説明

新しい有機発光素子材料およびこれを用いた有機発光素子(3)

本発明は、第1電極、発光層、1層以上の有機物層および第2電極を積層した形態で含む有機発光素子において、前記有機物層中1層以上が下記化学式1の化合物、またはこの化合物に熱硬化性または光硬化性の官能基が導入された化合物を含む有機発光素子を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機発光素子の寿命、効率、電気化学的安定性および熱的安定性を大きく向上させられるフルオレン誘導体を含む有機発光素子に関するものである。
【背景技術】
【0002】
有機発光現象は、特定有機分子の内部プロセスによって、電流が可視光に転換される例の1つである。有機発光現象の原理は次の通りである。陽極と陰極の間に有機物層を位置させた時、二つの電極の間に電圧をかけるようになれば、陰極と陽極から各々電子と正孔とが有機物層に注入される。有機物層に注入された電子と正孔とは再結合してエキシトンを形成し、このエキシトンが再び底状態に落ちながら光が出るようになる。このような原理を用いる有機発光素子は、一般的に陰極と陽極およびその間に位置する有機物層、例えば正孔注入層、正孔輸送層、発光層、電子輸送層を含む有機物層で構成することができる。
【0003】
有機発光素子で用いられる物質としては、純粋有機物質または有機物質と金属とが錯体をなす錯化合物が大部分を占めており、用途により正孔注入物質、正孔輸送物質、発光物質、電子輸送物質、電子注入物質などに区分することができる。ここで、正孔注入物質や正孔輸送物質としては、p−タイプの性質を有する有機物質、すなわち容易に酸化がなされ、酸化時に電気化学的に安定した状態を有する有機物が主に用いられている。一方、電子注入物質や電子輸送物質としては、n−タイプの性質を有する有機物質、すなわち容易に還元がなされ、還元時に電気化学的に安定した状態を有する有機物が主に用いられている。発光層物質としては、p−タイプの性質とn−タイプの性質を同時に有する物質、すなわち酸化と還元状態でどちらにも安定した形態を有する物質が望ましく、エキシトンが形成された時に、これを光に転換する発光効率の高い物質が好ましい。
【0004】
上記にて言及した以外に、有機発光素子で用いられる物質は次のような性質をさらに有することが好ましい。
【0005】
第1に、有機発光素子で用いられる物質は、熱的安定性に優れていることが好ましい。有機発光素子内では電荷の移動によるジュール熱が発生するためである。現在、正孔輸送層物質として主に用いられるNPBは、ガラス遷移温度が100C以下の値を有するため、高い電流を必要とする有機発光素子では用いることが難しいという問題がある。
【0006】
第2に、低電圧駆動可能な高効率の有機発光素子を得るためには、有機発光素子内に注入された正孔または電子が円滑に発光層に伝えられると同時に、注入された正孔と電子とが発光層の外に抜け出さないようにしなければならない。このため、有機発光素子に用いられる物質は、適切なバンドギャップとHOMOまたはLUMOエネルギー準位を有しなければならない。現在、溶液塗布法によって製造される有機発光素子において、正孔輸送物質として用いられるPEDOT:PSSの場合、発光層物質として用いられる有機物のLUMOエネルギー準位に比べてLUMOエネルギー準位が低いため、高効率で、かつ長寿命の有機発光素子の製造に困難がある。
【0007】
その他にも、有機発光素子で用いられる物質は、化学的安定性、電荷移動度、電極や隣接した層との界面特性などに優れている必要がある。すなわち、有機発光素子で用いられる物質は、水分や酸素による物質の変形が少ない必要がある。また、適切な正孔または電子移動度を有することによって有機発光素子の発光層で正孔と電子の密度が均衡をなすようにしてエキシトン形成を極大化できる必要がある。そして、素子の安定性のために金属または金属酸化物を含む電極との界面を良くできる必要がある。
【0008】
したがって、当技術分野では前記のような要件を備えた有機物を含む有機発光素子の開発が求められている。
【技術的課題】
【0009】
ここで、本発明者らは有機発光素子で使用可能な物質として要求される条件、例えば適切なエネルギー準位、電気化学的安定性および熱的安定性などを満足させることができ、置換基により有機発光素子で要求される多様な役割をすることができる化学構造を有するフルオレン誘導体を含む有機発光素子を提供することを目的とする。
【技術的解決方法】
【0010】
本発明は、第1電極、発光層、1層以上の有機物層および第2電極を積層した形態で含む有機発光素子において、前記有機物層中1層以上が下記化学式1の化合物、またはこの化合物に熱硬化性または光硬化性の官能基が導入された化合物を含む有機発光素子を提供する。
【化1】

前記化学式1において、
XはCまたはSiであり、
Aは−NZ1Z2であり、
Yは結合や2価の芳香族炭化水素;ニトロ、ニトリル、ハロゲン、アルキル基、アルコキシ基およびアミノ基からなる群より選択される1つ以上の置換基で置換された2価の芳香族炭化水素;2価の複素環基;またはニトロ、ニトリル、ハロゲン、アルキル基、アルコキシ基およびアミノ基からなる群より選択される1つ以上の置換基で置換された2価の複素環基であり、
Z1およびZ2は各々独立的に各々、水素;炭素数1−20の脂肪族炭化水素;芳香族炭化水素;ニトロ、ニトリル、ハロゲン、アルキル基、アルコキシ基、アミノ基、芳香族炭化水素および複素環基からなる群より選択される1つ以上の置換基で置換された芳香族炭化水素;芳香族炭化水素で置換されたシリコン基;複素環基;ニトロ、ニトリル、ハロゲン、アルキル基、アルコキシ基、アミノ基、芳香族炭化水素および複素環基からなる群より選択される1つ以上の置換基で置換された複素環基;炭素数1−20の炭化水素または炭素数6−20の芳香族炭化水素で置換されたチオフェン基;または芳香族炭化水素で置換されたホウ素基であり、
R1〜R11は各々独立的に水素、置換または非置換されたアルキル基、置換または非置換されたアルコキシ基、置換または非置換されたアルケニル基、置換または非置換されたアリール基、置換または非置換されたアリールアミン基、置換または非置換された複素環基、アミノ基、ニトリル基、ニトロ基、ハロゲン基、アミド基またはエステル基であり、ここでこれらは互いに隣接する基と脂肪族またはヘテロの縮合環を形成することができ、
R12〜R15は各々独立的に水素、置換または非置換されたアルキル基、置換または非置換されたアルコキシ基、置換または非置換されたアルケニル基、置換または非置換されたアリール基、置換または非置換された複素環基、アミノ基、ニトリル基、ニトロ基、ハロゲン基、アミド基またはエステル基であり、ここで彼らは互いに隣接する基と脂肪族またはヘテロの縮合環を形成できて、
また、R7とR8は直接連結したり、O、S、NR、PR、C=O、CRR’およびSiRR’からなる群より選択される基と共に縮合環を形成することができ、ここでRおよびR’は各々独立的にまたは同時に水素、置換または非置換されたアルキル基、置換または非置換されたアルコキシ基、置換または非置換されたアルケニル基、置換または非置換されたアリール基、置換または非置換されたアリールアミン基、置換または非置換された複素環基、ニトリル基、アミド基またはエステル基であり、ここでRとR’は縮合環を形成してスピロ化合物を形成することができる。
【0011】
上記の化学式1の置換基を詳細に説明すれば次の通りである。
【0012】
前記化学式1の置換基であるZ1およびZ2において、前記芳香族炭化水素の例としては、フェニル、ビフェニル、テルフェニルなどの単環式芳香族環およびナフチル、アントラセニル、ピレニル、ペリレニルなどの多環式芳香族環などがある。前記複素環基の例としては、チオフェン、フラン、ピロル、イミダゾール、チアゾール、オキサゾール、オキサジアゾール、チアジアゾール、トリアゾール、ピリジル、ピリダジン、ピラジン、キノリン、イソキノリンなどがある。
【0013】
前記炭素数1〜20の脂肪族炭化水素は、直鎖脂肪族炭化水素と分枝鎖脂肪族炭化水素、飽和脂肪族炭化水素と不飽和脂肪族炭化水素をすべて含む。これらの例としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、sec−ブチル基、iso−ブチル基、t−ブチル基、ペンチル基、ヘキシル基などのアルキル基;スチリルのような二重結合を有するアルケニル基;およびアセチレン基のような三重結合を有するアルキニル基がある。
【0014】
前記化学式1のR1〜R15中、アルキル基、アルコキシ基、アルケニル基の炭素数は特別に限定されないが、1−20であることが好ましい。
【0015】
化合物中に含まれているアルキル基の長さは、化合物の共役長さには影響を及ぼさず、ただし、付随的に化合物の有機発光素子への適用方法、例えば真空蒸着法または溶液塗布法の適用に影響を及ぼす。
【0016】
好ましい前記化学式1のR1〜R15中のアリール基の例としては、フェニル基、ビフェニル基、テルフェニル基、スチルベンなどの単環式芳香族およびナフチル基、アントラセニル基、フェナトレン基、ピレニル基、ペリレニル基などの多環式芳香族環などがあるが、これらだけに限定されるものではない。
【0017】
前記化学式1のR1〜R11中のアリールアミン基の例としては、ジフェニルアミン基、ジナフチルアミン基、ジビフェニルアミン基、フェニルナフチルアミン基、フェニルジフェニルアミン基、ジトリルアミン基、フェニルトリルアミン基、カルバゾール基、トリフェニルアミン基などがあるが、これらだけに限定されるものではない。
【0018】
前記化学式1のR1〜R15中の複素環基の例としては、チオフェン基、フラン基、ピロル基、イミダゾール基、チアゾール基、オキサゾール基、オキサジアゾール基、トリアゾール基、ピリジル基、ピラダジン基、キノリニル基、イソキノリン基、アクリジン基などがあるが、これらだけに限定されるものではない。
【0019】
前記例の以外に、前記化学式1のR1〜R15中、アルケニル基、アリール基、アリールアミン基、複素環基の具体的な例としては、下記化学式で示した基があるが、これらだけに限定されるものではない。
【化2】

前記化学式において、Zは水素、炭素数1〜20の脂肪族炭化水素、アルコキシ基、アリールアミン基、アリール基、複素環基、ニトリル基、アセチレン基などからなる群より選択される基である。前記Z中、アリールアミン基、アリール基および複素環基の具体的な例としては、前述したR1〜R15の置換基に記載した例がある。
【0020】
本発明の一つの好ましい実施態様において、前記化学式1中、XはCであって、R7とR8は直接連結したり、O、S、NR、PR、C=O、CRR’およびSiRR’(ここで、RおよびR’は化学式1で定義した通りである)からなる群より選択される基と共に縮合環を形成することができる。
【0021】
本発明のまた一つの好ましい実施態様において、前記化学式1中、XはSiであって、R7とR8は直接連結したり、O、S、NR、PR、C=O、CRR’およびSiRR’(ここで、RおよびR’は化学式1で定義した通りである)からなる群より選択される基と共に縮合環を形成することができる。
【0022】
本発明のまた一つの好ましい実施態様において、前記化学式1の化合物は下記化学式2〜化学式5のうち、何れか一つであり得る。
【化3】

前記式において、
Aは化学式1で定義したものと同一である。
【0023】
化学式1のA基として、好ましくは下記の基があるが、これらだけに限定されるものではない。
【0024】
化学式2〜化学式5と下のA基との組合によって、様々な種類の誘導体を形成することができる。例えば、化学式2と下記基1が用いられた化合物を化合物2−1と称する。
【化4】


【0025】
以下、本発明について詳細に説明する。
【0026】
前記化学式1の化合物は、前記化学式1に表示されたコア構造、すなわちアクリジン基とカルバゾール基とが融合した構造にフルオレン基がスピロ構造で結びついたコア構造に多様な置換体を導入することによって、有機発光素子で用いられる有機物層として用いるのに適する特性を有することができる。具体的に説明すれば次の通りである。
【0027】
前記化学式1の化合物のコアの立体構造は、下記のようにAとBの部分に分けて説明することができる。
【化5】

【0028】
前記化学式1の化合物のコアは、Xを中心に空間的に平面Aと平面Bとが直角をなす立体構造を有し、ここでXを中心としてAとB部分の間の共役は生じない。また、B平面で窒素原子1つが3つのアリール基の間に位置することによって、B平面内に共役を制限する役割をする。
【0029】
化合物の共役の長さとエネルギーバンドギャップとは密接な関係がある。具体的に、化合物の共役の長さが長いほどエネルギーバンドギャップが小さくなる。前述した通り、前記化学式1の化合物のコアは制限された共役を含んでいるため、これはエネルギーバンドギャップが大きい性質を有する。
【0030】
本発明では、上記の通りにエネルギーバンドギャップが大きいコア構造のR1〜R15およびZ1とZ2の位置に多様な置換基を導入することによって、多様なエネルギーバンドギャップを有する化合物を合成することができる。通常、エネルギーバンドギャップが大きいコア構造に置換基を導入してエネルギーバンドギャップを調節することは容易であるが、コア構造がエネルギーバンドギャップが小さい場合には置換基を導入してエネルギーバンドギャップを大きく調節することが難しい。また、本発明では前記のような構造のコア構造のR1〜R15およびZ1とZ2位置に多様な置換基を導入することによって、化合物のHOMOおよびLUMOエネルギー準位も調節することができる。
【0031】
また、前記のような構造のコア構造に多様な置換基を導入することによって、導入された置換基の固有特性を有する化合物を合成することができる。例えば、有機発光素子の製造時に用いられる正孔注入層物質、正孔輸送層物質、発光層物質、電子輸送層物質に主に用いられる置換基を前記コア構造に導入することによって、各有機物層で要求する条件を充足させる物質を合成することができる。例えば、前記化学式1の化合物はコア構造にアリールアミン構造を含んでいるため、有機発光素子で正孔注入および/または正孔輸送物質としての適切なエネルギー準位を有することができる。本発明では、前記化学式1の化合物中の置換基により適切なエネルギー準位を有する化合物を選択して有機発光素子に用いることによって、駆動電圧が低く光効率の高い素子を実現することができる。
【0032】
また、前記コア構造に多様な置換基を非対称(例えば、Aをコア構造の一側にのみ固定)に導入することによって、エネルギーバンドギャップを細かく調節することができ、一方で有機物間における界面での特性を向上するようにし、物質の用途を多様にすることができる。
【0033】
また、置換基AおよびBに含まれた窒素数を各々1つ(Z1〜Z2がヘテロ芳香族アミン化合物である場合、これら構造に含まれた窒素数は含まない)として固定する場合、HOMO、LUMOのエネルギー準位およびエネルギーバンドギャップを細かく調節可能であり、一方で有機物間における界面の特性を向上するようにし、物質の用途を多様にすることができる。
【0034】
また、前記化学式1の化合物は、スピロ結合による空間的構造に多様な置換基を導入して有機物の三次元構造を調節することによって、有機物内のπ−π相互作用を最小化する構造を有するようにして、エキシマ(excimer)の形成を抑制することもできる。
【0035】
エネルギーバンドギャップおよびエネルギー準位と関連して具体的な例をあげれば、化学式2−1の化合物は化学式1の構造に、通常、正孔輸送物質や正孔注入物質に導入されるアリールアミンが導入された化合物であって、HOMOが5.47eVであるため、正孔注入層や正孔輸送層として用い易いエネルギー準位を有する。一方、化学式2−2の化合物のバンドギャップは相変らず3.18eVとして、通常の正孔輸送層物質として用いられるNPBのバンドギャップに比べて非常に大きく、これに伴ってこの化合物のLUMO値も約2.29eV高い。このように、高いLUMO値を有する化合物を正孔輸送層として用いる場合、これは発光層として用いられる物質のLUMOとのエネルギーの壁を高くすることによって、電子が発光層から正孔輸送層に流入することを防ぐことができる。したがって、このような化合物は既に使われたNPB(HOMO 5.4eV、LUMO 2.3eV、エネルギーギャップ3.1eV)等に比べて、有機発光素子の発光効率を向上させられる。本発明において、エネルギーバンドギャップは、UV−VISスペクトルによって計算する一般的な方法を用いて計算した。
【0036】
また、前記化学式1の化合物は、安定した酸化還元特性を示す。酸化還元に対する安定性は、CV(cyclovoltammetry)方法を用いて確認することができる。具体的な例として、前記化学式2−2の化合物は数回の反復酸化電圧を加えた時、同一の電圧で酸化が生じて同じ電流量を示すことが明らかになり、これは前記化合物が酸化に対する安定性に優れていることを示す。
【0037】
一方、前記化学式1の化合物はガラス遷移温度(Tg)が高く、熱的安定性に優れている。例えば、化学式2−2の化合物はガラス遷移温度が129Cであって、既に一般的に用いられるNPB(Tg:96C)に比べて顕著に高いことが分かる。このような熱的安定性の増加は、素子に駆動安定性を提供する重要な要因となる。
【0038】
また、前記化学式1の化合物は、有機発光素子の製造時の真空蒸着法だけでなく、溶液塗布法によって有機物層として形成することができる。ここで、溶液塗布法というのは、スピンコーティング、ディップコーティング、インクジェットプリンティング、スクリーンプリンティング、スプレー法、ロールコーティングなどを意味するが、これらだけに限定されるものではない。
【0039】
例えば、化学式2−2の化合物は、素子の製造工程中に用いられる溶媒、例えば、キシレン、ジクロロエタン、あるいはNMPなどのような極性溶媒などに対する溶解度に非常に優れているだけでなく、溶液を用いた方法で薄膜形成が非常に良くできる特性を有するため、素子の製造時の溶液塗布法を用いることができる。また、通常、溶液塗布法によって形成された薄膜や固体状態での発光波長は、分子間の相互作用により、溶液状態の発光波長に比べて長波長に移動することをしばしば見ることができるが、前記化学式1の化合物のような構造を有する化合物では前記のような波長の移動が大変少なく表れる。
【0040】
本発明のスピロ構造の化合物は、リチオ化(lithiation)されたアリール基とケト基とを反応させて得た3次アルコールを酸触媒下にて加熱すれば、水が蒸発しながら六角形の環構造を形成する方法を用いて製造することができる。このような製造方法は当技術分野でよく知られている方法であって、当業者は前記製造方法の条件を変更して前記化学式1の化合物を製造することができる。具体的な製造方法は後述する製造例に記載した。
【0041】
本発明の有機発光素子は、有機物層中の1層以上が本発明の化合物、すなわち前記化学式1の化合物を含むことを除いては当技術分野で知られている材料と方法によって製造することができる。
【0042】
本発明の有機発光素子の有機物層は、断層構造としてなされることもできるが、2層以上の有機物層が積層された多層構造としてなされることもできる。例えば、本発明の有機発光素子は有機物層であって、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層などを含む構造を有することができる。しかし、有機発光素子の構造は、ここに限定されず、さらに少ない数の有機物層を含むことができる。
【0043】
そして、本発明の有機発光素子は、例えば基板上に第1電極、有機物層および第2電極を順次積層させることによって製造することができる。この時、スパッタリング法や電子ビーム増発法(e−beam evaporation)のようなPVD(Physical Vapor Deposition)方法などを用いることができるが、これら方法だけに限定されるものではない。
【0044】
前記化学式1の化合物の製造方法およびこれらを用いた有機発光素子の製造は、以下の製造例および実施例で具体的に説明する。しかし、下記製造例および実施例は、本発明を例示するためのものであり、本発明の範囲がこれらによって限定されるものではない。
【発明の実施のための形態】
【0045】
前記化学式1として代表される有機化合物の合成方法とこれを用いた有機電気発光素子の製造は、以下の実施例および比較例によってより具体的に説明される。しかし、これらの実施例は本発明を例示するためのものであって、本発明の範囲がこれらだけに限定されるものではない。
【0046】
前記化学式1に表示される化合物の合成のために、下記化学式a〜cの化合物を出発物質として用いることができる。
【化6】

【0047】
<製造例1>化学式aとして示される出発物質の製造
カルバゾール(carbazole、1.672g、10mmol)、1−ブロモ−2−ヨードベンゼン(1−bromo−2−iodobenzene、1.5ml、12mmol)、炭酸カリウム(KCO、2.7646g、20mmol)、ヨウ化銅(CuI、95mg、0.5mmol)およびキシレン25mlを窒素の雰囲気下で還流(reflux)した。常温に冷却した後に生成物をエチルアセテートで抽出し、無水硫酸マグネシウム(MgSO)によって水分を除去した後に減圧下において溶媒を除去した。ヘキサン溶媒を用いてシリカゲルコラムを通過させ、化合物を得た後、溶媒を減圧下において除去し、真空乾燥させて所望する白色固体の前記化合物(800mg、25%収率)を得た。MS:[M+H]=323。
【0048】
<製造例2>化学式bとして示される出発物質の製造
化学式aとして示される出発物質4.19g(13mmol)を精製したTHF 50mlに溶かした後に−78Cでn−BuLi(2.5M in hexane)4.8ml(12mmol)をゆっくり滴加した。同一温度で45分間攪拌した後、2−ブロモ−9−フルオレノン2.59g(10.0mmol)を加えた。同一温度で1時間攪拌した後、常温に温度を上げて2時間さらに攪拌した後、NHCl水溶液で反応を終了した。エチルエーテルを加えて有機物を抽出した後、水を除去した後に有機溶媒も除去して金色の固体を得た。得られた固体をエタノールに分散させ、攪拌した後に濾過し、真空乾燥して4.5gの中間体を得た。得られた固体を40mlのアセト酸に分散させた後に濃い硫酸12滴を加えて3時間の間還流した。常温に冷却した後、得られた固体を濾過し、エタノールで洗った後に真空乾燥して3.98g(82.2%収率)の生成物を得た。MS:[M+H]=484。
【0049】
<製造例3>化学式cとして示される出発物質の製造
化学式bとして示される出発物質(5.0g、10.32mmol)をTHF 40mlに完全に溶かし、4−クロロ−フェニルボロン酸(2.42g、15.48mmol)、2M炭酸カリウム溶液、テトラキス(トリフェニルホスフィン)パラジウム(0)(0.31 mmol、0.36 g)、エタノール10ml入れて24時間の間還流する。反応が終わった後に常温に冷却させて濾過する。水とエタノールで数回洗う。エタノールで再結晶化して真空乾燥し、化合物(4.97g、93%収率)を得た。MS:[M+H]=515。
【0050】
<実施例1>化学式2−2として示される化合物の製造
化学式b(3.0g、6.19mmol)、N−フェニル−1−ナフチルアミン(N−phenyl−1−naphthylamine、1.5g、6.81mmol)をトルエン50mlに溶解させ、tert−ブトキシドナトリウム(sodium t−butoxide、0.89g、9.3mmol)、ビスジベンジリデンアセトンパラジウム(0)(Pd(dba)、0.07g、0.124mmol)、50wt%トリ−tert−ブチルホスフィン(tri−t−butylphosphine、0.09ml、0.186mmol)を添加した後、2時間の間窒素気流下で還流した。反応溶液に蒸溜水を入れて反応を終結させて、有機層を抽出した。ノルマルヘキサン/テトラヒドロフラン(n−hexane/THF=4/1)溶媒でコラム分離し、エタノールで再結晶化して真空乾燥して化合物(2.0g、収率52%)を得た。MS:[M+H]=622。
【0051】
<実施例2>化学式3−2として示される化合物の製造
化学式c(5.0g、9.69mmol)、N−フェニル−1−ナフチルアミン(N−phenyl−1−naphthylamine、2.3g、10.5mmol)をトルエン50mlに溶解させ、tert−ブトキシドナトリウム(sodium t−butoxide、3.02g、31.5mmol)、ビスジベンジリデンアセトンパラジウム(0)(Pd(dba)、0.217g、0.121mmol)、50wt%トリ−tert−ブチルホスフィン(tri−t−butylphosphine、0.13ml、0.315mmol)を添加した後、2時間の間窒素気流下で還流した。反応溶液に蒸溜水を入れて反応を終結させて、有機層を抽出した。ノルマルヘキサン/テトラヒドロフラン(n−hexane/THF=4/1)溶媒でコラム分離し、エタノールで再結晶化して真空乾燥して化合物(4.2g、収率62%)を得た。MS:[M+H]=698。
【0052】
<実施例3>有機発光素子の製造
ITO(indium tin oxide)が1000Åの厚さで薄膜コーティングされたガラス基板(corning7059glass)を洗剤を溶かした蒸溜水に入れて超音波で洗浄した。この時、洗剤としてはフィッシャー社(Fischer Co.)製のものを用い、蒸溜水としてはミリポア(Millipore Co.)製のフィルタで2回こした蒸留水を用いた。ITOを30分間洗浄した後、蒸溜水で2回繰り返して超音波洗浄を10分間進行した。蒸溜水洗浄が終わった後、イソプロピルアルコール、アセトン、メタノールなどの溶剤で超音波洗浄して乾燥させた後、プラズマ洗浄機に移送させた。また、酸素プラズマを用いて、前記基板を5分間乾式洗浄した後、真空蒸着機に基板を移送させた。
【0053】
上記の通りに準備されたITO透明電極の上に下記化学式の化合物であるヘキサニトリルヘキサアザトリフェニレン(hexanitrile hexaazatriphenylene:以下、HATという)を500Åの厚さで熱真空蒸着してITO導電層およびN型有機物を有する陽極を形成した。
【化7】

【0054】
前記層上に前記化学式2−2の化合物(400Å)を真空蒸着して正孔輸送層を形成させた。前記正孔輸送層上にAlq3を300Åの厚さで真空蒸着して発光層を形成させた。前記発光層上に下記化学式の電子輸送層物質を200Åの厚さで蒸着して電子輸送層を形成した。
【化8】

【0055】
前記電子輸送層上に順次的に12Å厚さのフッ化リチウム(LiF)と2000Å厚さのアルミニウムを蒸着して陰極を形成した。
【0056】
前記の過程で有機物の蒸着速度は0.3〜0.8Å/secで維持した。また、陰極のフッ化リチウムは0.3Å/sec、アルミニウムは1.5〜2.5Å/secの蒸着速度を維持した。蒸着時の真空度は1〜3×10−7で維持した。
【0057】
製造された素子は順方向電流密度100mA/cmで9.74Vの電界を示し、1.63lm/Wの光効率を示すスペクトルが観察された。このように素子が前記駆動電圧で作動して発光するということは正孔注入層と発光層との間に層を形成した前記化学式2−2の化合物が正孔輸送の役割をしているということを示す。
【0058】
<実施例4>有機発光素子の製造
正孔輸送層として化学式2−2の化合物の代わりに化学式3−2の化合物を用いたことを除いた他の条件が実施例3と同一に素子を製作した。
【0059】
製造された素子は順方向電流密度100mA/cmで8.59Vの電界を示し、1.79lm/Wの光効率を示すスペクトルが観察された。このように素子が前記駆動電圧で作動して発光するということは正孔注入層と発光層との間に層を形成した前記化学式3−2の化合物が正孔輸送の役割をしているということを示す。
【産業上の利用可能性】
【0060】
本発明は、有機発光素子において、有機物層物質、特に正孔注入物質および/または正孔輸送物質として特定の化合物を用いることによって、素子の駆動電圧を低くし、光効率を向上させ、化合物の熱的安定性によって素子の寿命特性を向上させることができる。
【図面の簡単な説明】
【0061】
【図1】図1は、基板1、陽極2、発光層3、陰極4からなる有機発光素子の例を示したものである。
【図2】図2は、基板1、陽極2、正孔注入層5、正孔輸送層6、発光層7、電子輸送層8および陰極4からなる有機発光素子の例を示したものである。

【特許請求の範囲】
【請求項1】
第1電極と、発光層と、1層以上の有機物層と、および第2電極とを備えてなる有機発光素子であって、
前記有機物層中1層以上が、下記化学式1の化合物、またはこの化合物に熱硬化性または光硬化性の官能基が導入された化合物を含んでなる、有機発光素子。
【化1】

[前記化学式1において、
XはCまたはSiであり、
Aは−NZ1Z2であり、
Yは結合や2価の芳香族炭化水素;ニトロ、ニトリル、ハロゲン、アルキル基、アルコキシ基およびアミノ基からなる群より選択される1つ以上の置換基で置換された2価の芳香族炭化水素;2価の複素環基;またはニトロ、ニトリル、ハロゲン、アルキル基、アルコキシ基およびアミノ基からなる群より選択される1つ以上の置換基で置換された2価の複素環基であり、
Z1およびZ2は各々独立的に各々、水素;炭素数1−20の脂肪族炭化水素;芳香族炭化水素;ニトロ、ニトリル、ハロゲン、アルキル基、アルコキシ基、アミノ基、芳香族炭化水素および複素環基からなる群より選択される1つ以上の置換基で置換された芳香族炭化水素;芳香族炭化水素で置換されたシリコン基;複素環基;ニトロ、ニトリル、ハロゲン、アルキル基、アルコキシ基、アミノ基、芳香族炭化水素および複素環基からなる群より選択される1つ以上の置換基で置換された複素環基;炭素数1−20の炭化水素または炭素数6−20の芳香族炭化水素で置換されたチオフェン基;または芳香族炭化水素で置換されたホウ素基であり、
R1〜R11は各々独立的に水素、置換または非置換されたアルキル基、置換または非置換されたアルコキシ基、置換または非置換されたアルケニル基、置換または非置換されたアリール基、置換または非置換されたアリールアミン基、置換または非置換された複素環基、アミノ基、ニトリル基、ニトロ基、ハロゲン基、アミド基またはエステル基であり、ここでこれらは互いに隣接する基と脂肪族またはヘテロの縮合環を形成することができ、
R12〜R15は各々独立的に水素、置換または非置換されたアルキル基、置換または非置換されたアルコキシ基、置換または非置換されたアルケニル基、置換または非置換されたアリール基、置換または非置換された複素環基、アミノ基、ニトリル基、ニトロ基、ハロゲン基、アミド基またはエステル基であり、ここで彼らは互いに隣接する基と脂肪族またはヘテロの縮合環を形成できて、
また、R7とR8は直接連結したり、O、S、NR、PR、C=O、CRR’およびSiRR’からなる群より選択される基と共に縮合環を形成することができ、ここでRおよびR’は各々独立的にまたは同時に水素、置換または非置換されたアルキル基、置換または非置換されたアルコキシ基、置換または非置換されたアルケニル基、置換または非置換されたアリール基、置換または非置換されたアリールアミン基、置換または非置換された複素環基、ニトリル基、アミド基またはエステル基であり、ここでRとR’は縮合環を形成してスピロ化合物を形成することができるものである。]
【請求項2】
前記化学式1において、
R7とR8が、O、S、NR、PR、C=O、CRR’およびSiRR’(ここで、RおよびR’は前記請求項1で定義した通りである)からなる群より選択される基と共に縮合環を形成するものである、請求項1に記載の有機発光素子。
【請求項3】
前記化学式1の化合物が、下記化学式2〜化学式5の何れかの化合物である、請求項1に記載の有機発光素子。
【化2】

[上記式において、Aは請求項1で定義したことと同一である。]
【請求項4】
前記化学式1でA基が下記の基のうち一つである、請求項1に記載の有機発光素子。
【化3】


【請求項5】
有機物層が正孔輸送層を含んでなり、該正孔輸送層が前記化学式1の化合物、またはこの化合物に熱硬化性または光硬化性の官能基が導入された化合物を含んでなるものである、請求項1に記載の有機発光素子。
【請求項6】
有機物層が正孔注入層を含んでなり、該正孔注入層が前記化学式1の化合物、またはこの化合物に熱硬化性または光硬化性の官能基が導入された化合物を含んでなるものである、請求項1に記載の有機発光素子。
【請求項7】
有機物層が正孔注入と正孔輸送の両方を兼ね備えた層を含んでなり、該層が前記化学式1の化合物、またはこの化合物に熱硬化性または光硬化性の官能基が導入された化合物を含んでなるものである、請求項1に記載の有機発光素子。

【図1】
image rotate

【図2】
image rotate


【公表番号】特表2008−511158(P2008−511158A)
【公表日】平成20年4月10日(2008.4.10)
【国際特許分類】
【出願番号】特願2007−529726(P2007−529726)
【出願日】平成17年9月23日(2005.9.23)
【国際出願番号】PCT/KR2005/003175
【国際公開番号】WO2006/080642
【国際公開日】平成18年8月3日(2006.8.3)
【出願人】(502202007)エルジー・ケム・リミテッド (224)
【Fターム(参考)】