説明

水浄化システムの運転方法及び水浄化システム

【課題】 膜モジュールの汚れや目詰まりを効果的に防止し、長期間安定した濾過運転のできる水浄化システムの運転方法を提供する。
【解決手段】 本発明の水浄化システムの運転方法は、限外又は精密濾過膜モジュールを用いる水浄化システムにおいて、原水が限外又は精密濾過膜モジュールに流入する前に超微細気泡を原水中に混合させつつ膜濾過することを特徴とする。前記超微細気泡の発生源として、原水中に気体を混入させて高速せん断を与え、主に50μm以下のサイズの気泡を発生させる超微細気泡発生装置を用いることができる。原水としては表流水が好ましい。限外又は精密濾過膜モジュールとしては中空糸型濾過膜モジュールが好ましい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は水浄化システムの運転方法及び水浄化システム、より詳しくは、濾過運転エネルギーを低減でき、膜モジュールの目詰まりを効果的に防止できる水浄化システムの運転方法及び水浄化システムに関する。
【背景技術】
【0002】
従来の凝集−沈殿−砂濾過−塩素滅菌工程を経る水浄化システムに代わって、膜分離技術を適用した水浄化システムが注目されている。たとえば、限外濾過膜や精密濾過膜を用いたクロスフロー濾過が試行されている。クロスフロー濾過とは、分離膜の一方の膜面(原水供給側分離膜面)に原水を供給し、分離膜を透過した透過水を分離膜の他方の膜面(透過水側分離膜面)から回収する際、原水供給側分離膜面に平行に原水を流して濾過を行うことにより、分離膜表面に付着した原水に含まれていた濁質物質をその膜表面からはぎ取る効果を有する濾過方法をいう。しかし、クロスフロー濾過によっても、濾過時間の経過によって原水中に含まれる濁質物質が分離膜表面に積層して、分離膜の目詰まりを生ずる。
【0003】
この目詰まりは水浄化システムの濾過運転エネルギーを上昇させるだけでなく、運転中断の原因となるため、この目詰まりを解消あるいは予防する方法として、一般に逆圧洗浄(以下、「逆洗」と称する場合がある)が行われており、分離膜の長期使用を可能とするため、原水濁度、透過水量、透過水圧等の各種変化量等に基づいて逆洗頻度、逆洗時間等を変化させる方法が提案されている。たとえば、クロスフロー濾過における逆洗としては、原水濁度に依存した定期的な逆洗を行う方法、水質と濾過量の変動による濾過量低下傾向時に膜の逆洗条件を変更させる方法、原水濁度の変動に応じて逆洗の頻度を調節し、分離膜を閉鎖させる危険を排除し、かつ用水の回収率を高める方法などが知られている。これらの方法は、原水側分離膜面に濁質物質が付着した場合には、その目詰まりによって原水供給側の原水圧が上昇するため、その上昇した圧力の数倍の圧力を逆洗圧として用い、濁質物質の剥離を実施しようとするものである。従って、分離膜には常に高圧が負荷されることとなり、分離膜の耐用年数が短縮されるおそれがある。しかも、高圧負荷は分離膜のみならず、使用されるポンプにも及ぶ。
【0004】
このため、逆洗効率の向上、ならびに高価な分離膜モジュールの使用条件を緩和し、かつ各種水浄化システムに容易に対応できる逆洗方法の開発が求められている。特許文献1には、逆洗の直前又は直後に濾過過程の休止過程を設けること、殺菌剤を含む逆洗水を用いることが開示されている。特許文献2には、逆洗処理工程、次亜塩素酸塩注入浸漬工程、硫酸注入浸漬工程を有し、浸漬洗浄時間が10〜60分である濾過膜の洗浄方法が開示されている。しかし、これらの方法は薬液を使用することが必須であるとともに、操作が煩雑であり、必ずしも工業的に効率のよい水浄化システムとは言えない。
【0005】
微細気泡を用いる膜洗浄システムとして、特許文献3には、逆浸透膜の洗浄運転時に微細気泡発生装置を起動させる膜浄化システムが開示させているが、逆浸透膜では微細気泡は膜細孔内部には透過せず膜表面の洗浄のみであり、また本膜浄化システムでは逆洗ができないために洗浄効果が極めて小さくなる。特許文献4には、微細気泡を用いた中空糸膜モジュールの洗浄方法が開示されているが、膜洗浄時に膜濾過水に気体を過飽和させて微細気泡を発生させる方法であり、膜濾過時に原水中に発生させていないために充分な洗浄効果が得られないと同時に膜濾過水を洗浄水として用いるために濾過回収率が小さくなってしまう。
【0006】
【特許文献1】特開平8−197053号公報
【特許文献2】特開2005−87887号公報
【特許文献3】特開2006−263501号公報
【特許文献4】特開2003−251157号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明の目的は、膜モジュールの汚れや目詰まりを効果的に防止し、長期間安定した濾過運転のできる水浄化システムの運転方法及び水浄化システムを提供することにある。
本発明の他の目的は、煩雑な操作を必要とせず、また薬品を用いなくても、長期間安定した濾過運転のできる水浄化システムの運転方法及び水浄化システムを提供することにある。
【課題を解決するための手段】
【0008】
本発明者は、上記目的を達成するため鋭意検討を重ねた結果、限外又は精密濾過膜モジュールを用いる水浄化システムにおいて、原水が膜モジュールに流入する前に超微細気泡を原水中に混合させつつ膜濾過を行うと、超微細気泡の作用により、膜モジュールの汚れや目詰まりを効果的に防止でき、逆洗の頻度及び時間を大幅に低減できること、そのため、煩雑な操作を行うことなく長期間安定した濾過運転のできることを見出し、本発明を完成した。
【0009】
すなわち、本発明は、限外又は精密濾過膜モジュールを用いる水浄化システムにおいて、原水が限外又は精密濾過膜モジュールに流入する前に超微細気泡を原水中に混合させつつ膜濾過することを特徴とする水浄化システムの運転方法を提供する。
【0010】
超微細気泡の発生源として、原水中に気体を混入させて高速せん断を与え、主に50μm以下のサイズの気泡を発生させる超微細気泡発生装置を用いることができる。限外又は精密濾過膜モジュールとしては中空糸型濾過膜モジュールであるのが好ましい。また、限外又は精密濾過膜モジュールにおける膜濾過方式としては内圧式のクロスフロー濾過方式であるのが好ましい。
【0011】
上記水浄化システムの運転方法において、限外又は精密濾過膜モジュールに対し、該濾過膜モジュールからの透過水又は別途供給される清浄水により、間欠的な逆洗を施すことができる。
【0012】
本発明は、また、原水を限外又は精密濾過膜モジュールに供給する原水供給ポンプと、限外又は精密濾過膜モジュールと、原水が限外又は精密濾過膜モジュールに流入する前に該原水に高速せん断を与えて超微細気泡を発生させる超微細気泡発生装置が設けられていることを特徴とする水浄化システムを提供する。
【0013】
この水浄化システムは、さらに、限外又は精密濾過膜モジュールを間欠的に逆洗する洗浄手段が備えられていてもよい。また、この水浄化システムは、さらに、原水の夾雑物を除去するプレフィルターが備えられており、前記プレフィルターを透過した原水に高速せん断を与えて超微細気泡を発生させる超微細気泡発生装置が、限外又は精密濾過膜モジュールに流入する前に設けられていることが好ましい。
【0014】
なお、本発明の水浄化システムの運転方法には、透過水(濾過水;製品)を得ることなく、単に限外又は精密濾過膜モジュールを洗浄する方法は含まれない。また、本発明の水浄化システムには、透過水(濾過水;製品)を得ることなく、単に限外又は精密濾過膜モジュールを洗浄する装置は含まれない。
【発明の効果】
【0015】
本発明の水浄化システムの運転方法及び水浄化システムによれば、膜モジュールの汚れや目詰まりを効果的に防止でき、長期間安定した濾過運転を行うことができる。また、逆洗の頻度及び時間を低減でき、煩雑な操作を必要とせず、また薬品を用いなくても、長期間安定した濾過運転が可能である。
【発明を実施するための最良の形態】
【0016】
本発明の水浄化システムの運転方法では、限外又は精密濾過膜モジュールを用いる水浄化システムにおいて、原水が限外又は精密濾過膜モジュールに流入する前に超微細気泡を原水中に混合させつつ膜濾過する。ここで言う限外濾過(UF)膜とは分子量500〜30万の物質(分子サイズとして0.001〜0.03μm程度)を分離対象とする分離膜であり、通常のナノ濾過膜の範疇も含む。精密濾過(MF)膜は粒径0.02〜2μmの粒子を分離対象とする分離膜である。従って、限外又は精密濾過膜の孔径は0.001〜2μmであるが、より好ましくは、0.01〜1μmである。
【0017】
限外又は精密濾過膜モジュールとしては、中空糸型濾過膜モジュール、平板モジュール、チューブラーモジュール、スパイラルモジュール等の何れであってもよいが、逆洗が比較的容易に行える点から、中空糸型濾過膜モジュールが好ましい。中空糸型濾過膜モジュールにおける中空糸膜の内径は、中空糸膜の内側に気泡径50μm以下の微細気泡を効果的に通過させるとともに、汚染物質の閉塞の防止、中空糸充填率の向上という観点から、0.1〜2.0mm程度の範囲が好ましく、0.5〜1.0mmの範囲がさらに好ましい。
【0018】
分離膜の材質としては、一般的なもの、例えば、酢酸セルロース、ポリアクリロニトリル、ポリスルホン、ポリエーテルスルホン、ポリフッ化ビニリデン、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリイミドなどを使用できる。これらの中でも、限外濾過膜の材質としては酢酸セルロース、ポリスルホン、ポリエーテルスルホンが好ましく、精密濾過膜の材質としてはポリフッ化ビニリデン、ポリエチレン、ポリプロピレンが好ましい。
【0019】
中空糸膜としては、酢酸セルロース系中空糸膜、ポリスルホン系中空糸膜、ポリアクリロニトリル系中空糸膜等を挙げることができるが、これらの中でも、低い膜間圧力で運転することができ、膜のファウリングも抑制しやすいことから、酢酸セルロース系中空糸膜が好ましい。また、外表面側の細孔より内表面側の細孔の方が小さい孔径のものが内圧式としては好適である。
【0020】
本明細書において、超微細気泡とは、発生時において気泡径50μm以下の気泡をいう。気泡径は、発生時において50μm以下が好ましく、更に好ましくは発生時において気泡径10μm以下である。超微細気泡は、発生時において例えば10μm程度であっても時間とともに徐々に小さくなる現象がある。本発明においては、膜モジュールに流入させる超微細気泡含有原水中に含まれる気泡径2〜50μmの気泡の個数(パーティクルカウンタで測定される個数)は、20〜30℃において、例えば100個/mL以上、好ましくは300個/mL以上、さらに好ましくは1000個/mL以上であり、特に2000個/mL以上が好ましい。超微細気泡の使用により、膜モジュールの膜表面の汚れや膜の孔の目詰まりを防止できる。特に、膜の孔の目詰まり防止効果が大きい。なお、膜モジュールに流入させる超微細気泡含有原水には、気泡径50μm以上の気泡が含有されていてもよい。このような気泡も、膜モジュールの膜表面の汚れの防止等に寄与する。
【0021】
超微細気泡の発生源として、原水中に気体を混入させて高速せん断を与え、主に50μm以下のサイズの気泡を発生させる超微細気泡発生装置(例えば、発生する全気泡の70%以上が気泡径50μm以下の気泡である超微細気泡発生装置)を用いることができる。超微細気泡発生方法としては、一般に、薬品を用いる方法、気体を過飽和に溶解させてから圧力低下させて発生させる方法、流体に気体を混合させて高速せん断を与える方法などがある。超微細気泡の発生方法が異なると、発生した超微細気泡の性質は大きく異なることが一般に知られている(大成博文:マイクロバブルのすべて、日本実業出版 p1−285、2006)。本発明における超微細気泡の発生方法は、原水中に気体を混入させて高速せん断を与える方法である。高速せん断を与える方法としては、液体と気体を円筒形状の中で超高速旋回させることによって気泡を発生させる方法、気液混合物を高速で環状スリットに通過させて気泡を発生させる方法などがある。特に、気液混合物を環状スリットに通過させて噴出させることにより、液中に超微細気泡を発生させる環状スリットを備えた装置が好適である。この環状スリットは、内径側から外径側に向かって間隙最小部から拡大するように設けられた流路拡大部を備えているのが好ましい。
【0022】
限外又は精密濾過膜モジュールにおける膜濾過方式は、モジュールの構造等に応じて適宜選択でき、全量濾過方式、クロスフロー濾過方式の何れであってもよいが、膜供給水中の懸濁物質やコロイドが膜面に堆積する現象を抑制できる点で、内圧式のクロスフロー濾過方式が特に好ましい。
【0023】
クロスフロー濾過方式の場合、原水の膜面線速が大きいほど膜面への付着物質の堆積が抑制されるので高い濾過流束(フラックス)が得られ、膜汚染防止の点で好ましいが、高膜面線速となるほどランニングコストが増加することになる。本発明によれば、超微細気泡を含有する原水を膜モジュールに供給するため、原水の膜面線速をさほど大きくしなくても膜面や孔への付着物質の堆積等を抑制できる。そのため、エネルギーの低減、ランニングコストの低減が可能となる。本発明において、クロスフロー濾過方式における原水の膜面線速(クロスフロー速度)は、例えば0.02m/s以上0.5m/s未満であり、好ましくは0.05m/s以上0.2m/s未満である。
【0024】
本発明の方法では、膜面への付着物質の堆積を防止し、長期間膜濾過運転を行うため、限外又は精密濾過膜モジュールに対し、該濾過膜モジュールからの透過水又は別途供給される清浄水により間欠的な逆洗を施すのが好ましい。逆洗は、圧力を制御しつつ、予め定められた周期で行うのが好ましい。逆洗の頻度は、0.5〜3時間に1回であることが好ましい。逆洗の時間は0.5〜2分が好ましい。この際、濾過回収率は90%以上、より好ましくは95%以上に設定すると良い。濾過回収率は、次式で表させる。
濾過回収率=100×(膜濾過流量−逆洗水量)/膜濾過流量
【0025】
なお、逆洗に用いる洗浄水には、必要に応じて、次亜塩素酸ナトリウム等の殺菌剤などの薬剤を添加してもよい。
【0026】
本発明によれば、超微細気泡を含有する原水を膜モジュールに供給するため、膜面の付着物質の堆積を抑制できるだけでなく、膜の孔に懸濁物質等が詰まる目詰まり現象を効果的に防止できるので、逆洗の頻度及び時間を大幅に低減することができ、濾過回収率の向上、操作性の向上、エネルギーコストの低減等の点から、工業的意義は極めて大である。
【0027】
本発明の方法では、限外又は精密濾過膜モジュールの透過水側に該濾過膜の孔径よりも大きい気泡が確認されることが好ましい。超微細気泡は発生時において、例えば気泡径10μmであっても時間とともに徐々に収縮し、やがてナノサイズにまで収縮すると、この気泡は膜細孔内部を透過することができ膜細孔内部の洗浄にも寄与することができる。従って、超微細気泡は膜細孔内を透過することが好ましく、実際に超微細気泡を膜に透過させると膜の透過側の膜表面には気泡の生成が確認される場合がある。
【0028】
図1は、本発明の水浄化システム(設備)及び水浄化システムの運転方法の一例を示す概略説明図(概略フロー図)である。本発明の水浄化システム(設備)及び水浄化システムの運転方法は図1に示すものに限定されるものではなく、必要に応じて、凝集剤による凝集処理、活性炭処理、その他の分離膜処理等の公知の水浄化手段を組み合わせることができる。
【0029】
原水供給ライン10から原水タンク1に送水貯留された原水(被処理水)は、原水供給ライン11を経て超微細気泡発生装置2(後に詳述する)の槽(タンク)2aに送液される。原水供給ライン11の途中(原水タンク1と超微細気泡発生装置2の間)に、原水の夾雑物を除去するためのプレフィルター8を設けるのが好ましい。プレフィルターの濾過精度(濾過目開き)は、超微細気泡発生装置において高速せん断が与えられる間隙あるいはスリット幅よりも小さいことが望ましく、例えば5〜200μm、好ましくは10〜150μm、さらに好ましくは50〜100μmである。プレフィルターの形式としては、特に限定されないが、オートストレーナー、カートリッジフィルター、メンブレンフィルターなどを使用できる。
【0030】
超微細気泡発生装置2では、空気供給ライン2dから供給される空気により、原水中に超微細気泡が多数生成する。超微細気泡発生装置2で調製された超微細気泡含有原水は、超微細気泡含有原水供給ライン12から、送水ポンプ13を用いて、縦置きに設置された膜モジュール(中空糸膜モジュール;内圧式のクロスフロー濾過方式)3の下端に設けられた超微細気泡含有原水供給口4に供給される。なお、原水には、原水中の懸濁質(SS)濃度や懸濁質の大きさ等に応じ、必要により凝集剤による凝集処理を施すことができる。
【0031】
膜モジュール3は、ハウジング内に中空糸膜束が収容されたものであり、超微細気泡含有原水供給口4、透過水取り出し口5a,5b、濃縮液排出口6を有している。超微細気泡含有原水供給口、透過水取り出し口は少なくとも1つ備えていればよい。なお、全量濾過の場合には、濃縮液排出口6は設けなくてもよい。超微細気泡含有原水供給口4は、逆圧洗浄の際には、逆圧洗浄排水口として使用される。中空糸膜束は、所要数の中空糸膜の両端側が接着剤等で一体化されると共に、中空糸膜の両端部が開口されたもので、ハウジングの内壁面に固定されている。超微細気泡含有原水供給量の調整はバルブ20により行う。
【0032】
膜モジュール3において、所定条件下で膜濾過された透過水は、透過水ライン15a,15bからバルブ23,24を経て、透過水タンク7に送られ貯水される。透過水は透過水取り出しライン16より排出される。濃縮液は、バルブ22を操作することにより、濃縮液循環流量およびクロスフロー速度を調整し、ライン14を通じて送水ポンプ13に送られる。濃縮液は必要に応じて原水タンク1に戻される。
【0033】
膜濾過運転時には、濾過能力を維持するために、定期的に水又は空気による逆圧洗浄を行うことが望ましい。逆圧洗浄媒体として水を用いる場合には、逆圧ポンプ17を作動させることにより、透過水タンク7内の透過水を逆圧洗浄ライン18及び透過水ライン15a,15bを経て、膜モジュール3の透過水取り出し口5a,5bから圧入して、膜(中空糸膜)を逆圧洗浄する。逆圧洗浄時の流量は、濾過流量の1〜5倍であることが好ましい。
【0034】
上記の超微細気泡発生装置2について、以下にさらに詳しく説明する。
【0035】
超微細気泡発生装置2は、超微細気泡含有原水を調製する容器としての槽2aと、槽2aの底部に備え付けられた微細気泡分散撹拌機2b(本体部2b1とモーター部2b2とからなる)と、槽2aを設置する台2cとで構成されている。微細気泡分散撹拌機2bの本体部2b1には、槽2a内の気泡混合液を流入させる液流入口と、気泡形成ガス(空気)を流入させる気泡形成ガス(空気)流入口と、流入した液及び空気を撹拌、混合すると共に、得られた気液混合物に遠心力を与える回転体(撹拌翼)と、遠心力を付与された気液混合物を槽2a内の気泡混合液中に噴出させる環状スリットとを備えている。本体部2b1内で形成された気液混合物をして環状スリットを通過、噴出させることにより、超微細気泡が多数生成し、槽2a内に超微細気泡含有原水が調製される。なお、微細気泡分散撹拌機2bの設置部位は、必ずしも槽2aの底部でなくてもよく、槽2aの側部であってもよい。また、微細気泡分散撹拌機2bは複数設けてもよい。原水タンク1からの原水の槽2aへの供給は連続的であっても、間欠的であってもよい。
【0036】
超微細気泡発生装置2では、例えば環状スリットの構造、気液混合物の環状スリットにおける通過速度、本体部2b1への気泡形成ガスと液の供給割合等を調整することにより、超微細気泡混合液中の(超)微細気泡の気泡径、気泡径分布、及び気泡の個数を制御することができる。気泡の個数、気泡径、気泡径の分布等は、前記のように、パーティクルカウンターを用いて測定することができる。
【0037】
環状スリットは、内径側から外径側に向かって間隙最小部から拡大するように設けられた流路拡大部を備えているのが好ましい。環状スリットがこのような構造を有すると、気液混合物が高速で通過して噴出することにより、気液混合物中に超微細気泡が発生する。これは、気液混合物が、内径側から外径側に向かって間隙最小部から連続的に拡大する流路(流路拡大部)を通過する際に、(i)流路の広がりに気泡の膨張速度が追いつかず、気泡が破壊される現象、(ii)溶存した気泡形成ガスが、間隙最小部から流路拡大部に通過する際に生じる減圧作用によりガス化する現象、又は(iii)前記(i)と(ii)が同時に生じる現象が生じるためと推測される。
【0038】
上記好ましい環状スリットの構造においては、少なくとも内径側から外径側に向かって間隙最小部から拡大するように設けられた流路拡大部を備えている限り特に制限されず、例えば、間隙最小部の内径側に、間隙最小部に向かって連続的に流路が縮小する流路縮小部を有していてもよい。また、環状スリットは、内径側から外径側に向かって段階的に流路断面積が増える構造、内径側から外径側に向かって段階的に流路断面積が減少する構造、内径側から外径側に向かって連続的に流路断面積が増える構造、内径側から外径側に向かって連続的に流路断面積が減少する構造を有していてもよい。本発明では、超微細気泡を効率よく発生させる観点から、環状スリットは、内径側から外径側に向かって間隙最小部から連続的に流路断面積が増える流路拡大部を備えることが好ましい。
【0039】
微細気泡分散撹拌機2bの本体部2b1は、例えば、略円盤状のステータ(対向する上部ステータと下部ステータとで構成されている)と、ステータ内部に設けられ、周方向に回転する回転体と、ステータの任意の部位(例えば、下底部)にそれぞれ設けられた液流入口及び気泡形成ガス流入口(気泡供給管)と、上部ステータと下部ステータの対向面周縁部に周方向に設けられ、ステータ内部で形成された気液混合物を通過させて噴出させることにより気液混合物中に超微細気泡を発生させる環状スリットとで構成することができる。
【0040】
このような本体部2b1を有する微細気泡分散撹拌機では、例えばモーター部2b2を用いること等で動力を発生させることにより、本体部2b1に供給される気泡形成ガスと本体部2b1に取り込まれた液とが混合され気液混合物となり、さらに該気液混合物が高速で環状スリットを通過するので気液混合物中に気泡径の極めて小さい超微細気泡が発生する。
【0041】
図2は、微細気泡分散撹拌機2bの本体部2b1の一例を示す概略断面図である。図2において、221は回転軸、222は気泡形成ガス経路、223はボルト、224は孔部、225は液流入口、226は回転体、226aは回転体226の円盤、226bは回転体226の遠心翼、227は上部ステータ部、228は下部ステータ部、229は環状スリット、229aは環状スリット229の流路縮小部、229bは環状スリット229の間隙最小部、229cは環状スリット229の流路拡大部、230は流路を示す。
【0042】
回転軸221は、モーター部2b2とつながっており、モーター部2b2によって高速回転(例えば3600〜4000rpm)可能である。また回転軸221には、回転体226が設けられており、回転体226は円盤226aと複数の遠心翼226bにより構成されている。このため、回転軸の高速回転により、本体部2b1内部に液流入口225から原水(気泡含有液)が取り込まれ、さらに本体部2b1内部で取り込まれた液と気泡形成ガス経路222を通じて供給される気泡形成ガス(空気)とが混合され、気液混合物となり、さらにまた該気液混合物は、環状スリット229を、本体部2b1の内部側から外部側に向かって(遠心方向に)高速で通過して噴出する。該気液混合物が環状スリット229を高速で通過して噴出する際に気液混合物の液中に超微細気泡が発生して超微細気泡混合液となる。なお、気泡は回転体226の高速回転作用によって細かく裁断されていると推測される。
【0043】
また、本体部2b1には、孔部224を備えている。このため、液を溜める初期のときに内部に残留する気体を排出できる。従って、可動時にステータ内に気体が残留することによるキャビテーションの発生やキャビテーションによって回転体226が機能しないことを防止することができる。また、気体供給量が過剰であれば、この孔から出てくるので、目視にて、ガス供給量を調整できる。
【0044】
気泡形成ガス(空気)の供給量としては、特に制限されないが、例えば、超微細気泡発生装置2において超微細気泡を、気泡混合液1mL中に100個以上発生させる場合、0.01L/min以上であるのが好ましい。
【0045】
モーター部2b2としては、キャンドモーターが好適に用いられる。
【0046】
上記のような構造を有する超微細気泡発生装置2を用いることにより、気泡径2〜50μmの気泡の個数(パーティクルカウンタで測定される個数)が、20〜30℃において、例えば100個/mL以上(好ましくは300個/mL以上、さらに好ましくは1000個/mL以上、特に2000個/mL以上)である超微細気泡含有原水を得ることができる。また、上記のような構造を有する超微細気泡発生装置2を用いた場合、気泡径2〜5μmの気泡の個数(パーティクルカウンタで測定される個数)が、20〜30℃において、例えば100個/mL以上(好ましくは300個/mL以上、さらに好ましくは1000個/mL以上、特に2000個/mL以上)である超微細気泡含有原水を得ることができる。
【実施例】
【0047】
以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
【0048】
実施例1
図1に示す水浄化システム(設備)により、膜濾過運転を行った。原水(揖保川の河川水)を、原水供給ライン11を経て超微細気泡発生装置2の槽(タンク)2aに送液した。プレフィルター8として、セントラルフィルター工業(株)製の製品名「ジュラクリーン」(濾過精度100μm)を用いた。超微細気泡発生装置2で調製された超微細気泡含有原水を、超微細気泡含有原水ライン12から、送水ポンプ13を用いて、縦置きに設置された中空糸膜モジュール3[UF膜、分画分子量:150000(孔径0.01μm)、膜材質:酢酸セルロース、膜形状:内圧型中空系、膜内径:0.8mm、膜外径:1.3mm、有効膜面積:0.13m2]の下端に設けられた超微細気泡含有原水供給口4に供給した。濾過方式は内圧式のクロスフロー方式(クロスフロー速度:0.05m/s)、濾過圧力は0.05MPaである。
【0049】
超微細気泡発生装置2としては、図2に示されるような、略円盤状のステータと、ステータ内部に設けられ、周方向に回転する回転体と、ステータの下底部にそれぞれ設けられた液流入口及び気泡形成ガス(空気)流入口と、上部ステータと下部ステータの対向面周縁部に周方向に設けられ、ステータ内部で形成された気液混合物を通過させて噴出させることにより気液混合物中に超微細気泡を発生させる環状スリットとで構成する本体部を有する微細気泡分散撹拌機[(株)帝国電機製作所で開発中のマイクロバブルエアレーター]を備えた装置を用いた。
【0050】
各部位の寸法は以下の通りである。ステータ部227、228の直径a:200mmφ、回転体226の直径b:130mmφ、遠心翼226bの幅(高さ):8mm、環状スリット229の間隙最小部229bのギャップc:0.2mm、遠心翼226bと下部ステータ部との距離(ギャップ)d:4mm、液流入口225の直径:10mmφ、環状スリット229の流路拡大部229cにおける拡がり角度(断面での拡がり角度)θ:5°、回転体226の回転数:3600rpm、気泡形成ガス経路222からの空気供給量(コンプレッサーにて供給):0.2L/minである。なお、この超微細気泡発生装置(回転体226の直径b:130mmφ)を用いた場合の微細気泡の発生個数(水道水26L使用;20〜30℃)をパーティクルカウンタ[パーティクルセンサの仕様:型式「Liquilaz-E20P」、測定粒径範囲2〜125μm、試料流量20mL/min、最大可測濃度10000個/mL、周辺装置(シリンジサンプラ、データ処理専用ソフト「Sampleersight」)]で測定したところ、気泡径2〜5μmの気泡の個数は約3800個/mL、気泡径2〜50μmの気泡の個数は約5700個/mLであった。
【0051】
中空糸膜モジュール3において膜濾過された透過水は、透過水ライン15a,15bからバルブ23,24を経て、透過水タンク7に送られ貯水された。濃縮液はライン14を通じて送水ポンプ13に送られた。膜濾過運転を25時間行い、実フラックスの変化を測定した。
【0052】
実施例2
超微細気泡発生装置の微細気泡分散撹拌機として回転体226の直径bが90mmφのものを用いたこと以外は実施例1と同様にして、膜濾過運転を行った。
【0053】
実施例3
クロスフロー速度を0.16m/sとしたこと以外は実施例1と同様にして、膜濾過運転を行った。
【0054】
比較例1
超微細気泡発生装置2を稼働させなかったこと以外は実施例2と同様にして、膜濾過運転を行った。
【0055】
比較例2
超微細気泡発生装置2を稼働させず、かつクロスフロー速度を0.16m/sとしたこと以外は実施例1と同様にして、膜濾過運転を行った。
【0056】
実施例1〜3及び比較例1〜2の結果(運転時間[hr]と実フラックス[m/日]の関係を示すグラフ)を図3〜図5に示す。これらの結果より、原水が膜モジュールに流入する前に超微細気泡を原水中に混合させつつ膜濾過を行うことにより、濾過流束(フラックス)を大幅に向上できることが分かる。これは、超微細気泡により膜面の付着物質の堆積を抑制できるだけでなく、膜の孔に懸濁物質等が詰まる目詰まりを抑制できるためと推測される。従って、本発明によれば、逆洗の頻度及び時間を低減することができ、水浄化システムを操作性よく且つ低コストで長期間安定して運転できる。
【0057】
実施例4
超微細気泡発生装置として気液せん断方式のマイクロバブル発生器(泡多郎 品番BL12AA−12−R4、ニッタ・ムアー株式会社製)を用いて、図1と同様の膜濾過装置を用いて膜濾過[クロスフロー速度0.1m/s、濾過圧力0.05MPa、逆洗圧力0.1MPa、逆洗頻度60分に1回、逆洗時間30秒、濾過回収率95%]を行った。用いた中空糸膜モジュールは、膜材質が酢酸セルロースおよびポリエーテルスルホンの2種類であり、それぞれの膜モジュールの分画分子量は15万、膜形状は内圧型中空系、膜内径は0.8mm、膜外径は1.3mm、有効膜面積は0.13m2であった。膜濾過速度(フラックス[m/日])の経日変化を図6に示す。膜濾過開始から120日までは超微細気泡発生装置を稼動させず、120日から130日の間は超微細気泡発生装置を稼動させた。120日以降、両中空糸膜モジュールともにフラックスが急激に増加し、超微細気泡による効果的な膜洗浄が行われた。なお、このマイクロバブル発生器を用いた場合の微細気泡の発生個数(パーティクルカウンタで測定;25℃)は、気泡径2〜5μmの気泡:0個/mL、気泡径2〜50μmの気泡:2717個/mLである(ニッタ・ムアー株式会社のカタログ「気液せん断方式マイクロバブル発生器 泡多郎 AWATARO CATA−10070A−01」より)。
【図面の簡単な説明】
【0058】
【図1】図1は本発明の水浄化システムの運転方法の一例を示す概略説明図(概略フロー図)である。
【図2】図2は本発明の方法で使用される超微細気泡発生装置における微細気泡分散撹拌機の本体部の一例を示す概略断面図である。
【図3】図3は実施例1、2及び比較例1における運転時間と実フラックスの関係を示すグラフである。
【図4】図4は実施例3及び比較例2における運転時間と実フラックスの関係を示すグラフである。
【図5】図5は実施例1及び実施例3における運転時間と実フラックスの関係を示すグラフである。
【図6】図6は実施例4における運転日数と実フラックスの関係を示すグラフである。
【符号の説明】
【0059】
1 原水タンク
2 超微細気泡発生装置
2a 槽
2b 微細気泡分散撹拌機
2b1 微細気泡分散撹拌機の本体部
2b2 微細気泡分散撹拌機のモーター部
2c 台
2d 空気供給ライン
3 膜モジュール
4 超微細気泡含有原水供給口
5a,5b 透過水取り出し口
6 濃縮液排出口
7 透過水タンク
8 プレフィルター
10 原水供給ライン
11 原水供給ライン
12 超微細気泡含有原水供給ライン
13 送水ポンプ
14 濃縮液排出ライン
15a,15b 透過水ライン
16 透過水取り出しライン
17 逆洗用ポンプ
18 逆圧洗浄ライン
19 逆圧洗浄排水ライン
20,21,22,23,24 バルブ
221 回転軸
222 気泡形成ガス(空気)経路
223 ボルト
224 孔部
225 液流入口
226 回転体
226a 円盤
226b 遠心翼
227 ステータ部(上部ステータ部)
228 ステータ部(下部ステータ部)
229 環状スリット
229a 流路縮小部
229b 間隙最小部
229c 流路拡大部
230 流路

【特許請求の範囲】
【請求項1】
限外又は精密濾過膜モジュールを用いる水浄化システムにおいて、原水が限外又は精密濾過膜モジュールに流入する前に超微細気泡を原水中に混合させつつ膜濾過することを特徴とする水浄化システムの運転方法。
【請求項2】
超微細気泡の発生源として、原水中に気体を混入させて高速せん断を与え、主に50μm以下のサイズの気泡を発生させる超微細気泡発生装置を用いる請求項1記載の水浄化システムの運転方法。
【請求項3】
限外又は精密濾過膜モジュールが中空糸型濾過膜モジュールである請求項1又は2記載の水浄化システムの運転方法。
【請求項4】
限外又は精密濾過膜モジュールにおける膜濾過方式が内圧式のクロスフロー濾過方式である請求項1〜3のいずれかの項に記載の水浄化システムの運転方法。
【請求項5】
限外又は精密濾過膜モジュールに対し、該濾過膜モジュールからの透過水又は別途供給される清浄水により、間欠的な逆洗を施す請求項1〜4のいずれかの項に記載の水浄化システムの運転方法。
【請求項6】
原水を限外又は精密濾過膜モジュールに供給する原水供給ポンプと、限外又は精密濾過膜モジュールと、原水が限外又は精密濾過膜モジュールに流入する前に該原水に高速せん断を与えて超微細気泡を発生させる超微細気泡発生装置が設けられていることを特徴とする水浄化システム。
【請求項7】
さらに、限外又は精密濾過膜モジュールを間欠的に逆洗する洗浄手段が備えられている請求項6記載の水浄化システム。
【請求項8】
さらに、原水の夾雑物を除去するプレフィルターが備えられており、前記プレフィルターを透過した原水に高速せん断を与えて超微細気泡を発生させる超微細気泡発生装置が、限外又は精密濾過膜モジュールに流入する前に設けられている請求項6又は7記載の水浄化システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2010−104902(P2010−104902A)
【公開日】平成22年5月13日(2010.5.13)
【国際特許分類】
【出願番号】特願2008−279021(P2008−279021)
【出願日】平成20年10月30日(2008.10.30)
【出願人】(594152620)ダイセン・メンブレン・システムズ株式会社 (104)
【Fターム(参考)】