説明

樹脂の温度制御方法

【課題】射出ノズルから射出される射出直後の溶融樹脂の温度が、適切な温度になるように制御する方法を提供する。
【解決手段】溶融樹脂は射出ノズル(17)から射出されるときに摩擦やせん断作用によって発熱し、加熱シリンダ(13)内の射出前の溶融樹脂よりも高温になる。金型から射出ノズル(17)を離間した状態で射出し、このときに測定される射出圧力(P)が損失して熱エネルギに変化すると仮定する。そうすると発熱による溶融樹脂の温度上昇分(ΔT)を推定することができる。射出ノズル(17)の出口側の目標温度(Tt)を定める。加熱シリンダ(13)内の溶融樹脂の温度の射出前目標温度(Tk)は、射出ノズル出口側目標温度(Tt)から温度上昇分(ΔT)を減じたものとして決定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、外周部にヒータが、先端部にノズルがそれぞれ設けられている加熱シリンダと、該加熱シリンダ内に回転方向と軸方向とに駆動可能に設けられているスクリュ、あるいは軸方向に駆動可能に設けられているプランジャと、からなる射出装置を備えた射出成形機において、溶融樹脂の温度を制御する温度制御方法に関するものである。
【背景技術】
【0002】
射出成形機は、従来周知のように、一対の金型、これらの金型を型締する型締装置、樹脂材料を溶融して金型内に射出する射出装置等から構成され、射出装置は加熱シリンダ、この加熱シリンダ内で回転方向と軸方向とに駆動されるスクリュ等から構成されている。そして加熱シリンダには外周部にバンドヒータが、先端部に射出ノズルがそれぞれ設けられ、射出ノズルの先端は金型のスプルにタッチしている。従ってバンドヒータによって加熱シリンダを加熱して、スクリュを回転駆動すると共に樹脂材料を加熱シリンダに所定量ずつ供給すると、樹脂材料は、バンドヒータによる熱とスクリュの回転による摩擦・せん断作用による熱とによって溶融し、シリンダの先端部に計量される。計量後、スクリュを軸方向に駆動すると、溶融樹脂は射出ノズルから射出されて型締めされた金型のキャビティに射出・充填される。冷却固化を待って金型を開くと成形品が得られる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2009−233892号公報
【特許文献2】特開平05−77301号公報
【特許文献3】特開2002−331558号公報
【0004】
射出成形において溶融樹脂の温度を管理することは重要であり、温度センサが加熱シリンダ内あるいは射出ノズル内に設けられた射出成形機が周知である。このような射出成形機として、例えば特許文献1において、射出ノズルに温度センサが設けられている射出成形機が提案されている。この射出成形機においては、射出ノズル内の溶融樹脂の温度を測定することができる。従ってバンドヒータの出力を操作して、射出ノズル内の溶融樹脂の温度を適温に制御できる。
【0005】
射出される溶融樹脂についてその特性、変化等を把握することも重要であり、特許文献2には金型のキャビティ内に射出した後の樹脂の温度分布を推定する方法が、特許文献3には射出成形機に固有の樹脂特性を評価する方法が、それぞれ提案されている。特許文献2は本出願人によって出願された特許文献であるが、この文献には、金型内に設けられている温度センサーによって金型温度を測定し、この金型温度に基づいて、キャビティ内に射出された樹脂の肉厚方向の各位置における温度分布と、冷却時の時間経過に伴う温度変化を、所定の計算によって推定する方法が記載されている。これによって例えば冷却固化に伴ってキャビティ内で収縮する射出材料の挙動を解析することができる。一方特許文献3には、射出成形機毎に固有の樹脂特性、例えば、溶融樹脂の温度と溶融樹脂を射出するのに必要な射出圧力の関係、射出速度とその射出速度を実現するために必要な射出圧力との関係、等を評価・推定する方法が記載されている。一般的には溶融樹脂の粘度は溶融樹脂の温度に依存するため、この方法では溶融樹脂の温度が射出圧力や射出速度に及ぼす影響を適切に評価・推定することができる。なお特許文献3においては、溶融樹脂の温度とは、加熱シリンダの全ゾーンにおける温度、すなわち平均の温度であって、射出に伴って部分的、時間的に変化する温度は考慮されていない。
【発明の概要】
【発明が解決しようとする課題】
【0006】
加熱シリンダに温度センサが設けられている射出成形機、あるいは射出ノズルに温度センサが設けられている射出成形機によれば、加熱シリンダ内、あるいは射出ノズル内の溶融樹脂の温度を測定することはできる。従ってバンドヒータの出力を調整してこれらの溶融樹脂の温度を制御することはできる。また特許文献2に記載の方法のように、キャビティ内に射出された樹脂の、温度分布、時間経過に伴う温度変化を推定することはできる。そして特許文献3に記載の方法のように、溶融樹脂の温度に依存する射出圧力や射出速度を適切に評価・推定することはできる。しかしながら従来の射出成形機や、特許文献2、3に記載の方法においては、射出に伴う溶融樹脂の温度の上昇については格別に考慮されていない。溶融樹脂は、射出ノズルから射出されるときに管内摩擦とせん断作用とによって発熱するので、射出ノズルの出口側の溶融樹脂、換言すると射出直後の溶融樹脂は、加熱シリンダあるいは射出ノズル内の溶融樹脂よりも高温になる。特にシャットオフ弁を備えた射出ノズルのように、流路が絞られている射出ノズルの場合は射出に伴う溶融樹脂の温度上昇の度合いは顕著である。特許文献1に記載の温度センサによっても、測定できるのは射出ノズル内の樹脂の温度にすぎず、実質的には加熱シリンダ内の樹脂の温度と同じである。つまり射出直後の樹脂の温度ではない。溶融樹脂は温度によって粘性が変化することになるし、温度は成形品の強度にも影響する。また高温になると焼けやシルバーストリークの原因にもなるので、上昇後の樹脂の温度の管理は重要である。特に、許容されている上限近傍の温度で射出したい場合には、この点に関する考慮が極めて重要である。しかしながら、この温度上昇についてはいずれの文献に記載の方法においても考慮されていない。温度センサを金型内あるいは射出ノズルの先端に設けるようにすれば、射出直後の溶融樹脂の温度を測定することはできそうであるが、これは単に温度を測定できるだけで所望の温度に制御する方法ではない。さらには温度センサの耐圧性能を考慮すると高圧成形をすることも困難である。従ってこのような位置にセンサを設けても課題の解決につながらない。
【0007】
本発明は、上記したような問題点を解決した溶融樹脂の温度の制御方法を提供することを目的としており、具体的には射出ノズルから射出される射出直後の溶融樹脂の温度が、所定の目標温度になるように制御する、溶融樹脂の温度制御方法を提供することを目的としている。さらに溶融樹脂は、射出ノズルから射出された直後だけでなく、金型内のランナ、ゲート等においても摩擦及びせん断エネルギによって発熱して温度が上昇する。従って成形条件によっては金型内における溶融樹脂の温度を考慮する必要もある。従って本発明は、金型のキャビティ内に射出された直後の溶融樹脂の温度が、所定の目標温度になるように制御する溶融樹脂の温度制御方法を提供することも目的としている。
【課題を解決するための手段】
【0008】
本発明は、上記目的を達成するために、外周部にヒータが、先端部に射出ノズルがそれぞれ設けられている加熱シリンダと、該加熱シリンダ内に回転方向と軸方向とに駆動可能に設けられているスクリュ、あるいは軸方向に駆動可能に設けられているプランジャと、からなる射出装置において、加熱シリンダ内または射出ノズル内の樹脂温度が所定の射出前目標温度になるように制御する方法として構成する。
【0009】
最初に射出ノズルにおける射出直後の樹脂の温度目標値である射出ノズル出口側目標温度を定める。次いで、射出時の射出圧力の損失に伴って発熱する樹脂温度の上昇分を推定する。そして、加熱シリンダ内または射出ノズル内の樹脂の射出前目標温度は、該射出前目標温度に推定された上昇分を加えたものが射出ノズル出口側目標温度になるように決定する。さらに、樹脂の発熱に寄与する射出圧力の損失分は、射出ノズルを金型のスプルから離間した状態で射出したときの射出圧力と等価であるものとする。他の発明では、金型内のキャビティに射出された直後の樹脂の温度目標値であるキャビティ内目標温度を定める。次いで、射出時の射出圧力の損失に伴って発熱する樹脂温度の上昇分を推定する。そして、加熱シリンダ内または射出ノズル内の樹脂の射出前目標温度は、該射出前目標温度に推定された上昇分を加えたものがキャビティ内目標温度になるように決定するように構成する。
【0010】
かくして、請求項1記載の発明は、上記目的を達成するために、外周部にヒータが、先端部に射出ノズルがそれぞれ設けられている加熱シリンダと、該加熱シリンダ内に回転方向と軸方向とに駆動可能に設けられているスクリュ、あるいは軸方向に駆動可能に設けられているプランジャと、からなる射出装置において、前記加熱シリンダ内または射出ノズル内の樹脂温度が所定の射出前目標温度になるように制御するとき、前記射出ノズルにおける射出直後の樹脂の温度目標値である射出ノズル出口側目標温度を定め、射出時の射出圧力の損失に伴って発熱する樹脂温度の上昇分を推定し、前記射出前目標温度は、該射出前目標温度に前記推定された上昇分を加えたものが前記射出ノズル出口側目標温度になるように決定するように構成される。
請求項2に記載の発明は、請求項1に記載の制御方法において、前記射出圧力の損失に対応する圧力損失分は、前記射出ノズルを金型のスプルから離間した状態で射出した場合に測定される射出圧力と等価であるとみなして、前記推定上昇温度を推定するように構成される。
請求項3に記載の発明は、請求項1に記載の制御方法において、前記樹脂温度の上昇分は、前記射出装置を駆動する駆動エネルギの、所定の割合のエネルギが寄与しているものとして推定するように構成される。
請求項4に記載の発明は、外周部にヒータが、先端部に射出ノズルがそれぞれ設けられている加熱シリンダと、該加熱シリンダ内に回転方向と軸方向とに駆動可能に設けられているスクリュ、あるいは軸方向に駆動可能に設けられているプランジャと、からなる射出装置において、前記加熱シリンダ内または射出ノズル内の樹脂温度が所定の射出前目標温度になるように制御するとき、金型内のキャビティに射出された直後の樹脂の温度目標値であるキャビティ内目標温度を定め、射出時の射出圧力の損失に伴って発熱する樹脂温度の上昇分を推定し、前記射出前目標温度は、該射出前目標温度に前記推定された上昇分を加えたものが前記キャビティ内目標温度になるように決定するように構成される。
【発明の効果】
【0011】
以上のように、本発明は、外周部にヒータが、先端部に射出ノズルがそれぞれ設けられている加熱シリンダと、該加熱シリンダ内に回転方向と軸方向とに駆動可能に設けられているスクリュ、あるいは軸方向に駆動可能に設けられているプランジャと、からなる射出装置において、加熱シリンダ内または射出ノズル内の樹脂温度が所定の射出前目標温度になるように制御する方法として構成されている。そして、射出ノズルにおける射出直後の樹脂の温度目標値である射出ノズル出口側目標温度を定め、射出時の射出圧力の損失に伴って発熱する樹脂温度の上昇分を推定し、前記射出前目標温度は、該射出前目標温度に推定された上昇分を加えたものが射出ノズル出口側目標温度になるように決定している。従って射出ノズル出口側の樹脂の温度が、射出ノズル出口側目標温度になるように制御することができる。これによって金型に射出される樹脂は、希望する温度で射出されることが可能となる。そして樹脂の温度が許容上限を超えて上昇することを防止できるので、焼けやシルバーストリーク等の成形不良の発生を抑制できる。特に許容されている上限近傍の温度で樹脂を射出する場合には価値が高い。他の発明によると、射出圧力の損失に対応する圧力損失分は、射出ノズルを金型のスプルから離間した状態で射出した場合に測定される射出圧力と等価であるとみなして、推定上昇温度を推定するように構成されている。つまり金型から射出ノズルを離間した状態で射出するテストを実施するだけで、圧力損失分を測定することができ、射出に伴って上昇する温度を容易に推定することができる。シンプルな方法で上昇温度を推定できるので、従来の射出成形機においても容易に実施できる。また他の発明によると樹脂温度の上昇分は、射出装置を駆動する駆動エネルギの、所定の割合のエネルギが寄与しているものとして推定するように構成されているので、射出装置を駆動するサーボモータの駆動エネルギ、すなわち消費エネルギを測定すれば、容易に温度上昇分を推定することができる。また他の発明によると、加熱シリンダ内または射出ノズル内の樹脂温度が所定の射出前目標温度になるように制御するとき、金型内のキャビティに射出された直後の樹脂の温度目標値であるキャビティ内目標温度を定め、射出時の射出圧力の損失に伴って発熱する樹脂温度の上昇分を推定し、前記射出前目標温度は、該射出前目標温度に推定された上昇分を加えたものがキャビティ内目標温度になるように決定するように構成される。従って金型内のキャビティに射出された直後の樹脂の温度が、所望の温度になるように制御できることになる。従って焼け、シルバーストリーク、ブラックストリーク等の成形不良を確実に防止することができる。
【図面の簡単な説明】
【0012】
【図1】本発明の実施の形態に係る射出成形機の一部を示す側面断面図である。
【図2】本発明の実施の形態に係る樹脂の温度制御方法を示すブロック図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施の形態について説明する。本実施の形態に係る射出成形機1は、射出装置2、固定盤4と可動盤5と型開閉機構とからなる型締装置6等から構成され、その一部が図1に示されている。固定盤4には固定側金型8が取り付けられ、固定側金型8のスプル8aは固定盤4に形成されているくり抜き4aによって背面に露出している。このスプル8aに射出装置2の射出ノズル17がタッチするようになっている。可動盤5には可動側金型9が取り付けられている。この固定側金型8と可動側金型9が型締めされるとキャビティ10が構成されるようになっている。キャビティ10にはゲート11から樹脂が射出されるようになっている。
【0014】
射出装置2も従来周知の射出装置と同様に構成されており、所定の径からなる加熱シリンダ13、この加熱シリンダ13内で回転方向と軸方向とに駆動可能に設けられているスクリュ14等から構成されている。加熱シリンダ13の先端にはアダプタブロック15を介して射出ノズル17が設けられており、加熱シリンダ13とアダプタブロック15と射出ノズル17の外周面には、複数枚のバンドヒータ19、19、…が巻かれている。このような加熱シリンダ13にはシリンダボア13a近傍の深さまで埋め込まれた加熱シリンダ温度センサ20が設けられ、同様に射出ノズル17にも樹脂流路17a近傍の深さまで埋め込まれた射出ノズル温度センサ21が設けられている。これらの温度センサ20、21は信号線S1、S2によって射出成形機のコントローラ23に接続され、加熱シリンダ13内と射出ノズル17内のそれぞれの溶融樹脂の温度、すなわち射出前の溶融樹脂の温度がコントローラ23に送られるようになっている。バンドヒータ19、19、…は、所定の電力供給装置からの供給電力によって作動し、電力供給装置に信号線が接続されてコントローラ23から制御できるようになっているが、図1には簡略的にバンドヒータ19、19、…とコントローラ23が直接信号線S3、S3、…で接続されているように示されている。また図1には示されていないが、加熱シリンダ13の後端部寄りには樹脂材料を供給するホッパが設けられ、スクリュ14の後端部にはスクリュを回転方向と軸方向とに駆動する駆動機構が設けられている。さらに射出装置には、射出装置全体を前進あるいは後退させる機構も設けられており、射出装置を前進させて射出ノズル17を固定側金型8のスプル8aにタッチさせたり、後退させて射出ノズル17と固定側金型8を離間させたりすることができるようになっている。
【0015】
射出成形機1において、加熱シリンダ13内の溶融樹脂をスクリュ14によって押し出して射出ノズル17から射出するとき、溶融樹脂は射出ノズル17の樹脂流路17aを流れて摩擦やせん断作用を受けて発熱する。次のように言うこともできる。溶融樹脂は射出ノズル17の樹脂流路17aで絞られるので、スクリュ14によって与えられた射出圧力は所定量が損失する。この圧力損失分に対応するエネルギが熱エネルギに変化して溶融樹脂の温度が上昇する。従って射出ノズル17から射出された直後の溶融樹脂、あるいは射出ノズル出口側の樹脂は、加熱シリンダ13内の射出前の溶融樹脂に比して温度が高くなる。本実施の形態においては、射出ノズル出口側の樹脂が所望の温度になるように、加熱シリンダ13内の射出前の溶融樹脂の温度を制御する。以下、図2によって制御方法を説明する。
【0016】
最初に射出装置2を後退させ、射出ノズル17と固定側金型8のスプル8aとを離間させる。射出ノズル出口側の樹脂について、温度の目標値である射出ノズル出口側目標温度Ttをコントローラ23に設定する。またコントローラ23に溶融樹脂の物性値である比熱cと密度dを入力し、必要に応じて他の物性値も入力する(ステップS1)。射出条件として射出速度vを決定し、これもコントローラ23に設定する(ステップS2)。加熱シリンダ13内の射出前の溶融樹脂の温度について仮の目標温度である仮目標温度Tを設定する(ステップS3)。仮目標温度Tは射出ノズル射出樹脂目標温度Ttよりも低い温度とする。例えば、仮目標温度Tとして射出ノズル出口側目標温度Ttから固定の数値だけ減じた値を設定することができる。もしくは射出ノズル17における溶融樹脂の温度上昇について、経験的に予測できる場合には、射出ノズル出口側目標温度Ttからこの予測される温度上昇分を減じた値を仮目標温度Tに設定してもよい。
【0017】
バンドヒータ19、19、…を作動すると共にスクリュ14を回転して樹脂材料をホッパから供給する。供給された樹脂材料はバンドヒータ19、19、…の熱とスクリュ14の回転によるせん断エネルギによって溶融し、スクリュ14の先端部に計量される。このときコントローラ23は、バンドヒータ19、19、…の出力を調整して加熱シリンダ13内の溶融樹脂の温度が仮目標温度Tになるように制御する(ステップS4)。コントローラ23からの指令によって、射出動作を実行する。すなわちスクリュ14を設定された射出速度vで軸方向に駆動する。そうすると溶融樹脂は射出ノズル17から大気中に射出される。このときの射出圧力Pと射出ストロークLをコントローラ23に記憶する(ステップS5)。
【0018】
前記したように、射出時の圧力損失分に対応するエネルギが、熱エネルギに変化して溶融樹脂の温度を上昇させる。つまり圧力損失分が溶融樹脂の温度上昇分ΔTに寄与することになる。射出圧力Pで射出された溶融樹脂は射出ノズル17から大気圧中に射出されるので、射出による圧力損失はこの射出圧力Pと等価であると見なすことができる。スクリュ14によって樹脂に与えられるエネルギは、加熱シリンダ13の断面積Sとすると、射出圧力Pと射出ストロークLとから次式で与えられる。
×S×L (1式)
一方、射出された樹脂の質量は、加熱シリンダ13の断面積Sと射出ストロークLと密度dとから、S×L×dで与えられるので、熱エネルギは温度上昇分ΔT、比熱cによって次式で与えられる。
S×L×d×ΔT×c (2式)
スクリュ14によって与えられたエネルギが全て熱エネルギに変化したと仮定して温度上昇分ΔTを計算すると、温度上昇分ΔTは次式で与えられる。
ΔT = P/(d×c) (3式)
射出ノズル17から射出された直後の樹脂、つまり射出ノズル出口側樹脂の温度の推定値T’を次式で計算する(ステップS6)。
T’ = T+ΔT (4式)
【0019】
4式で得られた射出ノズル出口側樹脂の温度の推定値T’が、射出ノズル出口側目標温度Ttに十分に近い数値になっているかどうかチェックする。具体的には所定のしきい値Tsによって次式によって判定する(ステップS7)。
|T’−Tt| < Ts (5式)
上の式が偽の場合には、仮目標温度Tを調整する。例えばT’<Ttの場合には、仮目標温度TをTt−T’だけ増やす。T’>Ttの場合には仮目標温度TをT’−Ttだけ減じる(ステップS8)。増減した仮目標温度Tを元に、ステップS4から処理を繰り返す。5式が真の場合には、仮目標温度Tを加熱シリンダ13内の樹脂の目標温度Tkとして決定する(ステップS9)。
【0020】
射出装置2を前進させ射出ノズル17を固定側金型8のスプル8aにタッチさせる。加熱シリンダ13内の樹脂が、目標温度Tkになるように制御する。従来周知のように成形サイクルを実施する。
【0021】
厳密には、溶融樹脂の粘度は温度に依存するので、射出圧力Pは樹脂の温度が変わると変化する。上記した実施の形態においては、5式を満たすまで加熱シリンダ13内の溶融樹脂の温度を変化させて、繰り返し射出を行って仮目標温度Tを調整するようにしている。従って溶融樹脂の粘度が変化しても毎回正確に射出圧力Pを検出することができる。つまり正確に温度上昇分ΔTを推定することができる。しかしながら所定の温度範囲においては溶融樹脂の粘度は一定であると見なすこともできる。または樹脂の種類によっては粘度の変化を無視することもできる。このような場合には、射出圧力Pは1回だけ測定すれば足りる。そうすると、加熱シリンダ13内の樹脂の目標温度Tkは、次式で決定することができる。
Tk = Tt−P/(d×c) (6式)
【0022】
溶融樹脂は射出ノズル17だけでなく、スプル8a、ゲート11等を流れるときにも摩擦やせん断作用によって発熱する。従ってキャビティ10内に射出された直後の樹脂は加熱シリンダ13内の樹脂よりも高温になる。当業者であれば容易に理解できるので詳しくは説明しないが、前記した方法を応用して、キャビティ10内に射出された直後の樹脂について、その温度目標値であるキャビティ内目標温度を定め、これが実現されるように加熱シリンダ13内の樹脂の温度を制御することもできる。この場合、キャビティに到達した樹脂の温度上昇分を推定する必要があるが、この上昇分も射出圧力の損失分によるものとして推定・計算することができる。実際には温度上昇に寄与した射出圧力の損失分を正確に測定することは難しいが、例えばキャビティに溶融樹脂を射出するときにスクリュ14によって与えた実射出圧力のうち、所定の割合αが熱エネルギに変化したものと仮定することができる。そうすると樹脂の温度の上昇分を計算することができる。このようにすると、キャビティ内に射出される樹脂の温度が所望の範囲になることが保障できる。
【0023】
本発明の実施の形態は色々な変形が可能である。制御方法について色々な変形が可能である。例えば溶融樹脂の温度上昇分ΔTを推定するとき、本実施の形態においては、溶融樹脂を射出ノズル17から大気中に射出して、測定される射出圧力Pが射出による圧力損失と等価であるとみなして計算するようにしている。これを、射出装置2におけるスクリュ14の駆動エネルギによって計算することも可能である。すなわちスクリュ14を駆動する駆動エネルギのうち、その所定の割合が溶融樹脂の温度上昇に寄与しているとして計算するようにする。スクリュ14の駆動エネルギEは、このスクリュ14を駆動するサーボモータのトルクN(N・m)と回転角度θ(rad)とから次式によって計算することができる。
E = N×θ (7式)
もしくはサーボモータの消費電力W(W)と時間t(s)とから次式によって計算することができる。
E = W×t (8式)
このように計算される駆動エネルギEのうち所定の割合、例えば機械効率ηに対応する次のエネルギEが溶融樹脂の温度上昇に寄与するものとみなす。
= E×η (9式)
このようにしてエネルギEを計算すれば、容易に温度上昇分を計算することができる。このような方法を採ると、射出圧力を測定するセンサ等を格別に設ける必要がないという効果も得られる。
【0024】
制御方法について、他の変形も可能である。例えば、前記した説明においては、加熱シリンダ13内の樹脂の温度を制御するように説明したが、射出ノズル17内の樹脂の温度を制御するようにしてもよい。また射出ノズル17を固定側金型8から離間して射出したときに測定される射出圧力Pが一定値であるかのように説明したが、厳密には射出圧力Pはスクリュ位置によって変化する。つまり射出圧力Pはスクリュ位置の関数である。そうすると1式、3式等においては射出圧力Pを積分で与えるようにしてもよい。また、前記した説明においては圧力の損失分、すなわち射出圧力Pによるエネルギは、全て熱エネルギに変化したように説明したが、エネルギの一部は溶融樹脂の運動エネルギにも変化している。従って射出ノズル17の出口における樹脂の温度の上昇分を推定するときに、射出される樹脂の運動エネルギを加味して計算してもよい。
【0025】
装置に関しても変形が可能である。本実施の形態においては、加熱シリンダ13内にスクリュ14が設けられている射出装置2によって射出するように説明している。しかしながらスクリュ14の代わりにプランジャが設けられている、いわゆるプランジャ式射出装置においても実施することができる。
【符号の説明】
【0026】
1 射出成形機 2 射出装置
4 固定盤 5 可動盤
6 型締装置 8 固定側金型
9 可動側金型 10 キャビティ
13 加熱シリンダ 14 スクリュ
17 射出ノズル 19 バンドヒータ
20、21 温度センサ
23 コントローラ

【特許請求の範囲】
【請求項1】
外周部にヒータが、先端部に射出ノズルがそれぞれ設けられている加熱シリンダと、該加熱シリンダ内に回転方向と軸方向とに駆動可能に設けられているスクリュ、あるいは軸方向に駆動可能に設けられているプランジャと、からなる射出装置において、前記加熱シリンダ内または射出ノズル内の樹脂温度が所定の射出前目標温度になるように制御するとき、
前記射出ノズルにおける射出直後の樹脂の温度目標値である射出ノズル出口側目標温度を定め、
射出時の射出圧力の損失に伴って発熱する樹脂温度の上昇分を推定し、
前記射出前目標温度は、該射出前目標温度に前記推定された上昇分を加えたものが前記射出ノズル出口側目標温度になるように決定することを特徴とする樹脂の温度制御方法。
【請求項2】
請求項1に記載の制御方法において、前記射出圧力の損失に対応する圧力損失分は、前記射出ノズルを金型のスプルから離間した状態で射出した場合に測定される射出圧力と等価であるとみなして、前記推定上昇温度を推定することを特徴とする樹脂の温度制御方法。
【請求項3】
請求項1に記載の制御方法において、前記樹脂温度の上昇分は、前記射出装置を駆動する駆動エネルギの、所定の割合のエネルギが寄与しているものとして推定することを特徴とする樹脂の温度制御方法。
【請求項4】
外周部にヒータが、先端部に射出ノズルがそれぞれ設けられている加熱シリンダと、該加熱シリンダ内に回転方向と軸方向とに駆動可能に設けられているスクリュ、あるいは軸方向に駆動可能に設けられているプランジャと、からなる射出装置において、前記加熱シリンダ内または射出ノズル内の樹脂温度が所定の射出前目標温度になるように制御するとき、
金型内のキャビティに射出された直後の樹脂の温度目標値であるキャビティ内目標温度を定め、
射出時の射出圧力の損失に伴って発熱する樹脂温度の上昇分を推定し、
前記射出前目標温度は、該射出前目標温度に前記推定された上昇分を加えたものが前記キャビティ内目標温度になるように決定することを特徴とする樹脂の温度制御方法。

【図1】
image rotate

【図2】
image rotate