説明

極端紫外光光源装置

【課題】EUV光取出部に形成するガスカーテンのガスの供給量を少なくし、EUV光源装置および露光機内の圧力に与える影響を極力小さくすること。
【解決手段】放電部1により放出されるEUV光は、EUV集光鏡2により集光され、EUV光取出部4の開口より露光機筐体30内の露光機31へ導かれる。EUV光源装置10において発生したデブリが露光機31に進入することを防ぐため、EUV光取出部4にガスの導入口22と排気口23と設け、EUV光取出部4を横切るように、ガス流してガスカーテンを形成する。露光を行っていない時には、EUV光源装置はパルス状の放電により光を放射する動作(バースト動作)を停止しており、この期間には、ガスカーテンを形成するガスの供給を行わないか供給量を減らす。これにより、ストップガスの量を少なくすることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、極端紫外光光源装置に関し、特に光源装置で発生したデブリが露光機に進入することを防止するため、極端紫外光の取出部にガスカーテンを形成した極端紫外光光源装置に関するものである。
【背景技術】
【0002】
図5に、従来の極端紫外光光源装置(以下EUV光源装置)の構成例を示す。同図は光軸に沿った方向の断面図である。
EUV光源装置10は、放電容器であるチャンバ9を有する。チャンバ9内には、EUV放射種を加熱して励起する加熱励起手段である放電部1、および、放電部1によりEUV放射種が加熱励起されて生成した高温プラズマから放出されるEUV光を集光するEUV集光鏡2が設けられる。EUV集光鏡2は、EUV光を集光し、チャンバ9に設けられたEUV光取出部4より、露光機筐体30内に設けられた露光機31の図示を省略した照射光学系へ導く。チャンバ9には排気ユニット8が接続されていて、チャンバ9内部はこの排気ユニット8により減圧雰囲気とされる。
EUV光源装置10の放電部1は、金属製の円盤状部材である第1の放電電極11と、同じく金属製の円盤状部材である第2の放電電極12とが絶縁材13を挟むように配置された構造である。第1の放電電極11の中心と第2の放電電極12の中心とは略同軸上に配置され、第1の放電電極11と第2の放電電極12は、絶縁材13の厚みの分だけ離間した位置に固定される。ここで、第2の放電電極12の直径は、第1の放電電極11の直径よりも大きい。また、絶縁材の厚み、すなわち、第1の放電電極11と第2の放電電極12の離間距離は1mm〜10mm程度である。
【0003】
第2の放電電極12には、モータ6の回転シャフト6aが取り付けられている。回転シャフト6aは、第1の放電電極11の中心と第2の放電電極12の中心が回転軸の略同軸上に位置するように取り付けられる。回転シャフト6aは、例えば、メカニカルシールを介してチャンバ9内に導入される。メカニカルシールは、チャンバ内の減圧雰囲気を維持しつつ、回転シャフト6aの回転を許容する。第2の放電電極12の下側には、例えばカーボンブラシ等で構成される第1の摺動子12aおよび第2の摺動子12bが設けられている。
第2の摺動子12bは第2の放電電極12と電気的に接続される。一方、第1の摺動子12aは第2の放電電極12を貫通する貫通孔12cを介して第1の放電電極11と電気的に接続される。なお、第1の摺動子12aと第2の放電電極12との間では絶縁破壊が発生しないように構成されている。第1の摺動子12aと第2の摺動子12bは摺動しながらも電気的接続を維持する電気接点であり、パルスパワー電源15と接続される。パルスパワー電源15は、第1の摺動子12a、第2の摺動子12bを介して、回転する第1の放電電極11と第2の放電電極12との間に、例えば10kHzの周波数のパルス電力を供給する。
金属製の円盤状部材である第1の放電電極11、第2の放電電極12の周辺部は、エッジ形状に構成される。後で示すようにパルスパワー電源15より第1の放電電極11、第2の放電電極12に電力が印加されると、両電極のエッジ形状部分間で放電が発生する。放電が生じると、電極付近は高温となるので、第1の主放電電極11、第2の主放電電極12は、例えばタングステン、モリブデン、タンタル等の高融点金属からなる。また、絶縁材は、例えば、窒化ケイ素、窒化アルミニウム、ダイヤモンド等からなる。
【0004】
放電部1には、高温プラズマ用原料であるスズ(Sn)やリチウム(Li)が供給される。原料供給は、第2の放電電極12の周辺部に形成された溝部12dに原料供給ユニット14より供給する。モータ6は一方向にのみ回転し、モータ6が動作する事により回転シャフト6aが回転し、回転シャフト6aに取り付けられた第2の放電電極12及び第1の放電電極11が一方向に回転する。第2の放電電極12の溝部12dに供給されたSnまたはLiは、第2の放電電極12の回転により放電部1におけるEUV光出射側に移動する。
一方、チャンバ9には、上記EUV光出射側に移動したSnまたはLiに対してレーザ光を照射するレーザ照射機5が設けられる。レーザ照射機5はYAGレーザ、あるいは、炭酸ガスレーザなどから構成される。レーザ照射機5からのレーザ光は、チャンバ9に設けられた不図示のレーザ光透過窓部、レーザ光集光手段を介して、上記EUV出射側に移動した第2の放電電極12の溝部12dのSnまたはLi上に照射される。上記したように、第2の放電電極12の直径は、第1の放電電極11の直径よりも大きい。よって、レーザ光は、第1の放電電極11の側面を通過して第2の放電電極12の溝部に照射される。
【0005】
放電部2からのEUV光の放射は以下のようにして行われる。レーザ照射機5より、レーザ光が溝部のSnまたはLiに照射される。レーザ光が照射されたSnまたはLiは、第1の放電電極11、第2の放電電極12間で気化し、一部は電離する。このような状態下で、第1、第2の放電電極11,12間にパルスパワー電源15より電圧が約+20kV〜−20kVであるようなパルス電力を印加すると、第1の放電電極11、第2の放電電極12の周辺部に設けられたエッジ形状部分間で放電が発生する。
このとき第1の放電電極11、第2の放電電極12間で気化したSnまたはLiの一部電離した部分にパルス状の大電流が流れる。その後、ピンチ効果によるジュール加熱によって、両電極間の周辺部には、気化したSnまたはLiによる高温プラズマが形成され、この高温プラズマから波長13.5nmのEUV光が放射される。上記したように第1、第2の放電電極11,12間にはパルス電力が印加されるので放電はパルス放電となり、放射されるEUV光はパルス状に放射されるパルス光となる。このようにパルス状の放電により光を放射することをバースト動作という。
【0006】
放電部1により放出されるEUV光は、斜入射型EUV集光鏡2により集光され、チャンバ9に設けられたEUV光取出部4の開口より、露光機筐体30内に設けられた露光機31の、図示を省略した照射光学系へ導かれる。
EUV集光鏡2は、例えば、径の異なる回転楕円体、または、回転放物体形状のミラーを複数枚具える。これらのミラーは、同一軸上に、焦点位置が略一致するように回転中心軸を重ねて配置され、例えば、ニッケル(Ni)等からなる平滑面を有する基体材料の反射面側に、ルテニウム(Ru)、モリブデン(Mo)、およびロジウム(Rh)などの金属膜を緻密にコーティングすることで、0°〜25°の斜入射角度のEUV光を良好に反射できるように構成されている。
上記した放電部1とEUV光集光鏡2との間には、EUV集光鏡2のダメージを防ぐために、ホイルトラップ3が設置される。ホイルトラップ3は、高温プラズマと接する第1、第2の放電電極11,12がスパッタされて生成する金属粉等のデブリや、放射種であるSnまたはLiに起因するデブリ等を捕捉してEUV光のみを通過させる。ホイルトラップ3は、高温プラズマから放射されるEUV光を遮らないように、高温プラズマ発生領域の径方向に設置される複数のプレート(ホイル)と、そのプレートを支持するリング状の支持体とから構成されている。
このようなホイルトラップ11を、放電部1とEUV集光鏡2の間に設けると、高温プラズマとホイルトラップ11の間の圧力が増加し、デブリの衝突が増加する。デブリは衝突を繰り返すことにより、運動エネルギーを減少する。よって、EUV集光鏡2にデブリが衝突する際のエネルギーが減少して、EUV集光鏡2のダメージを減少させることが可能となる。
【0007】
上記のように、EUV光源装置10において生成した高温プラズマから放射されたEUV光は、EUV集光鏡2により集光され、チャンバ9のEUV光取出部4より外部に取り出される。このEUV光取出部4は、露光機筐体30内に設けられた露光機31のEUV光入射部7と連結される。すなわち、EUV集光鏡2より集光されるEUV光は、EUV光取出部4、EUV入射部7を介して露光機31へ入射する。
露光機筐体30内に設けられた露光機31は、入射したEUV光を利用するための照明光学系(図示せず)を備える。照明光学系は、EUV光入射部7から入射したEUV光を整形して、回路パターンが形成されたマスクを照明する。露光機31の光学系は、EUV光を透過する硝材がないため、マスクを含め反射光学系が採用されており、照明光学系も1枚以上の反射ミラー等の反射型光学素子から構成される。反射型マスクで反射された光は、投影光学系によりワーク、例えばフォトレジストが塗布されたウエハ上に縮小投影され、ワークには縮小投影されたマスクの回路パターンが形成される。上記投影光学系も照明光学系同様、反射光学系が採用されており、1枚以上の反射ミラー等の反射型光学素子から構成される。
【0008】
また、EUV光は空気により吸収されるので、露光機31の照明光学系、マスク、投影光学系、ワーク、ワークステージ等のコンポーネントは、全て真空中に設置される。これらのコンポーネントは、露光機筐体30内に設置され、筐体30内部はガス排気ユニット(不図示)により排気され、EUV光源装置10の放電容器(チャンバ9)の圧力よりも低い圧力に維持される。例えば、EUV光源装置10の放電容器の圧力は1Pa程度であり、露光機31の筐体30内の圧力は、10−5Pa程度である。
上記したように、露光機筐体30に設けられたEUV光入射部7とEUV光源装置10に設けられたEUV光取出部4とは連結されている。EUV光源装置10のチャンバ9内部と露光機筐体30内部は、それぞれに設けられた排気ユニットによって、差動排気が可能な構造となっている。
【0009】
ところで、EUV光源装置においては、種々のデブリが発生する。そのデブリとして例えば、以下のものがある。
(1)プラズマの膨張により飛散する高温プラズマ用原料であるスズやリチウム。
(2)プラズマの膨張により発生した高速(中性)粒子が、光源装置内の構造物をスパッタすることにより飛散する構造物の構成粒子。
(3)光源装置内の構造物にEUV光が照射されて引き起こされた光化学反応により構造物から脱離浮遊した粒子。
これらの、EUV光源装置10において発生したデブリは、EUV光取出部4から露光機31に進入すると照明光学系を汚染する。したがって、EUV光源装置10は、デブリがEUV光取出部4から露光機31に進入することを防がなくてはならない。その手段の一つとして、例えは特許文献1に記載されるように、ガスカーテンを設けることが考えられる。
【0010】
上記特許文献1に開示されるガスカーテンは、図5に示すように、EUV光取出部4とEUV光入射部7の間に設けられた接続装置20に設けられる。
接続装置20は連通孔21を有し、上記EUV光取出部4とEUV光入射部7は対向して、上記接続装置20の連通孔21の両側の開口端に連結されている。
上記連通孔21には、ガス導入口22と、このガスを排気する排気口23が対向して設
けられ、ガス導入口22にはガス供給ユニット20aから極端紫外光を吸収しないストップガスが供給され、このストップガスは、EUV光の通過方向に対して交差するように流れ、ガス排気口23から排気ユニット20bにより強制的に排気される。
すなわち、ガス導入口22と排気口23によりガスカーテンを形成し、EUV光源装置
から露光機31へのクリーニングガスなどのガスの流入を防ぐ。
【0011】
図6は、上記接続装置20に設けられる上記ガス供給ユニット20aと排気ユニット20bなどからなるガスカーテンの構成例である。
ガス導入口22にはノズル22aが設けられ、ノズル22aからストップガスを吹き出す。ストップガスとしては、EUV光の吸収が少ない水素または、反応性のない希ガス(He,Ne,Ar,Krなど)を使用する。
ガス排気口23にはディフューザ23aが設けられ、ディフューザ23aは、ガス供給ユニット20a側のノズル22aに対向して設けられる。ノズル22aから吹き出されたストップガスは、ガス排気ユニット20bのディフューザ23aに吸い込まれて排気される。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特開2009−212268号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
図5に示すように、EUV光取出部4とEUV光入射部7の間に接続装置20を設け、その連通孔21に、ストップガスの導入口22と排気口23とを両者が対向するように設けて、極端紫外光の通過方向に対して交差するようにストップガスを流し、ガスカーテンを形成することにより、チャンバ9(第1の減圧容器)のガスが露光機筐体30(第2の減圧容器)に浸入するのを極力少なくすることができる。
しかし、図5に示したものでは、EUV光取出部4とEUV光入射部7の間に接続装置20を設け、その連通孔21の途中にディフューザ23aとノズル22aを対向して設けてガスカーテンを形成しており、装置構成が比較的複雑である。
また、EUV光源装置10内で発生したデブリが、EUV光取出部7から露光機31に進入するのを防ぐためには、ストップガスは、計算上20リットル/分程度の流量が必要になる。このような多量のガスが供給されると、対向して配置した排気手段を用いて排気したとしても、EUV光源装置10内を所望の圧力(約1Pa)に維持することは困難になる場合がある。
また、露光機筐体30内は、EUV光の減衰を防ぐために高真空度、例えば10−5Pa程度の圧力を保たねばならない。しかし、ストップガスの量が多いと、EUV光入射部7の開口(連通孔21)から露光機筐体30側に流れ込むことも考えられ、露光機31の圧力に影響を与えることも考えられる。
本発明は上記従来の問題を解決するためになされたものであって、本発明の目的は、EUV光源装置と露光機とを接続するEUV光取出部に形成するガスカーテンにおけるガス供給量を少なくすることができ、EUV光源装置および露光機内の圧力に与える影響を極力小さくすることである。
【課題を解決するための手段】
【0014】
露光機が露光を行っていない時、即ち、ウエハが、ある露光領域から次の露光領域に移動している間、または露光を終えたウエハを次に露光するウエハに交換する間は、EUV光源装置は前記バースト動作(パルス状の放電により光を放射する動作)を停止しており、EUV光を放射しない。
そこで、本発明においては、このEUV光の発生を停止している間は、EUV光取出部においてガスカーテンを形成するストップガスの供給を行わないか、ストップガスの供給量を減らす。これにより、ストップガスの量を少なくすることができる。
以上のように、本発明では上記課題を次のように解決する。
(1)バースト動作により極端紫外光を発生する極端紫外光発生部を備えた第1の減圧容器と、該第1の容器から出射する極端紫外光が入射する、該第1の減圧容器より内部の圧力が低い第2の減圧容器とを備え、第1の減圧容器と第2の減圧容器は、極端紫外光が通過する開口を形成した隔壁を介して接続され、上記開口の極端紫外光が入射する側に、ガスカーテンを形成するためのガスを供給するガス供給手段と、上記供給されたガスを排気するガス排気手段を設けた極端紫外光光源装置において、上記ガス供給手段からのガスの供給を、極端紫外光発生部におけるバースト動作に同期させ、バースト動作中はガス供給量が増加するように制御し、バースト動作中以外のときは、ガスの供給量を少なくするか、ゼロにする。
(2)上記(1)において、バースト動作とバースト動作の間の極端紫外光発生停止中に、上記ガス供給手段からのガスの供給を停止させる。
【発明の効果】
【0015】
本発明においては、以下の効果を得ることができる。
(1)バースト動作中はガス供給量が増加するように制御し、バースト動作中以外の時には、ガス供給を停止させるか少なくするようにしたので、ガスカーテンを形成するためのストップガスの量を少なくすることができる。このため、EUV光源装置内を所望の圧力(約1Pa)に維持することができるようになる。
(2)露光機側に流れ込むストップガスの量を少なくすることができるので、露光機の圧力に影響を与えることも少なくなる。
【図面の簡単な説明】
【0016】
【図1】本発明の実施例のEUV光源装置の構成を示す図である。
【図2】ガスカーテンを形成するためのガス供給手段とガス排気手段の構成例を示す図である。
【図3】ガスカーテンの動作とバースト動作との動作タイミングを示すタイムチャートである。
【図4】ガスカーテンとバースト動作の他の動作例を示すタイムチャートである。
【図5】従来の極端紫外光光源装置の構成例を示す図である。
【図6】従来の極端紫外光光源装置におけるガスカーテンを形成するためのガス供給手段とガス排気手段の構成例を示す図である。
【発明を実施するための形態】
【0017】
図1に本発明の実施例のEUV光源装置の構成を示す。同図は光軸に沿った方向の断面図であり、図5に示した従来のEUV光源装置に対して、チャンバ9(第1の減圧容器)と露光機筐体30(第2の減圧容器)の間の接続部分の構成が相違するとともに、ガスカーテンを構成するガス供給ユニット20aの動作を制御部40で制御するようにした点が相違するだけで、その他の構成は同じである。
前記したように、EUV光源装置は、放電容器であるチャンバ9を有し、チャンバ9内には、EUV放射種を加熱して励起する加熱励起手段である放電部1と、ホイルトラップ3、及びEUV光を集光するEUV集光鏡2が設けられる。EUV集光鏡2は、EUV光を集光し、チャンバ9に設けられたEUV光取出部4より露光機筐体30内に設けられた露光機31の照射光学系(図示せず)へ導く。チャンバ9には排気ユニット8が接続されていて、チャンバ9内部はこの排気ユニット8により減圧雰囲気とされる。
放電部1には、前記したようにモータ6により回転する第1の放電電極11と第2の放電電極12とが設けられ、パルスパワー電源15から第1の摺動子12a、第2の摺動子12bを介して、第1、第2の放電電極11,12との間に、例えば10kHzの周波数のパルス電力を供給される。第1の放電電極11、第2の放電電極12に電力が印加されると、両電極のエッジ形状部分間で放電が発生する。
【0018】
SnまたはLi等の原料は、第2の放電電極12の周辺部に形成された溝部12dに原料供給ユニット14より供給され、一方、チャンバ9には、上記原料に対してレーザ光を照射するレーザ照射機5が設けられる。
レーザ照射機5より、レーザ光が上記溝部12dのSnまたはLiに照射されると、第1の放電電極11、第2の放電電極12間で気化し、一部は電離する。このような状態下で、第1、第2の放電電極11,12間にパルスパワー電源15より電圧が約+20kV〜−20kVであるようなパルス電力を印加すると、第1の放電電極11、第2の放電電極12の周辺部に設けられたエッジ形状部分間で放電が発生する。
このとき第1の放電電極11、第2の放電電極12間で気化したSnまたはLiの一部電離した部分にパルス状の大電流が流れる。その後、ピンチ効果によるジュール加熱によって、両電極間の周辺部には、気化したSnまたはLiによる高温プラズマが形成され、この高温プラズマから波長13.5nmのEUV光が放射される。この放電はパルス放電となり、放射されるEUV光はパルス状に放射されるパルス光となる。
【0019】
放電部1により放出されるEUV光は、斜入射型EUV集光鏡2により集光され、チャンバ9に設けられたEUV光取出部4の連通孔21より、露光機筐体30内に設けられた露光機31の図示を省略した照射光学系へ導かれる。
上記のように、EUV光源装置10において生成した高温プラズマから放射されたEUV光は、EUV集光鏡2により集光され、チャンバ9のEUV光取出部4より外部に取り出される。このEUV光取出部4は、露光機筐体30に設けられたEUV光入射部7と連通孔21を介して連結される。すなわち、EUV集光鏡2より集光されるEUV光は、EUV光取出部4、EUV入射部7を介して露光機筐体30へ入射する。
また、EUV光源装置10において発生したデブリが露光機筐体30に進入することを防ぐため、EUV光取出部4には、ガスカーテンが設けられる。
【0020】
ガスカーテンは、EUV光取出部4の光入射側に、ガスの導入口22と排気口23とを両者が対向するように設け、EUV光取出部4を横切るように、ガスを導入口22から排気口23に向かって流すことで形成する。このガスのことをストップガスという。
上記ガス導入口22にはガス供給ユニット20aからストップガスが供給され、ガス導入口22から流出するガスおよびEUV光源装置10において発生したデブリなどは、ガス排気ユニット20bにより排気口23から排気される。
このストップガスによるガスカーテンは、EUV光源装置10を構成する第1の減圧容器(チャンバ9)と、第1の減圧容器より内部の圧力が低い第2の減圧容器(露光機筐体30)とを隔てるバリアとして働き、EUV光源装置10において発生したデブリが露光機31に進入することを防ぐ。そして、ストップガスにより進行を妨げられたデブリとストップガスは対向する排気口23から排気される。
【0021】
図2は、ガスカーテンを形成するための、ガス供給手段とガス排気手段の構成例を示す図である。
ガス供給手段は、ガス供給ユニット20aと、ノズル22aを有するガス導入口22を備えている。ガス供給ユニット20aは、ストップガスのガス源である例えばガスボンベ25aと、供給するガスの圧力を調整する圧力調整弁25bと圧力計25cとガスの流れをON/OFFするストップバルブ25dを備え、ガス供給ユニット20aから供給されたストップガスは、ノズル22aから吹き出る。
なお、後述する図4で説明するように、バースト動作中にも10%程度の割合でストップガスを流し続けたり、あるいはストップガスの供給を徐々に少なくする場合など、ストップガスの流量を調整する場合には、上記ストップバルブ25dに代えて流量調整機能を備えたバルブを用いてもよい。
【0022】
ストップガスとしては、前述したようにEUV光の吸収が少ない水素または、反応性のない希ガス(He,Ne,Ar,Kr,など)を使用する。
ガス排気手段は図6に示したように、ディフューザ23aを有するガス排気口23とガス排気ユニット20bを備える。排気ユニット20bは例えば排気ポンプである。また、ディフューザ23aはノズル22aに対向して設けられる。ノズル22aから吹き出されたストップガスは、ディフューザ23aに吸い込まれて上記排気ポンプから排気される。
本実施例において、ガス供給ユニット20aの上記ストップバルブ25dの開閉動作などの制御は制御部40により行われる。
【0023】
次に、本発明のEUV光源装置の動作について説明する。
EUV光源装置を備えた露光装置においてウエハの露光は次のような手順で行われる。(1)露光機31内において、ウエハが露光時に保持される処理ステージ(図示せず)上に置かれる。ウエハは複数の露光領域に分けられている。処理ステージが移動することにより、ウエハは第1の露光領域が露光される位置に移動する。
(2)EUV光源装置の制御部40は、露光機を制御する露光機制御部(図示せず)からウエハが露光位置に移動した通知を受けると、パルスパワー電源15から第1、第2の放電電極11,12にパルス電力を供給してパルス放電を発生させ、EUV光を放射させる。すなわち、前記したようにEUV光源装置をバースト動作させる。
これにより、ウエハの第1の露光領域にEUV光源装置からのEUV光が走査(スキャン)されながら照射され、パターンが露光される。
(4)パターンの露光が終了したことが露光機制御部から通知されると、制御部40は、EUV光の照射を停止させる。EUV光の照射が停止すると、露光機31において、上記処理ステージが移動して、ウエハは第2の露光領域が露光される位置に移動する。
(5)露光機31において、上記と同様に、第2の露光領域にEUV光が照射され、パターンが露光される。
(6)これを繰り返して、ウエハの全露光領域が露光されると、次のウエハに交換される。
【0024】
ウエハにEUV光が照射される時には、EUV光源装置10の放電部1において放電が発生し、EUV光が放射される。それと共に、上記したようにデブリも発生するので、EUV光取出部4には、露光機31へのデブリの進入をとめるだけのストップガスが供給されてガスカーテンが形成される。
しかし、ウエハが次の露光領域に移動しているとき、また、ウエハが次のウエハと交換されているときは、放電は停止されEUV光の発生は停止している。この時は放電部1からのデブリの発生はない。そこで、制御部40は、ストップガスの供給を停止するか、供給量を少なくする。なお、排気ユニット20bは、ストップガスの供給が停止されているときも動作を継続させるのが望ましく、これにより、バースト動作停止中もチャンバ9内のデブリなどを排出させることができる。
【0025】
図3は、ガスカーテンの動作とバースト動作との動作タイミングを示すタイムチャートであり、放電(EUVの発光)のタイミング(バースト動作のタイミング)と、ストップガスの供給のON/OFFのタイミングを示しており、図3(a)はガスカーテンのON/OFF動作を示し、(b)は放電(バースト動作)を示している。
放電部1においては、上記したように、例えば10kHzの周波数のパルス放電により、パルス状のEUV光が発生する。ウエハは複数の露光領域に分割されており、各露光領域に対してEUV光が順番に走査(スキャン)され露光される。
一つの露光領域を露光している時には、放電は10kHzの周波数で連続して行われ、放電に合わせてEUV光が放射される。これをバースト動作という。放電のバースト動作によるEUV光の発生が行われている時には、制御部40はストップバルブ25d(図2参照)を開けてストップガスを供給し、EUV光源装置10の光取出部4の開口(連通孔21)を横切るようにガスを流して、ガスカーテンを形成する(図中ON)。
一つの露光領域に対するEUV光の照射が終わると、放電が停止し(バースト動作の停止)、EUV光の放射も停止する。それと共に、ワークは次の領域が露光されるように移動し、移動が終われば、バースト動作を再開しEUV光を発生して露光を行う。このバースト動作とバースト動作の間(EUV光発生とEUV光発生の間)は、制御部40はストップバルブ25dを閉じてストップガスの供給を停止する(OFF)。
【0026】
ウエハの移動は1秒程度で終わり、放電部1はバースト動作を再開してEUV光を発生し、次の露光領域の露光処理を行う。それと共に、制御部40はストッブバルブ25dを開けてストップガスを供給し、ガスカーテンを形成する(ON)。これを、1枚のウエハの露光が終わるまで繰り返す。
1枚のウエハの露光処理が終わると、そのウエハは露光機31の処理ステージから取り出され、次のウエハが処理ステージに置かれる。このウエハ交換の際にも、放電は停止し、EUV光は放射されない。したがって、制御部40は、この時も、ストップバルブ25dを閉じてストップガスの供給を停止し、ガスカーテンの形成を行わない。
このようにバースト動作とバースト動作の間のガス供給量を、バースト動作中の供給量よりも減らすことにより、ガスカーテンとして供給するガス全体の量が減り、EUV光源装置内の圧力を所望の値(約1Pa)に維持することが容易になる。また、露光機側に流れ込むストップガスの量を少なくすることができる。
さらに、本実施例においては、装置構成を簡単にすることができる。
【0027】
図4A,Bはガスカーテンとバースト動作の他の動作例を示すタイムチャートである。
図4Aは、バースト動作の停止中も、バースト動作中のストップガスの流量に対して例えば10%程度の割合でストップガスを流し続ける場合を示し、図4Bは、バースト動作の停止から少し遅らせて、ストップガスの供給を徐々に少なくする場合の動作例を示している。それぞれ(a)はガスカーテンの動作を示し、(b)は放電(バースト動作)を示している。
バースト動作を停止させても、EUV光源装置のチャンバ9内のデブリが直ちに消滅するわけではなく、しばらく間、デブリはチャンバ9内を浮遊している。
上記図4Aに示すように、バースト動作の停止中もストップガスを流し続けたり、あるいは図4Bに示すようにバースト動作停止後もしばらくの間、ストップガスを供給することにより、バースト動作の停止中にチャンバ内に留まるデブリなどが露光機内に進入するのを防ぐことができる。なお、図4Bにおいて、図4Aに示すようにバースト動作の停止中もストップガスを少量流し続けるようにしてもよい。
【0028】
上記では、放電が発生する電極表面に供給された固体もしくは液体のスズやリチウムにレーザ等のエネルギービームを照射して気化させ、その後、放電によって高温プラズマを生成するLADPP方式のEUV光源装置に適用した場合について説明したが、本発明は、上記のようにレーザビームを照射せずに電極間の放電により生成した高温プラズマからのEUV光を放射させるDPP方式のEUV光源装置や、固体もしくは液体のスズやリチウムにレーザ等のエネルギービームを照射することにより発生する高温プラズマからEUV光を放射させるLPP方式のEUV光源装置にも同様に適用することができる。
【符号の説明】
【0029】
1 放電部
2 EUV集光鏡
3 ホイルトラップ
4 EUV光取出部
5 レーザ照射機
6 モータ
7 EUV光入射部
8 排気ユニット
9 チャンバ
10 EUV光源装置
11 第1の放電電極
12 第2の放電電極
13 絶縁材
14 原料供給ユニット
15 パルスパワー電源
20a ガス供給ユニット
20b ガス排気ユニット
21 連通孔
22 ガス導入口
22a ノズル
23 ガス排気口
23a ディフューザ
25a ガスボンベ
25b 圧力調整弁
25c 圧力計
25d ストップバルブ
30 露光機筐体
31 露光機
40 制御部


【特許請求の範囲】
【請求項1】
バースト動作により極端紫外光を発生する極端紫外光発生部を備えた第1の減圧容器と、該第1の容器から出射する極端紫外光が入射する、該第1の減圧容器より内部の圧力が低い第2の減圧容器とを備え、
第1の減圧容器と第2の減圧容器は、極端紫外光が通過する開口を形成した隔壁を介して接続され、
上記開口の極端紫外光が入射する側に、ガスカーテンを形成するためのガスを供給するガス供給手段と、上記供給されたガスを排気するガス排気手段を設けた極端紫外光光源装置であって、
上記ガス供給手段からのガスの供給量は、極端紫外光発生部におけるバースト動作に同期して、バースト動作中はガス供給量が増加するように制御される
ことを特徴とする極端紫外光光源装置。
【請求項2】
バースト動作とバースト動作の間の極端紫外光発生停止中には、上記ガス供給手段からのガスの供給を停止させる
ことを特徴とする請求項1に記載の極端紫外光光源装置。




【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−199001(P2011−199001A)
【公開日】平成23年10月6日(2011.10.6)
【国際特許分類】
【出願番号】特願2010−64069(P2010−64069)
【出願日】平成22年3月19日(2010.3.19)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成21年度新エネルギー・産業技術総合開発機構「次世代半導体材料・プロセス基盤(MIRAI)プロジェクト/次世代半導体材料・プロセス基盤(MIRAI)プロジェクト(石特会計/EUV光源高信頼化技術開発)」委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000102212)ウシオ電機株式会社 (1,414)
【出願人】(304021417)国立大学法人東京工業大学 (1,821)
【Fターム(参考)】