0003】
特許文献1に記載の改質反応装置では、2基ある改質反応器の一方を器内の蓄熱を利用して吸熱反応である水蒸気改質反応させると共に、他方では発熱反応を行なわせるようにし、前記一方の蓄熱量が水蒸気改質反応により低下したときには発熱反応に切替えると共に、前記他方では発熱反応により蓄熱された熱で燃料改質を行なうように改質反応に切替える。これにより、別途の加熱器等が不要になり、熱エネルギーの利用効率の高い連続的な水素生成が可能である。
【特許文献1】米国特許2004−175326号明細書
【特許文献2】米国特許2004−170558号明細書
【特許文献3】米国特許2004−170559号明細書
【特許文献4】米国特許2003−235529号明細書
【発明の開示】
【発明が解決しようとする課題】
【0004】
吸熱反応である水蒸気改質反応は発熱反応により改質反応器に蓄えられた熱を利用して起こるため、水蒸気改質反応の進行に伴い改質ガスの温度が低下する。そのため、燃料電池などの改質ガス利用装置に供給される改質ガスの温度を一定に保つことができずに改質ガス利用装置の安定動作に支障をきたすことがあった。
【0005】
本発明は、上記問題点に鑑みてなされたものであり、改質ガス利用装置の安定動作を可能とする改質ガス利用システムを提供することを目的とする。
【課題を解決するための手段】
【0006】
上記目的を達成するための本発明の改質ガス利用システムは、触媒を備え、改質用原料が供給されたときには加熱された前記触媒上で前記改質用原料を改質反応させ、発熱用燃料が供給されたときには前記発熱用燃料を発熱反応させて前記触媒を加熱する改質反応器を、少なくとも2基有する改質反応装置と、前記改質反応装置で生成された改質ガスが供給されて作動する改質ガス利用装置と、前記改質ガスの温度を、前記改質ガス利用装置の作動温度に近づける温度調節手段と、を備えたものである。
【0007】
本発明の改質ガス利用システムに係る改質反応装置は、蓄熱を利用した燃料の水蒸気改質反応と水蒸気改質反応で低下した蓄熱量(すなわち触媒温度)を回復させる発熱反応とを切替えて行なうことができる少なくとも2基の改質反応器(以下、「PSR(Pressure swing reforming)型改質器」ともいう。)を有しており、少なくとも1基が燃料の改質反応を行なうと共に、他の少なくとも1基において発熱反応を行なわせるようになっている(以下、改質反応装置を「PSR改質装置」ということがある。)。
【0008】
例えば改質反応器が2基である場合、一方を器内の蓄熱を利用して水蒸気改質反応させると共に、他方では発熱反応を行なわせるようにし、前記一方の蓄熱量が水蒸気改質反応により低下したときには発熱反応に切替えると共に、前記他方では発熱反応により蓄熱された熱で燃料改質を行なうように改質反応に切り替える。
【0009】
水蒸気改質反応によって生成された改質ガスの温度は、改質反応器に備えられた触媒の出口温度と略同等であり、一方の改質反応器内で水蒸気改質反応が進むと触媒温度が徐々に低下し、それに伴って改質ガスの温度も低下する。また、水蒸気改質反応を他方の改質反応器で行うようにした場合、他方の改質反応器の触媒温度が高い(蓄熱量が多い)ため、改質ガスの温度が上昇する。そのため、PSR改質装置から供給される改質ガスの温度は一定ではない。
【0010】
本発明の改質ガス利用システムはPSR改質装置から供給される改質ガスの温度を改質ガス利用装置の作動温度に近づける温度調節手段を備えるため、改質ガス利用装置の安定動作を実現できる。
【0011】
本発明では、改質用原料として改質用燃料と水蒸気との混合ガスが用いられる。改質用燃料としては、水蒸気改質などの改質反応により水素および一酸化炭素の合成ガス(水素含有ガス)を得るための燃料として一般に用いられる炭化水素燃料(例えばメタンガス、ガソリンなど)の中から適宜選択して用いることができる。また、本発明に用いられる発熱用燃料には、前述の炭化水素燃料の他に、改質反応により生成した改質ガス等を用いることもできる。
【0012】
本発明の改質ガス利用システムにおいては、前記温度調節手段は、前記改質ガス利用装置から排出された排出ガスと前記改質ガスとの間で熱授受を行わせる熱交換器であることが好ましい。熱交換器を用いることにより、改質ガスを加熱する加熱手段や冷却する冷却手段を別途備えることなく改質ガスの温度を改質ガス利用装置の動作温度近傍に近づけることができる。そのため、システムの簡素化を図れる。
【0013】
前記改質ガス利用装置は燃料電池であってもよい。燃料電池には固体高分子形、固体酸化物形などの種々のタイプがあるが、そのタイプによって最適な作動温度が存在し、作動温度が低いと電解質膜のプロトン導電性が落ちるために発電効率が悪化することがあり、作動温度が高いと燃料電池の劣化が促進されるという問題を生ずることがある。本発明の改質ガス利用システムは改質ガスの温度を改質ガス利用装置である燃料電池の作動温度に近づける温度調節手段を備えるため、改質ガス温度の変動による燃料電池の作動温度の変動を抑えることができ、燃料電池の安定動作を実現できる。
【0014】
本発明に用いられる燃料電池は特に限定されるものではないが、PSR改質装置から供給される改質ガスの温度近傍(300〜600℃)で作動する燃料電池が好ましく、水素透過性金属層の少なくとも片面に電解質層が積層された電解質を備えた燃料電池が効果的である。
【発明の効果】
【0015】
本発明によれば、改質ガス利用装置の安定動作を可能とする改質ガス利用システムを提供することができる。
【発明を実施するための最良の形態】
【0016】
以下、本発明の改質ガス利用システムの実施形態について図面を用いて詳細に説明する。本実施形態においては、発熱用燃料の一例として燃焼用燃料を用いた場合について説明する。
【0017】
本発明の改質ガス利用システムは、改質反応装置に供給される改質用原料としてガソリン及び水蒸気の混合ガスを用い、改質ガス利用装置として水素透過性の金属膜の膜面にプロトン伝導性のセラミックスが積層されたものを電解質膜として用いた水素分離膜型燃料電池(HMFC)を用い、温度調節手段として水素分離膜型燃料電池のアノードオフガスと改質反応装置で生成された改質ガスとの間で熱授受を行うようにした熱交換器を用いて構成される。
【0018】
図1は本発明の改質ガス利用システムの実施形態の一例を示す概略構成図である。本実施形態に係る改質ガス利用システムは、触媒が設けられ、改質反応と発熱反応(燃焼反応)とを切替えて行なわせることが可能な第1のPSR型改質器10及び第2のPSR型改質器20を有する改質反応装置と、熱交換器30と、水素分離膜型燃料電池40と、を備える。
【0019】
PSR型改質器10及びPSR型改質器20は、両端が閉塞された断面円形の筒状体と、前記筒状体の内壁面に担持された触媒(触媒担持部)とで構成されており、前記筒状体は反応を行なうための空間及びガス流路を形成すると共に、触媒担持体としての機能を担っている。
【0020】
前記筒状体はセラミックスハニカムを用いて直径10cmの断面円形の筒型に成形し、筒の長さ方向の両端を閉塞した中空体である。断面形状やサイズは、目的等に応じて、円形以外の矩形、楕円形などの任意の形状、サイズを選択することができる。
【0021】
前記触媒は、前記筒状体内壁の曲面のうち、筒状体の長さ方向両端から筒内方向に向かう筒の中央付近、すなわち長さ方向の両端からそれぞれ所定距離の領域を触媒を担持しない触媒非担持部として残し、触媒非担持部を除く全面に担持されている。前記触媒としては、Pd、Ni、Pt、Rh、Ag、Ce、Cu、La、Mo、Mg、Sn、Ti、Y、Zn等の金属を用いることができる。
【0022】
水素分離膜型燃料電池40は、図2に示すように、水素透過性金属を用いた緻密な水素透過層を有する電解質膜51と、電解質膜51を狭持する酸素極(O2極)52および水素極(H2極)53とで構成されており、改質ガスが供給されると水素を選択的に透過させて発電運転が行なえるようになっている。
【0023】
酸素極52と電解質膜51との間には、酸化剤ガスとして空気(Air)を通過、すなわち給排するためのエア流路59aが形成されており、水素極53と電解質膜51との間には、水素リッチな燃料ガス(ここでは、改質生成された改質ガス)を通過、すなわち給排するための燃料流路59bが形成されている。酸素極52および水素極53は、カーボン(例えば、白金または白金と他の金属とからなる合金を担持したカーボン粉)や電解質溶液(例えば、Aldrich Chemical社製のNafion Solution)など種々の材料を用いて形成可能である。
【0024】
電解質膜51は、バナジウム(V)で形成された緻密な基材(水素透過性金属からなる緻密な水素透過層)56を含む4層構造となっている。パラジウム(Pd)層(水素透過性材料からなる緻密な水素透過層)55、57は、基材56を両側から挟むようにして設けられており、一方のPd層55の基材56と接する側と逆側の面には、更にBaCeO3(固体酸化物)からなる電解質層54が薄層状に設けられている。
【0025】
基材56は、バナジウム(V)以外に、ニオブ、タンタル、およびこれらの少なくとも一種を含む合金を用いて好適に形成することができる。これらは、高い水素透過性を有すると共に、比較的安価である。
【0026】
電解質層(BaCeO3層)54は、BaCeO3以外にSrCeO3系のセラミックスプロトン伝導体などを用いて構成することができる。
【0027】
水素透過性金属には、パラジウム以外に、例えば、バナジウム、ニオブ、タンタルおよびこれらの少なくとも一種を含む合金、並びにパラジウム合金などが挙げられる。これらを用いた緻密層を設けることで電解質層を保護できる。
【0028】
水素透過性金属からなる緻密層(被膜)については、酸素極側では、一般に水素透過性が高く比較的安価である点で、例えば、バナジウム(バナジウム単体および、バナジウム−ニッケル等の合金を含む。)、ニオブ、タンタルおよびこれらの少なくとも一種を含む合金のいずれかを用いるのが好ましい。これらは水素極側での適用も可能であるが、水素脆化を回避する点で酸素極側が望ましい。また、水素極側では、水素透過性が比較的高く水素脆化しにくい点で、例えば、パラジウムまたはパラジウム合金を用いるのが好ましい。
【0029】
図2に示すように、Pd層55/基材56/Pd層57の3層からなるサンドウィッチ構造、すなわち異種金属(水素透過性材料からなる緻密層)からなる2層以上の積層構造を有してなる場合、異種金属の接触界面の少なくとも一部に該異種金属同士の拡散を抑制する金属拡散抑制層を設けるようにしてもよい(例えば図4及び図5参照)。金属拡散抑制層については、特開2004−146337号公報の段落[0015]〜[0016]に記載されている。
【0030】
上記のように、サンドウィッチ構造をパラジウム(Pd)/バナジウム(V)/Pdとする以外に、Pd/タンタル(Ta)/V/Ta/Pd等の5層構造などとして設けることも可能である。VはPdよりプロトンまたは水素原子の透過速度が速く安価であるが、水素分子をプロトン等に解離する能力が低いため、水素分子をプロトン化する能力の高いPd層をV層の片側または両側の面に設けることで、透過性能を向上させることができる。この場合に、金属層間に金属拡散抑制層を設けることで、異種金属同士の相互拡散を抑え、水素透過性能の低下、ひいては燃料電池の起電力の低下を抑制することができる。
【0031】
また、電解質層54は固体酸化物からなり、Pd層55との界面の少なくとも一部には、電解質層中の酸素原子とPdとの反応を抑制する反応抑制層を設けるようにしてもよい(例えば図4の反応抑制層65)。この反応抑制層については、特開2004−146337号公報の段落[0024]〜[0025]に記載されている。
【0032】
電解質膜51は、緻密な水素透過性材料であるバナジウム基材と燃料電池のカソード側に成膜された無機質の電解質層とで構成されることにより、電解質層の薄層化が可能で、一般に高温型の固体酸化物形燃料電池(SOFC)の作動温度を300〜600℃の温度域に低温化することができる。
【0033】
水素分離膜型燃料電池40は、燃料流路59bに水素(H2)密度の高い改質ガスが供給され、エア流路59aに酸素(O2)を含む空気が供給されると、下記式(1)〜(3)で表される電気化学反応(電池反応)を起こして外部に電力を供給する。なお、式(1) 、式(2)は各々アノード側、カソード側での反応を示し、式(3)は燃料電池での全反応である。
【0034】
2 → 2H++2e- …(1)
(1/2)O2+2H++2e- → H2O …(2)
2+(1/2)O2 → H2O …(3)
【0035】
PSR型改質器10の一端、およびPSR型改質器20の一端には、改質用原料を供給する配管102がバルブV1及びバルブV3を介して接続されている。バルブV1及びバルブV3の開閉を制御することにより、PSR型改質器10又はPSR型改質器20に改質用原料が供給され、改質反応が開始される。PSR型改質器10及びPSR型改質器20の他の一端には、改質反応器内で改質生成された改質ガスを取り出し可能なようにバルブV5及びバルブV7を介して配管104の一端が接続されている。配管104の他端は熱交換器30と接続されている。配管106の一端は熱交換器30と接続され、他端は水素分離膜型燃料電池40の燃料流路59bの改質ガス供給口と接続されている。配管104と配管106とは熱交換器30を介して連通されており、PSR型改質器10又はPSR型改質器20で生成された改質ガスが水素分離膜型燃料電池40に供給されるようになっている。
【0036】
配管108の一端は水素分離膜型燃料電池40の燃料流路59bのアノードオフガス排出口に接続され、配管108の他端は熱交換器30と接続されている。配管110の一端は、熱交換器30と接続されており、配管110の他端はバルブV6及びバルブV8を介してPSR型改質器10及びPSR型改質器20と接続されている。配管108と配管110とは熱交換器30を介して連通されており、水素分離膜型燃料電池40から排出されたアノードオフガスをバルブV6及びバルブV8の開閉を制御することによりPSR型改質器10又はPSR型改質器20に供給可能なようになっている。アノードオフガス中には電池反応に寄与しなかった水素ガスが残存しており、この水素ガスを燃焼用燃料として用いることができる。さらに、PSR型改質器10及びPSR型改質器20には不図示の給気手段から配管110を介して空気が供給されるようになっており、燃焼用燃料と空気中の酸素との反応により燃焼反応が起きる。
【0037】
水素分離膜型燃料電池40のエア流路59aのエア供給口には酸化剤ガスである空気を供給する配管112が接続されており、エア流路59aのカソードオフガス排出口にはカソードオフガスを排出可能なように配管114が接続されている。
【0038】
熱交換器30において改質ガスとアノードオフガスとの熱授受を行うことにより改質ガスの温度をアノードオフガスの温度近傍に調節することができる。水素分離膜型燃料電池40からの排出ガスとしては、アノードオフガスの他にカソードオフガス又は水素分離膜型燃料電池40を冷却する不図示の冷却流路を通過した冷却媒体等があり、改質ガスとカソードオフガス又は冷却媒体との間で熱授受を行うようにしてもよいが、燃料電池の動作温度にほぼ等しいアノードオフガスと改質ガスとの間で熱授受を行わせるのが好ましい。
【0039】
PSR型改質器10及びPSR型改質器20の配管102が接続されている側には、改質反応器からのオフガスを排出可能なように配管116がバルブV2及びバルブV4を介して接続されている。
【0040】
次に、本発明の改質ガス利用システムの動作について説明する。まず、PSR改質装置による改質ガスの改質生成のための動作について説明する。バルブV1、バルブV4、バルブV5及びバルブV8を開け、バルブV2、バルブV3、バルブV6及びバルブV7を閉じた状態で水蒸気改質可能温度に達したPSR型改質器10に改質用原料が配管102を通じて供給され、PSR型改質器20に燃焼用燃料としてアノードオフガス、及び空気が配管110を通じて供給される。これにより、PSR型改質器10では改質反応器の蓄熱を利用して水蒸気改質反応が行われ、改質生成された改質ガスが配管104を通じて取り出される。また、PSR型改質器20では燃焼反応により改質可能温度となるまで触媒が加熱され、燃焼オフガスが配管116を通じて排出される。
【0041】
改質反応の進行に伴いPSR型改質器10の温度が水蒸気改質反応に適さない範囲にまで低下すると、バルブV1、バルブV4、バルブV5及びバルブV8を閉じ、バルブV2、バルブV3、バルブV6及びバルブV7を開けることにより改質可能温度に達したPSR型改質器20に改質用原料が配管102を通じて供給され、PSR型改質器10にアノードオフガス及び空気が配管110を通じて供給される。この切り替えを繰り返すことにより、水素分離膜型燃料電池40に改質ガスが供給される。
【0042】
配管104及び配管106を通じて水素分離膜型燃料電池40に供給される改質ガスは、熱交換器30において水素分離膜型燃料電池40から排出されたアノードオフガスとの間で熱授受を行い、水素分離膜型燃料電池40の最適動作範囲近傍に調整された後に水素分離膜型燃料電池40に供給される。また、配管112からは水素分離膜型燃料電池40に空気が供給され、改質ガス中の水素と空気中の酸素とが電池反応を起こして外部に電力が供給される。
【0043】
図3は、改質反応器の切り替えタイミングと改質反応器出口付近及び燃料流路59bの改質ガス供給口付近における改質ガス温度との関係を示した概念図である。改質反応器出口付近の改質ガス温度が燃料電池の作動温度(アノードオフガス温度)よりも高い場合、改質ガスは熱交換器30で除熱され、改質反応器出口付近の改質ガス温度が燃料電池の作動温度よりも低い場合、改質ガスは熱交換器で加熱される。これにより、改質ガスを燃料電池の最適動作温度近傍に調節することができる。熱交換器30を介して改質ガスを水素分離膜型燃料電池40に供給することにより、水素分離膜型燃料電池40を安定作動させることができる。
【0044】
本発明に係る改質ガス利用装置としては、水素透過性金属を用いた緻密な水素透過膜(水素透過性金属層)の少なくとも片面に電解質層が積層された電解質膜を備えた水素分離膜型燃料電池(プロトン伝導性の固体酸化物形、または固体高分子形のいずれであってもよい。)の中から目的等に応じて選択することができる。
【0045】
例えば、(1) 水素透過性の金属と該金属の少なくとも片側に成膜された無機電解質層(特にプロトン伝導性のセラミックス)とを有する電解質膜と、電解質膜の一方の面に設けられた水素極および該水素極に発電用燃料を供給する燃料供給部と、電解質膜の他方の面に設けられた酸素極および該酸素極に酸化剤ガスを供給する酸化剤ガス供給部とで構成された水素分離膜型燃料電池、または(2) プロトン伝導性の電解質層と該電解質層を両側から挟む水素透過性金属とを有する電解質膜と、電解質膜の一方の面に設けられた水素極および該水素極に発電用燃料を供給する燃料供給部と、電解質膜の他方の面に設けられた酸素極および該酸素極に酸化剤ガスを供給する酸化剤ガス供給部とで構成された固体高分子形の水素分離膜型燃料電池、等を好適に用いることができる。
【0046】
図4〜図5に本発明の改質ガス利用システムを構成する水素分離膜型燃料電池の他の具体例を挙げる。なお、他の具体例についての詳細については特開2004−146337号公報の記載を参照することができる。
【0047】
図4は、バナジウム(V)で形成された緻密な基材66を含む5層構造の電解質膜61と、電解質膜61を狭持する酸素極(O2極)62および水素極(H2極)63とで構成され、金属拡散抑制層および反応抑制層を備えた水素分離膜型燃料電池60を示したものである。電解質膜61は、基材66の水素極(アノード)63側の面に該面側から順に緻密体の金属拡散抑制層67とパラジウム(Pd)層68とを備え、基材66の酸素極(カソード)62側の面に該面側から順に緻密体の反応抑制層(例えばプロトン伝導体や混合伝導体、絶縁体の層)65と、固体酸化物からなる薄層の電解質層(例えばペロブスカイトの1つである金属酸化物SrCeO3層など)64とを備えている。反応抑制層65は、電解質層64中の酸素原子と基材(V)66との反応を抑制する機能を担うものである。なお、酸素極または水素極と電解質膜との間には上記同様に、各々エア流路59a、燃料流路59bが形成されている。金属拡散抑制層および反応抑制層の詳細については既述の通りである。
【0048】
図5は、水素透過性金属を用いた緻密な水素透過層を有する電解質膜71と、電解質膜71を狭持する酸素極(O2極)72および水素極(H2極)73とで構成された固体高分子形の水素分離膜型燃料電池70を示したものである。電解質膜71は、例えば、ナフィオン(登録商標)膜などの固体高分子膜からなる電解質層76の両側の面を、水素透過性の緻密な金属層で挟んだ多層構造となっており、電解質層76の水素極(アノード)側の面にパラジウム(Pd)層(緻密層)77を備え、電解質層76の酸素極(カソード)側の面に該面側から順に、基材となるバナジウム−ニッケル合金(V−Ni)層(緻密層)75とPd層(緻密層)74とを備えている。なお、酸素極または水素極と電解質膜71との間には上記同様に、各々エア流路59a、燃料流路59bが形成されている。本燃料電池においてもまた、V−Ni層75とPd層74との間には金属拡散抑制層を設けることができ、V−Ni層75またはPd層77と電解質層76との間には反応抑制層を設けることができる。
【0049】
図5に示す固体高分子形の燃料電池では、含水電解質層を挟むようにして水素透過性金属を用いた水素透過層が形成された構成とすることにより、高温での電解質層の水分蒸発および膜抵抗増大の抑制が可能で、一般に低温型の固体高分子形燃料電池(PEFC)の作動温度を300〜600℃の温度域に向上させることができる。
【0050】
上記の実施形態では、改質用原料としてガソリンおよび水蒸気の混合ガスを使用した場合を説明したが、ガソリン以外の他の炭化水素燃料を使用した場合も同様である。また、燃料電池以外の他の改質ガス利用装置としては、水素エンジン、内燃機関への水素ガス添加装置等が挙げられる。
【図面の簡単な説明】
【0051】
【図1】改質ガス利用システムの実施形態の一例を示す概略構成図である。
【図2】水素分離膜型燃料電池を示す概略断面図である。
【図3】改質反応器の切り替えタイミングと改質ガス温度との関係を示した概念図である。
【図4】水素分離膜型燃料電池の他の具体例を示す概略断面図である。
【図5】水素分離膜型燃料電池の他の具体例を示す概略断面図である。
【符号の説明】
【0052】
10 第一のPSR型改質器
20 第二のPSR型改質器
30 熱交換器
40 水素分離膜型燃料電池
51 電解質膜
52 酸素極
53 水素極
59a エア流路
59b 燃料流路

【特許請求の範囲】
【請求項1】
触媒を備え、改質用原料が供給されたときには加熱された前記触媒上で前記改質用原料を改質反応させ、発熱用燃料が供給されたときには前記発熱用燃料を発熱反応させて前記触媒を加熱する改質反応器を、少なくとも2基有する改質反応装置と、
前記改質反応装置で生成された改質ガスが供給されて作動する改質ガス利用装置と、
前記改質ガスの温度を、前記改質ガス利用装置の作動温度に近づける温度調節手段と、
を備えた改質ガス利用システム。
【請求項2】
前記温度調節手段は、前記改質ガス利用装置から排出された排出ガスと前記改質ガスとの間で熱授受を行わせる熱交換器である請求項1に記載の改質ガス利用システム。
【請求項3】
前記改質ガス利用装置は、燃料電池である請求項1又は2に記載の改質ガス利用システム。
【請求項4】
前記燃料電池は、水素透過性金属層の少なくとも片面に電解質層が積層された電解質を備えた請求項3に記載の改質ガス利用システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2006−290663(P2006−290663A)
【公開日】平成18年10月26日(2006.10.26)
【国際特許分類】
【出願番号】特願2005−112087(P2005−112087)
【出願日】平成17年4月8日(2005.4.8)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】