説明

放射温度計

【課題】面積効果を低減した高精度な放射温度計を提供する。
【解決手段】測定対象からの出射された赤外線を集光する対物レンズ6を有し、赤外線量から温度計測を行う放射温度計1において、対物レンズ1は接合型のダブレットレンズ6Aと単レンズ6Bの計3枚のレンズで構成され、ダブレットレンズ6Aと単レンズ6Bの間隔(dmm)と対物レンズ6の光学系焦点距離(fmm)とで以下の2つの関係式がともに成り立つことを特徴とする。
80mm≦f≦100mm (関係式1)
0.7≦d/f≦0.75 (関係式2)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定対象から放射される赤外線により測定対象の温度を測定する放射温度計に係り、特に放射温度計の温度校正を行う標準用単色放射温度計に関するものである。
【背景技術】
【0002】
従来から、測定対象である物体から温度センサへの電磁波としての熱の移動(熱放射)が行われ、その電磁波の状態変化を捉えることで、測定対象の温度を求める温度計として放射温度計が知られている。そして、この種の放射温度計の標準体系である標準放射温度計を用いた校正には、亜鉛(419.527℃)、アルミニウム(660.323℃)、銀(961.78℃)、銅(1084.62℃)の定点物質の凝固点を利用した定点黒体が採用されている。
【0003】
標準放射温度計には、以下に説明するように、JIS(日本工業規格)の規定(標題 放射温度計の性能試験方法通則 JIS C 1612:2000、以下「JIS C 1612」)により定められた0.9μm形と、0.65μm形の2種類の単色放射温度計が用いられている。
・0.9μm形:測定波長帯域の中心波長が0.85μm〜0.95μmまでの範囲にある単色放射温度計で、中心波長から0.1μm以上離れた波長領域における分光感度が中心波長の2×10-4以下とする。
・0.65μm形:測定波長帯域の中心波長が0.64μm〜0.66μmまでの範囲にある単色放射温度計で、中心波長から0.1μm以上離れた波長領域における分光感度が中心波長の1×10-4以下とする。
【0004】
図10は、非特許文献である「JIS C 1612」に記載されている標準用単色放射温度計の概略説明図である。標準放射温度計51は、接眼レンズ52、減光フィルタ53、リレーレンズ54、偏光ミラー55、アパチャミラー(視野絞り)58及び対物レンズ56を介して測定対象である対象物(不図示)に焦点を合せる。
一方、対象物から出射された測定波長である光(電磁波)が対物レンズ56に集光され、開口絞り57を通してアパチャミラー58上に結像するように配置されている。アパチャミラー58には、視野を限定する小さな穴58aが開口しており、この穴58aを通過した光のみがコンデンサレンズ59及び干渉フィルタ60を通過し、シリコン検出素子61に導かれる構成である。
【0005】
また、図11に示すように、可視領域から近赤外域までの色収差(光の波長の違いに起因する収差)を補正するため、対物レンズ56を低分散高屈折率硝子56Aaと高分散低屈折率硝子56Abとの内面同士が接着された接合型ダブレットであるダブレットレンズ56Aと単レンズ56Bとで構成されている。
【0006】
さらに、放射温度計の場合、測定距離が変わっても指示値(出力値)が変化しないように開口絞り57を設け、ピント合わせ操作により対物レンズが前後に移動しても、レンズ視野角θを一定にしている。
【0007】
そして、この種の放射温度計に用いられる対物レンズ光学系には、以下の性能が求められる。
1.低温での出力感度を得るためのレンズ開口角の大きい、明るい光学系であること。
2.測定距離によってピント合せが可能で、なお且つ、定点黒体炉の一般的な開口径φ6 mmを観測するために、最小の集光エリアの大きさ(以下、最小標的サイズ)はφ3 mm以下とする。0.65μm単色放射温度計の場合は、最小標的サイズはφ1mm 以下であること。
3.直視ファインダーによるピント合わせを行うために、可視領域と測定を行う近赤外域 とで色収差の小さい光学系であること。
4.高精度な測定を行うための面積効果の少ない光学系であること。
【0008】
前述の性能に関する要求事項1を満たすために、標準用単色放射温度計の対物レンズは一般的に焦点距離が80〜100mm、レンズ開口径が凡そφ40mmの仕様となっている。従って、例えば0.9μm標準用単色放射温度計では、測定温度範囲の最低温度400℃において約0.1℃の測定感度を得るためには、レンズ開口径はφ40mm程度必要である。
【0009】
さらに、性能要求事項3を満たすための色収差(光の波長の違いに起因する収差)を補正する一般的な手法として、低分散高屈折率硝子と高分散低屈折率硝子の2つの素子を貼り合わた複合レンズであるダブレットレンズ(素子の間に空気間隔がある空気分離型タブレットと、内面で両者が接着している接合型ダブレットとがある)を用いることが広く知られており、放射温度計用対物レンズにもこの技術が応用されている。このダブレットレンズ構成とすることで、可視域から近赤外域まで(550〜1000nm)の色収差補正が可能である。
【0010】
また、性能要求事項4にある面積効果とは、温度が同じであっても、測定対象物である熱源の大きさによって放射温度計の指示値が変動する現象であり、一般的には熱源が大きくなるほど指示値が高くなる傾向にある。非特許文献1によれば、面積効果は光学系開口絞りによる回折、対物レンズでの散乱、或いはレンズ鏡筒内反射などが原因となって生じていると考えられている。
【0011】
一般的に、標準用単色放射温度計にて他の放射温度計の目盛校正を行う場合は、通常比較黒体炉を用いて行うが、定点黒体炉の開口径は概してφ6mmであるのに対し、比較黒体炉の開口径はφ30mm〜φ50mmである。それ故、定点黒体炉にて目盛校正された標準用単色放射温度計は開口径の大きい比較黒体炉を計測すると、面積効果によって誤差を生じることとなり、正確な目盛校正が実施できない。これが面積効果の小さい単色放射温度計が望まれる理由である。
【非特許文献1】JIS C 1612:2000 放射温度計の性能試験方法通則
【発明の開示】
【発明が解決しようとする課題】
【0012】
上述のように、放射温度計の光学系が測定精度に及ぼす誤差要因としては、光学系の明るさ不足や実際の測定対象と光学スポット(標的)の不一致、各種光学収差や色収差の影響、或いは測定物体の面積の違いによって放射温度計の出力が変化する面積効果などが挙げられ、物体の温度を非接触で計測できる放射温度計において、高精度な測定性能が求められている。
【0013】
また、従来の標準用単色放射温度計に用いられてきた対物レンズは、主に明るさの確保と色収差の補正に設計の主眼が置かれ、面積効果の低減に対してはあまり注意が払われてこなかった。これは面積効果の要因が複雑であり、明確でなかったことに起因しているが、標準用単色放射温度計は一般の放射温度計の目盛校正を行う目的に使用されるため、前述の光学系による誤差要因の極小化が特段に求められる温度計である。
【0014】
さらに、図12または図13に示すように、従来の放射温度計はダブレットレンズ56Aと単レンズ56Bとで構成される対物レンズ56の間隔を狭くして配置しているため、対物レンズ56間のレンズのピントを無限遠に合わせた時よりも、図13に示す短い方に対応させた位置、つまりレンズを前方に移動させるほど第1面の光束径(有効径)が大きくなって、明るさが制限される。また、無限遠に合わせたレンズ位置では、レンズ中央部の限られた部分を通る光線のみ集光し、それ以外の外周部の光線は鏡筒内での迷光成分となる虞がある。
【0015】
そこで、この発明の目的は以上の点に鑑み、放射温度計の対物レンズにおいて、可視域から近赤外域(550〜1000nm)までの色収差や球面収差の補正を行い、明るさと結像性能を確保し、且つ、レンズ表面での2次反射光の進行方向を制御することで、面積効果の影響を低減した高精度な放射温度計を達成しようとするものである。
【課題を解決するための手段】
【0016】
上記の課題を解決するため、本発明の請求項1記載の放射温度計は、測定対象からの出射された赤外線を集光する対物レンズを有し、赤外線量から温度計測を行う放射温度計において、該対物レンズは接合型のダブレットレンズと単レンズの計3枚のレンズで構成され、該ダブレットレンズと該単レンズの間隔(dmm)と前記対物レンズの光学系焦点距離(fmm)とで以下の2つの関係式がともに成り立つことを特徴とする。
80mm≦f≦100mm (関係式1)
0.7≦d/f≦0.75 (関係式2)
【0017】
請求項2記載の発明は、請求項1記載の放射温度計において、前記対物レンズを構成する各レンズの各面間における反射光線のゴースト像位置が、各レンズの屈折光線による正規の結像位置に配置される視野絞りの位置から所定距離以上離れているか、或いは該反射光線が発散光線となるように、各レンズの各面の曲率半径を定めていることを特徴とする。
【0018】
請求項3記載の発明は、請求項1または2記載の放射温度計おいて、前記対物レンズを構成する各レンズにおいて、その硝種の屈折率(nd)とアッベ数(νd)が、前記ダブレットレンズではnd=1. 65±0. 3、νd=55±5とnd=1. 80±0. 5、νd=25±5である2枚の光学ガラスの貼り合わせであり、前記単レンズではnd=1. 65±0. 3、νd=55±5の光学ガラスで、且つ、像側レンズ面の曲率半径(R)が200mm≦R<400mmのメニスカス形状(片面が凸面で、反対面が凹面のレンズ)であることを特徴とする。
【0019】
請求項4記載の発明は、請求項1〜3の何れかに記載の放射温度計において、比較黒体炉を用いて放射温度計の目盛校正に使用される標準用単色放射温度計としたことを特徴とする。
【発明の効果】
【0020】
以上の構成により、この発明によれば、ダブレットレンズと単レンズの間隔を比較的大きくとることで、レンズ表面での反射光を鏡筒側壁に逃してやること、不要なレンズ外周部の光線や光軸中心から大きく離れた光源からの光線が直接レンズ内部まで入射しないようにすることで、面積効果が低減される。
【0021】
また、ダブレットレンズと単レンズの間隔を大きくとることで、ある一定のレンズ有効径にて最大のレンズ明るさを確保することが可能となっている。
【0022】
さらに、対物レンズの各面間における反射光線を順次シミュレーションし、そのゴースト像位置が、レンズの屈折光線による正規の結像位置である視野絞りの位置から所定距離以上離れるように、或いは発散光線状態となるように、レンズ各面の曲率半径を定めることで、面積効果をさらに低減することができる。
【発明を実施するための最良の形態】
【0023】
以下、この発明の最良の形態について、添付する図1〜図9を参照しながら説明する。図1は本発明に係る放射温度計の光学系のレイアウト図であり、図2はレンズ間距離dとFナンバーの関係を示すグラフ図であり、図3は本発明に係る放射温度計の光学系の無限遠ピント位置における光路図であり、図4は本発明に係る放射温度計の光学系の近距離ピント位置における光路図であり、図5は本発明に係る放射温度計の対物レンズにおける各レンズ面を説明するための説明図であり、図6(a)〜(c)は図5における第4面と第3面を反射面として各種光線を追跡した場合のシミュレーション図であり、図7(a)〜(c)は図5における第5面と第1面を反射面として各種光線を追跡した場合のシミュレーション図であり、図8(a)〜(c)は図7において視野絞り近くに集光した場合のシュミレーション図であり、図9は本発明の放射温度計と従来の放射温度計との面積効果測定結果の比較例を示すグラフ図である。
【0024】
まず、図1〜図4を参照しながら、本例の放射温度計の構成について具体的に説明する。なお、以下で説明する放射温度計は、構成する対物レンズの最大口径をφ40mmに固定した放射温度計とし、接眼レンズ等のファインダー光学系の構成については説明を省略する。
【0025】
図1に示すように、本例の放射温度計1は、低分散高屈折率硝子6Aaと高分散低屈折率硝子6Abとの内面同士が接着された接合型ダブレットであるダブレットレンズ6Aと単レンズ6Bとで構成される対物レンズ6で測定対象(不図示)から放射される赤外線を集光し、この集光した赤外線を開口絞り7を介して視野絞り8に集光した後、コンデンサレンズ9と干渉フィルタ10を通ってシリコン検出素子11に達して、この集光した赤外線量に応じた電気信号に変換される。
【0026】
さらに説明すると、低分散高屈折率硝子6Aaと高分散低屈折率硝子6Abとで構成されるダブレットレンズ6Aと単レンズ6Bの3枚構成の対物レンズ6において、レンズの最大開口径をφ40mmに固定した場合の距離400mmから無限遠までのピントあわせが可能な焦点距離f=100mm光学系における間隔dと実現可能な最小Fナンバー(絞り値のことで、口径比でレンズの明るさを表すと1より小さな数値になるので、口径比の逆数、すなわち焦点距離を各絞りでの有効口径で割った数値が使用されている。故に、レンズの明るさはFナンバーの二乗に反比例する。)の関係を調べると、図2に示すようにd=72mmにて、Fナンバーは最小値3をとり、焦点距離がf=88mmの場合には、同様にd=62mmにて、Fナンバー最小値2. 6をとり、焦点距離がf=80mmの場合には、同様にd=56mm、Fナンバー最小値2.4をとる。対物レンズ6が、ダブレットレンズ6Aと単レンズ6Bにおける間隔dとレンズ焦点距離fとの間で、80mm≦f≦100mmにおいて0.7≦d/ f≦0.75の関係を満たすとFナンバーが最小となり、明るいレンズとなる。
【0027】
また、対物レンズ6は、迷光成分による面積効果が低減するため、各面間における反射光線のゴースト像位置が、レンズの屈折光線による正規の結像位置である視野絞り8の位置から所定距離以上離れるか、或いは反射光線が発散光線状態となるように、レンズ各面の曲率半径を定めている。
【0028】
さらに、対物レンズ6は、色収差を低減するため、各レンズの屈折率(nd:フラウンホーファー線のd線(587nm)に対する屈折率)とアッベ数(νd:光学ガラスの分散率を示す数値で、光学恒数ともいう。フラウンホーファー線のC線、D線、d線、F線に対する屈折率をnC,nD,nd、nFとして、νd=(nd−1)/(nF−nC)で定義される。)とに基づく関係として、光学特性がnd=1. 65±0.3 、νd =55±5とnd=1. 80±0. 5、νd =25±5である2枚の光学ガラスの貼り合わせであるタブレットレンズと、光学特性がnd=1. 65±0. 3、νd=55±5である光学ガラスである単レンズ6Bとで構成されている。また、面積効果を低減するため、単レンズ6Bの像側レンズ面の曲率半径(R)が200mm≦R<400mmのメニスカス形状としている。
【0029】
このように、上記関係が成り立つ対物レンズ6を具備することで、φ40mmの開口径にてFナンバーが最小となり明るい光学系となる。また、レンズのピント位置に依らず常時レンズのほぼ全面を通る光線を集光する光学系となり、面積効果の原因であるところの迷光となり得る、余分な光線の入射を防ぐものとなる。
【0030】
さらに、図3または図4に示すように、従来の放射温度計の光学系と比べて対物レンズ6の間隔dが大きく設定されているため、主点の位置がレンズ系の中に移ることで、ピント合わせによるレンズを移動させても、レンズ第1面の有効径の増加度合は小さくなり、無限遠の位置の場合の有効径とほぼ変わらなくすることが可能となる。
【0031】
次に、図5〜図8を参照しながら、本例の放射温度計1の面積効果についての性能を調べるため、各レンズ表面における反射光の影響についてシミュレーション実験を行った。
【0032】
図5に示すように、本実験では、図中左方向の物体側から対物レンズ6のレンズ面をそれぞれ第1面、第2面、・・・、第5面とし、第6面は開口絞り面7とし、第1面から左に500mm離れた位置を物体面とした。また、結像面には視野絞り8を置いた。そして、3枚構成の対物レンズ6における上記レンズ面から任意の2面を選び、これらの面を1度目に入射した際は反射面として、2度目の入射の際は屈折面として作用させることで、光線の進行方向を追跡して計算し、視野絞りを通過する光線の度合を調べた。なお、本実験では、物体からレンズ第1面に入射する光線の本数は3968本とし、次のレンズ面に到達した光線は追跡を続け、レンズ面の外に外れた光線は計算を中止させることを繰り返し、最終的に視野絞りを通過する光線の本数を求めた。
【0033】
具体例として第4面と第3面を反射面にとり、入射角0°、7°、10°の光線をシュミレーションして追跡した場合の光路図を図6に示す。図6(a)は入射角0°における光路図、図6(b)は入射角7°における光路図、図6(c)は入射角10°における光路図である。図6(a)〜(c)では、ダブレットレンズ6Aと単レンズ6Bの間隔を離すことで反射光が光学系の外側に逸れることが判る。
【0034】
また、図7の光路図は、第5面と第1面を反射面にとり、図6と同種の光線をシュミレーションして追跡したものであり、図7(a)は入射角0°における光路図、図7(b)は入射角7°における光路図、図7(c)は入射角10°における光路図である。図7(a)〜(c)では、入射角を有する光線は光学系の外側に逸れることが判る。
【0035】
一方、図7と同じ構成の対物レンズ6であっても、レンズの曲率半径によっては図8(a)〜(c)に示すように、視野絞り8の近くにゴースト像を結ぶことで、視野絞り8を通過する反射光の量が大きくなる場合もある。しかし、その場合には、レンズ最終面である第5面の曲率半径を変えた上で光学系全体を調整することにより、視野絞り8を通過する反射光の量を低減することができる。
【0036】
このように、上述したシュミレーション結果から、対物レンズ6の各面間における反射光線のゴースト像位置が、レンズの屈折光線による正規の結像位置である視野絞り8の位置から所定距離以上離れるか、或いは反射光線が発散光線状態となるように、レンズ各面の曲率半径を定めることで、面積効果を低減することができる。
【0037】
以下、本例の放射温度計1について実施例により更に具体的に説明する。なお、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。
(実施例1)
実施条件としては、焦点距離f=88mm、Fナンバー2.6、波長0.9μmとし、各レンズにおける面番号:S、曲率半径:R(mm)、次面までの面間隔:L(mm)、屈折率:nはそれぞれ表1に示す通りである。また、第1面及び第4面の硝種としてはガラスコード651562(S−LAL54)、第2面の硝材としてはガラスコード805254(S−TIH6)を使用する。
【0038】
【表1】

【0039】
図9は、上記実施例1で構成した対物レンズ6を具備した単色放射温度計と従来の対物レンズを用いた単色放射温度計の面積効果測定例である。図9に示すように、本発明による放射温度計1は従来型と比べて、面積効果が凡そ1/4に低減していることがわかる。
【0040】
以上のように、本発明による放射温度計1は、ダブレットレンズ6Aと単レンズ6Bにおける間隔dとレンズ焦点距離fとの間に80mm≦f≦100mm、0.7≦d/ f≦0.75の関係が成り立つ対物レンズ6を具備しているため、可視域から近赤外域(550〜1000nm)までの色収差や球面収差の補正を行い、明るさと結像性能を確保し、面積効果の原因であるところの、直接測定には関与しない余分な迷光成分の光学系内への進入を防ぎ、さらにレンズ表面での反射光の進行方向を制御することで、面積効果の影響を低減した高精度な放射温度計1を達成するものである。
【0041】
また、対物レンズ6の各面間における反射光線のゴースト像位置が、レンズの屈折光線による正規の結像位置である視野絞り8の位置から所定距離以上離れるか、或いは反射光線が発散光線状態となるように、レンズ各面の曲率半径を定めることで、面積効果を低減する効果を奏する。
【0042】
以上、本願発明における最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術等はすべて本発明の範疇に含まれることは勿論である。
【図面の簡単な説明】
【0043】
【図1】本発明に係る放射温度計の光学系のレイアウト図である。
【図2】レンズ間距離dとFナンバーの関係を示すグラフ図である。
【図3】本発明に係る放射温度計の光学系の無限遠ピント位置における光路図である。
【図4】本発明に係る放射温度計の光学系の近距離ピント位置における光路図である。
【図5】本発明に係る放射温度計の対物レンズにおける各レンズ面を説明するための説明図である。
【図6】図5における第4面と第3面を反射面として各種光線を追跡した場合のシミュレーション図である。
【図7】図5における第5面と第1面を反射面として各種光線を追跡した場合のシミュレーション図である。
【図8】図7において視野絞り近くに集光した場合のシュミレーション図である。
【図9】本発明の放射温度計と従来の放射温度計との面積効果測定結果の比較例を示すグラフ図である。
【図10】従来の標準用単色放射温度計の概略説明図である。
【図11】従来の放射温度計の光学系のレイアウト図である。
【図12】従来の光学系の無限遠ピント位置における光路図である。
【図13】従来の光学系の近距離ピント位置における光路図である。
【符号の説明】
【0044】
1 放射温度計
2 接眼レンズ
3 減光フィルタ
4 リレーレンズ
5 偏向ミラー
6 対物レンズ
6A ダブレットレンズ
6Aa 低分散高屈折率硝子
6Ab 高分散低屈折率硝子
6B 単レンズ
7 開口絞り
8 視野絞り(アパチャミラー)
9 コンデンサレンズ
10 干渉フィルタ
11 シリコン検出素子

【特許請求の範囲】
【請求項1】
測定対象から出射された赤外線を集光するための対物レンズを有し、赤外線量から温度計測を行なう放射温度計において、
該対物レンズは接合型タブレットレンズと単レンズの計3枚のレンズで構成され、該タブレットレンズと該単レンズの間隔(dmm)と前記対物レンズの光学系焦点距離(fmm)とで以下の2つの関係式が成り立つ放射温度計。
80mm≦f≦100mm (関係式1)
0.7≦d/f≦0.75 (関係式2)
【請求項2】
前記対物レンズを構成する各レンズの各面間における反射光線のゴースト像位置が、各レンズの屈折光線による正規の結合位置に配置される視野絞りの位置から所定距離以上離れているか、或いは該反射光線が発散光線となるように、各レンズの各面の曲率半径を定めている請求項1記載の放射温度計。
【請求項3】
前記対物レンズを構成する各レンズにおいて、その硝種の屈折率(nd)とアッベ数(νd)が、前記ダブレットレンズではnd=1.65±0.3、νd=55±5とnd=1.80±0.5、νd=25±5である2枚の光学ガラスの貼り合わせであり、前記単レンズではnd=1.65±0.3、νd=55±5の光学ガラスで、且つ像側レンズ面の曲率半径が200mm≦R<400mmのメニスカス形状である請求項1または2記載の放射温度計。
【請求項4】
比較黒体炉を用いて放射温度計の目盛校正に使用される請求項1〜3の何れかに記載の標準用単色放射温度計。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2008−45891(P2008−45891A)
【公開日】平成20年2月28日(2008.2.28)
【国際特許分類】
【出願番号】特願2006−219163(P2006−219163)
【出願日】平成18年8月11日(2006.8.11)
【出願人】(000133526)株式会社チノー (113)
【出願人】(301021533)独立行政法人産業技術総合研究所 (6,529)
【Fターム(参考)】