説明

水素センサおよび水素検出器

【課題】より簡便且つ安定的に長期間使用可能な水素センサを提供する。
【解決手段】本発明に係る水素センサ1は、水素の吸蔵および放出により可逆的に物性値が変化する金属からなる水素感応体10を、フィルム状、シート状または平板状の樹脂からなる基板12の表面に薄膜状に形成したことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、気相中の水素濃度や液相中の溶存水素濃度を測定する水素センサ、およびこの水素センサを備える水素検出器に関する。
【背景技術】
【0002】
近年、燃料電池等の水素エネルギーの利用に対する関心の高まりから、気相中や液相中の水素ガスを検知するための水素センサの研究・開発が盛んに行われている。このうち、気相中の水素濃度を測定するための水素センサとしては、半導体からなる水素感応体を備え、半導体表面への水素の吸着や反応による電気抵抗の変化を検出するタイプのものが知られている(例えば、特許文献1参照)。但し、このタイプの水素センサは、水素感応体に対する水蒸気等の不純物の付着または反応に起因する電気抵抗の変化により、測定誤差が生じやすいという問題があった。
【0003】
また、液相中の溶存水素濃度を測定する水素センサとしては、隔膜型ポーラログラフ式の溶存水素センサが実用化されている(例えば、東亜DKK社製溶存水素計DHDI−1)。このポーラログラフ式の水素センサは、気体透過性の隔膜を通して水素を電解液中に浸透・拡散させることで、電解液中のアノード−カソード間に水素ガスの酸化反応に起因する電流を生じさせ、その電流値から溶存水素濃度を求めるようになっている(例えば、特許文献2参照)。
【0004】
しかしながら、ポーラログラフ式の水素センサは、使用に伴う角膜および電解液の劣化が激しく、長期間の使用に適さないという問題があった。また、装置を小型化するのが難しいという問題があった。
【0005】
この他、気相中または液相中の水素濃度を測定する水素センサとして、水素吸蔵性の単体金属または合金からなる水素感応体を備え、この水素感応体を水素を含む気相または液相と接触させることにより電気抵抗の変化を検出する水素センサが提案されている(例えば、特許文献3参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2002−71611号公報
【特許文献2】特開平5−232082号公報
【特許文献3】特開2004−125513号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記特許文献3では、絶縁基板上に水素吸蔵性の単体金属や合金をハンダ接着する手法が開示されているが、水素センサの精度を上げるためには水素吸蔵性の単体金属等をなるべく薄く形成した方が好ましく、この場合、蒸着やスパッタリング等により絶縁基板上に水素吸蔵性の単体金属等の薄膜を構成することが考えられる。
【0008】
しかしながら、水素吸蔵性の単体金属および合金は、水素の吸収時に膨張し、放出時に収縮するという性質があるため、一般的なガラス等からなる基板の表面に従来の手法で薄膜を形成した場合、基板等が薄膜の変形を拘束することによって薄膜に亀裂や剥離等が生じ、測定精度や寿命に影響するという問題があった。このため、より簡便且つ安定的に長期間使用可能な水素センサの開発が望まれている。
【0009】
本発明は、斯かる実情に鑑み、より簡便且つ安定的に長期間使用可能な水素センサおよび水素検出器を提供しようとするものである。
【課題を解決するための手段】
【0010】
(1)本発明は、水素の吸蔵および放出により可逆的に物性値が変化する金属からなる水素感応体を、フィルム状、シート状または平板状の樹脂からなる基板の表面に薄膜状に形成したことを特徴とする、水素センサである。
【0011】
(2)本発明はまた、前記基板は、伸縮性を有することを特徴とする、上記(1)に記載の水素センサである。
【0012】
(3)本発明はまた、前記基板は、気体透過性を有し、前記水素感応体が形成された面を被測定物の反対側に向けて配置されることを特徴とする、上記(1)または(2)に記載の水素センサである。
【0013】
(4)本発明はまた、前記基板は、フッ素樹脂からなることを特徴とする、上記(1)乃至(3)のいずれかに記載の水素センサである。
【0014】
(5)本発明はまた、前記基板は、FEP、PFAまたはPTFEからなることを特徴とする、上記(4)に記載の水素センサである。
【0015】
(6)本発明はまた、前記水素感応体は、パラジウム合金からなることを特徴とする、上記(1)乃至(5)のいずれかに記載の水素センサである。
【0016】
(7)本発明はまた、前記基板は、被測定物側に配置されるメッシュ状の正面側支持板と、前記被測定物の反対側に配置される背面側支持板と、の間に挟持されることを特徴とする、上記(1)乃至(6)のいずれかに記載の水素センサである。
【0017】
(8)本発明はまた、前記背面側支持板は、前記基板側の面と前記基板の反対側の面との間で貫通する複数の微細孔を備える、またはメッシュ状であることを特徴とする、上記(7)に記載の水素センサである。
【0018】
(9)本発明はまた、測定用の前記水素感応体および温度補正用の前記水素感応体が、前記基板の同一面に略同一形状で形成されることを特徴とする、上記(1)乃至(8)のいずれかに記載の水素センサである。
【0019】
(10)本発明はまた、上記(1)乃至(9)のいずれかに記載の水素センサと、前記水素感応体の物性値の変化を検出する検出手段と、を備えることを特徴とする、水素検出器である。
【発明の効果】
【0020】
本発明に係る水素センサおよび水素検出器によれば、より簡便且つ安定的に長期間使用可能という優れた効果を奏し得る。
【図面の簡単な説明】
【0021】
【図1】(a)および(b)本発明の実施形態に係る水素センサを示した概略図である。
【図2】主なフッ素樹脂の特性を比較した表である。
【図3】本発明の実施形態に係る水素検出器を示した概略図である。
【図4】水素センサと、正面側支持板と、背面側支持板との位置関係を示した概略図である。
【図5】検出手段を構成する回路を示した図である。
【発明を実施するための形態】
【0022】
以下、本発明の実施の形態を、添付図面を参照して説明する。
【0023】
図1(a)および(b)は、本発明の実施形態に係る水素センサ1を示した概略図である。なお、同図(a)は水素センサ1の正面図であり、同図(b)は、同図(a)のA−A線断面図である。同図に示されるように、水素センサ1は、水素の吸蔵および放出により可逆的に物性値が変化する金属材料からなる水素感応体10を、フィルム状、シート状または平板状の樹脂からなる基板12の表面に薄膜状に形成して構成されている。
【0024】
本実施形態では、水素感応体10として、基板12の表面に測定用水素感応体10aおよび温度補正用水素感応体10bの2つを形成している。これらの測定用水素感応体10aおよび温度補正用水素感応体10bは、2つの電極14を繋ぐ蛇行する細線状に形成されており、互いに略同一形状(対称形状)となっている。
【0025】
このように、測定用水素感応体10aおよび温度補正用水素感応体10bを基板12の同一表面上に形成することで、両者を略同一の温度条件下におくことができる。そして、本実施形態では、被測定物に含まれる水素が測定用水素感応体10aのみに接触可能な状態で、略同一形状の測定用水素感応体10aおよび温度補正用水素感応体10bの物性値(本実施形態では、抵抗値)を比較することにより、温度変化による物性値の変化を排除し、水素吸蔵に伴う物性値変化のみを検出可能としている。
【0026】
水素感応体10を構成する金属としては、例えば、チタン(Ti)、イットリウム(Y)、ランタン(La)、パラジウム(Pd)、またはプラチナ(Pt)等を使用することができる。これらの金属は、単体金属として使用してもよいし、合金化したものを使用してもよい。
【0027】
水素感応体10は、水素の吸蔵および放出を繰り返した場合の物性値の変化の挙動が、実質的に同一となるもの、すなわち水素の吸蔵および放出特性が良好な繰返し性を有するものであることが好ましい。この良好な繰返し性とは、換言すれば物性値の可逆的な変化を意味している。すなわち、水素感応体10は、例えば水素が溶存した溶存水素水に接触させて物性値を変化させた後に純水に接触させた場合に、速やかに(例えば10分程度で)水素を放出して物性値が初期値、または測定上問題ない範囲の値に戻るものであることが好ましい。
【0028】
このような観点から、本実施形態では、水素感応体10を構成する金属として、パラジウムと、ニッケル、銅、白金、金およびシリコンから選択された元素と、を含む合金で、組成式:Pd100−x−y(M,N=Ni,Cu,Pt,Au,Si;0≦x,y≦40at%)で表されるものを採用している。なお、この合金は、結晶性合金あるいはアモルファス合金のどちらであってもよい。
【0029】
上記組成式においてx,yは、ある場合には、1≦x,y≦45at%、あるいは5≦x,y≦40at%、好ましくは10≦x,y≦35at%あるいは15≦x,y≦30at%とすることができる。また、x,yは、1≦x,y<25at%あるいは25≦x,y≦45at%、好ましくは3≦x,y≦20at%あるいは25≦x,y≦35at%、さらには5≦x,y≦15at%あるいは25≦x,y≦30at%とすることができる。
【0030】
基板12に水素感応体10を薄膜状に形成する手法としては、金属材料分野や半導体製造技術分野における既知の手法を適宜選択して使用することができる。このような既知の手法として、例えば、化学的気相成長法(CVD)、物理気相成長法(PVD)、スパッタリング、電気メッキ、化学緻密化法、化成処理、拡散浸透法などの液相法による表面処理、溶射法などが挙げられる。これらの手法によれば、水素感応体10を容易に薄膜化することができるため、その物性値変化のダイナミックレンジを大きく取ることが可能となり、精度の高い測定が可能となる。
【0031】
本実施形態では、上記手法のうち、スパッタリングを使用して水素感応体10の薄膜を基板12の表面に形成している。物性値変化のダイナミックレンジを考慮すると、水素感応体10の膜厚は、約0.0005〜10μmの範囲内、または約0.001〜2.5μmの範囲内であることが好ましい。また、高精度な測定を行うためには、水素感応体10の膜厚は、約0.0005〜1μmの範囲内であることが最も好ましく、本実施形態では、水素感応体10の膜厚をこの範囲に設定している。
【0032】
さらに、本実施形態では、水素感応体10を細線の蛇行形状とすることで、物性値変化のダイナミックレンジの拡大と、水素接触面積の増加による測定感度の向上を両立させている。
【0033】
なお、水素感応体10に適宜に熱処理を加え、金属組織または合金組織中の結晶粒径および微細組織を調整することで、水素の吸蔵および放出特性を好ましい特性にすることができる。この場合の熱処理は、薄膜形成時に加えられる熱を利用して行ってもよいし、薄膜形成後の加熱により行ってもよい。良好な水素の吸蔵および放出特性を得るためには、水素感応体10中の結晶粒径は、約30nm以上であることが好ましく、約34nm以上であればより好ましく、約38nm以上であればさらに好ましい。
【0034】
基板12を構成する樹脂は、特に限定されるものではなく、表面に水素感応体10の薄膜を形成可能であれば、水素センサの使用条件および用途に応じた各種樹脂を使用することができる。基板12を適宜の樹脂から構成することにより、水素の吸蔵および放出に伴う水素感応体10の膨張、収縮等の変形を樹脂の変形により吸収して許容することが可能となり、水素感応体10に亀裂や剥離が発生するのを防止することができる。なお、本発明の樹脂には、各種ゴムも含まれる。また、本発明の樹脂には、ガラス基材エポキシ樹脂積層板等のようにガラス繊維に樹脂を含浸させた複合材料は含まれない。
【0035】
より効果的に水素感応体10の変形を許容するためには、基板12を構成する樹脂として、伸縮性または柔軟性を有する樹脂を採用することが好ましい。また、気相中または液相中の水素濃度の測定は、高温下で行われることが多いため、基板12を構成する樹脂は、耐熱性を備えていることが好ましい。さらに、測定可能な被測定物の種類を増やすためには、基板12を構成する樹脂は、耐薬品性を備えていることが好ましい。従って、本実施形態では、基板12を構成する樹脂として、フッ素樹脂を採用している。
【0036】
図2は、主なフッ素樹脂であるPTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体)、ETFE(エチレン−テトラフルオロエチレン共重合体)、およびPCTFE(ポリクロロトリフルオロエチレン)の特性を比較した表である。同図に示されるように、フッ素樹脂の中でもFEP、PFAおよびPTFEは、耐熱性および耐薬品性と共に、良好な伸縮性と柔軟性を備えているため、基板12を構成する樹脂として特に好ましい。
【0037】
また、これらのFEP、PFAおよびPTFEは、良好な気体透過性を備えると共に、水蒸気の不透過性(水蒸気の通しにくさ)を備えている。従って、FEP、PFAまたはPTFEから基板12を構成した場合、水素感応体10が形成された面の反対側の面を被測定物である気体または液体に対向させた場合にも、基板12を通して水素を水素感応体10に到達させることができる。すなわち、水素センサ1では、水素感応体10を被測定物に直接対向させるのではなく、水素感応体10と被測定物の間に基板12を介在させた状態で被測定物の水素濃度を測定することが可能となっている。
【0038】
このように、水素感応体10と被測定物の間にFEP、PFAまたはPTFEからなる基板12を介在させることにより、これらの樹脂が有する非粘着性および防汚性により、水素感応体10に被測定物中の不純物が付着するのを防止することが可能であり、不純物の付着による測定精度の低下や寿命の低下を効果的に防止することができる。また、被測定物が気体である場合には、これらの樹脂が有する水蒸気の不透過性により、従来問題となっていた水素感応体10表面における結露の発生を効果的に防止することができる。
【0039】
もちろん、水素センサ1は、水素感応体10が形成された面を被測定物である気体または液体に対向させた状態でも使用可能である。この場合においても基板12をFEP、PFAまたはPTFEから構成することにより、これらの樹脂が有する良好な気体透過性によって水素感応体10が被測定物から吸蔵した水素を、基板12を通して被測定物の反対側に放出することが可能となる。すなわち、水素感応体10が過剰に水素を吸蔵した状態となるのを防止することが可能となるため、水素感応体10の変形を少なくし、亀裂や剥離の発生をさらに少なくすることができる。また、水素感応体10が過剰に水素を吸蔵し、それ以上の吸蔵が不可能な状態となることを防止することができる。
【0040】
基板12の厚みは、特に限定されるものではなく、水素センサ1の使用環境や用途、または水素感応体10の材質や薄膜の形成方法等に応じて、水素感応体10を安定的に保持すると共に水素感応体10の変形を許容可能な適宜の厚みに設定することができる。すなわち、基板12は、使用環境や用途等に応じて、厚手の平板状やブロック状に構成してもよいし、薄手のフィルム状やシート状に構成してもよい。なお、基板12に十分な伸縮性および柔軟性を持たせ、水素感応体10の変形を吸収可能とするためには、樹脂の種類にもよるが、基板12は薄手のフィルム状またはシート状であることが好ましい。
【0041】
FEP、PFAまたはPTFEから基板12を構成し、水素感応体10が形成された面の反対側の面を被測定物に対向させた場合、水素感応体10の保持と気体透過性の向上による測定感度の向上とのバランスから、基板12の厚みは、1〜24μmの範囲内であることが好ましい。
【0042】
図3は、本発明の実施形態に係る水素検出器2を示した概略図である。本実施形態の水素検出器2は、水素センサ1を備え、被測定物である気体中の水素濃度、または被測定物である液体中に溶存した水素の濃度を測定するものである。この水素検出器2は、例えば、気体または液体の被測定物100が流れる流路3等に取付けられて使用される。
【0043】
水素検出器2は、水素センサ1を内部に収容する筺体20と、筺体20内部において水素センサ1を両側から挟持する正面側支持板30および背面側支持板40と、水素センサ1が備える測定用水素感応体10aの物性値の変化を検出する検出手段50と、を備えている。
【0044】
筺体20は、開口部22を有する箱体であり、水素センサ1、正面側支持板30および背面側支持板40を内部に収容して保持するためのものである。筺体20は、開口部22を被測定物100側に向けた状態で、流路3に固定される。従って、被測定物100は、開口部22を介して水素センサ1に到達する。
【0045】
図4は、水素センサ1と、正面側支持板30と、背面側支持板40との位置関係を示した概略図である。本実施形態の水素検出器2では、水素センサ1は、基板12がFEP、PFAまたはPTFEから構成されており、水素感応体10が形成された面を被測定物100の反対側に向けた状態で配置されている。
【0046】
正面側支持板30は、水素センサ1の被測定物100側に配置されている。従って、正面側支持板30は、被測定物100が容易に通過可能なメッシュ状に構成されている。正面側支持板30の材質は、特に限定されるものではないが、例えばステンレス等の耐食性および耐熱性を備えたものであることが好ましい。
【0047】
背面側支持板40は、水素センサ1を挟んで正面側支持板30の反対側、すなわち被測定物100の反対側に配置されている。従って、背面側支持板40は、水素感応体10と対向した状態で配置されることとなるため、絶縁性を有する材質から構成されていることが好ましい。また、背面側支持板40の水素センサ1側の面には、水素感応体10の電極14と接続される電極42が設けられている。検出手段50は、この電極42を介して水素感応体10に接続される。
【0048】
また、本実施形態では、背面側支持板40に複数の微細孔44を形成し、水素センサ1の水素感応体10が被測定物100から吸蔵した水素を被測定物100の反対側に積極的に放出させるようにしている。このようにすることで、既述のように、水素感応体10の変形を少なくすると共に、水素感応体10が水素の吸蔵が不可能な状態になるのを防止することができる。なお、メッシュ状の背面側指示板40を使用するようにしてもよい。
【0049】
水素センサ1と正面側支持板30との間における温度補正用水素感応体10bに対応する位置には、被測定物100からの水素が温度補正用水素感応体10bに到達するのを防ぐ遮蔽板32が配置される。この遮蔽板32は、平板状、シート状またはフィルム状の部材から構成されてもよいし、水素センサ1または正面側支持板30に施されるコーティング材から構成されてもよい。また、遮蔽板32を設ける代わりに、正面側支持板30における測定用水素感応体10aに対応する部分のみを被測定物100が通過可能なメッシュ状に構成し、残りの部分を塞ぐようにしてもよい。
【0050】
このように、水素センサ1を正面側支持板30および背面側支持板40で挟持することにより、所定の自由度を持たせた状態で基板12を保持することができる。これにより、基板12を薄手のフィルム状やシート状に構成した場合であっても、水素感応体10の変形を許容しつつ、基板12の形状を適度に保った状態で筺体20に固定することができる。従って、例えば基板12に被測定物100からの圧力が加わったような場合にも、基板12が変形や破損等しないようにすることができる。
【0051】
なお、正面側支持板30および背面側支持板40は、水素センサ1を挟んだ状態で、ネジや接着剤等により結合されるものであってもよいし、筺体20の一部に押圧されることで水素センサ1を挟持するものであってよい。
【0052】
また、既述のように、水素センサ1は、水素感応体10が形成された面を被測定物100に向けた状態で使用されるものであってもよい。この場合、水素センサ1の測定用水素感応体10aに対応する部分と正面側支持板30の間に、フィルム状またはシート状のFEP、PFAまたはPTFEを配置するようにしてもよい。さらにこの場合、水素センサ1の基板は、FEP、PFAまたはPTFE以外の樹脂であってもよい。
【0053】
図5は、検出手段50を構成する回路を示した図である。本実施形態では、検出手段50は、測定用水素感応体10aの抵抗値の変化を、温度補正用水素感応体10bの抵抗値との比較により検出する。従って、検出手段50は、同図に示されるように、測定用水素感応体10a、温度補正用水素感応体10b、抵抗52、可変抵抗54、およびコンパレータ56を接続したブリッジ回路から構成されている。コンパレータ56の出力は、例えばコンピュータ等の処理装置(図示省略)に送信され、処理装置はコンパレータ56の出力に基づいて演算処理を行い、水素濃度を求める。
【0054】
なお、検出手段50は、その他の既知の手法により、測定用水素感応体10aの抵抗値の変化を検出するものであってもよい。また、抵抗値以外の物性値の変化を検出するものであってもよい。また、検出手段50を、筺体20と一体的に構成するようにしてもよい。
【0055】
以上説明したように、本実施形態に係る水素センサ1は、水素の吸蔵および放出により可逆的に物性値が変化する金属からなる水素感応体10を、フィルム状、シート状または平板状の樹脂からなる基板12の表面に薄膜状に形成している。このため、比較的簡易な構成でありながら、水素の吸蔵および放出に伴う水素感応体10の変形を許容することが可能となり、水素感応体10の亀裂や剥離等を効果的に防止することができる。これにより、水素センサ1をより簡便且つ安定的に長期間使用可能なものとすることができる。
【0056】
また、基板12は、伸縮性を有していることが好ましい。このようにすることで、水素感応体10の変形に追随して基板12を変形させることが可能となり、水素感応体10の亀裂や剥離を効果的に防止することができる。
【0057】
また、基板12は、気体透過性を有し、水素感応体10が形成された面を被測定物100の反対側に向けて配置することもできる。このようにすることで、水素感応体10と被測定物100の間に基板12を介在させることができる。これにより、水素感応体10への被測定物100中の不純物の付着を防止し、不純物の付着による測定精度の低下や寿命の低下を効果的に防止することができる。
【0058】
また、基板12は、フッ素樹脂からなるため、水素感応体10の亀裂や剥離等を防止すると共に、基板12を耐熱性や耐薬品性、防汚性等を有するものとすることができる。
【0059】
また、基板12は、FEP、PFAまたはPTFEからなるため、基板12を十分な伸縮性および柔軟性を有すると共に、耐熱性や耐薬品性、防汚性等を有するものとすることができる。さらに、基板12を気体透過性および水蒸気の不透過性を有するものとすることが可能となるため、水素感応体10と被測定物100の間に基板12を介在させて使用することで、水素センサ1の測定精度および寿命を向上させることができる。
【0060】
また、水素感応体10は、パラジウム合金からなるため、水素感応体10における水素の吸蔵および放出特性を、良好な繰返し性、すなわち良好な可逆性を有するものとすることができる。
【0061】
また、基板12は、被測定物100側に配置されるメッシュ状の正面側支持板30と、被測定物100の反対側に配置される背面側支持板40と、の間に挟持されている。このようにすることで、水素感応体10の変形を許容しつつ、基板12の形状を適度に保った状態を維持することができる。これにより、水素センサ1の変形や破損を防止し、安定的な長期間の使用を実現することができる。
【0062】
また、背面側支持板40は、基板12側の面と基板12の反対側の面との間で貫通する複数の微細孔44を備える、またはメッシュ状である。このようにすることで、水素感応体10が吸蔵した水素を積極的に被測定物100の反対側に放出することが可能となり、水素感応体10の変形を少なくすると共に、水素センサ1の感度および測定精度を向上させることができる。
【0063】
また、水素センサ1では、測定用の水素感応体10aおよび温度補正用の水素感応体10bが、基板12の同一面に略同一形状で形成されている。このようにすることで、測定用水素感応体10aおよび温度補正用水素感応体10bを略同じ温度条件下におくことが可能となり、測定用水素感応体10aおよび温度補正用水素感応体10bの物性値を比較することで、温度の影響を排除してより正確に測定用水素感応体10aの物性値の変化を検出することができる。すなわち、測定精度を向上させることができる。
【0064】
また、本実施形態に係る水素検出器2は、水素センサ1と、水素感応体10の物性値の変化を検出する検出手段50と、を備えている。このため、水素検出器2をより簡便且つ安定的に長期間使用可能なものとすることができる。
【0065】
なお、本実施形態では、水素感応体10を蛇行する細線状に形成した例を示したが、本発明はこれに限定されるものではなく、水素感応体10は、例えば直線状や矩形状等、その他の形状に形成されるものであってもよい。
【0066】
また、本実施形態では、1つの基板12の同一面上に測定用水素感応体10aおよび温度補正用水素感応体10bを形成した例を示したが、測定用水素感応体10aおよび温度補正用水素感応体10bを異なる2つの基板12にそれぞれ形成し、2つの基板12を並べて配置するようにしてもよい。
【0067】
以上、本発明の実施の形態について説明したが、本発明の水素センサおよび水素検出器は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【産業上の利用可能性】
【0068】
本発明の水素センサおよび水素検出器は、燃料電池や電解水生成等の水素ガスを使用する分野において、液相中または気相中の水素濃度の測定に利用することができる。
【符号の説明】
【0069】
1 水素センサ
2 水素検出器
10 水素感応体
10a 測定用水素感応体
10b 温度補正用水素感応体
12 基板
30 正面側支持板
40 背面側支持板
44 微細孔
50 検出手段
100 被測定物

【特許請求の範囲】
【請求項1】
水素の吸蔵および放出により可逆的に物性値が変化する金属からなる水素感応体を、
フィルム状、シート状または平板状の樹脂からなる基板の表面に薄膜状に形成したことを特徴とする、
水素センサ。
【請求項2】
前記基板は、伸縮性を有することを特徴とする、
請求項1に記載の水素センサ。
【請求項3】
前記基板は、気体透過性を有し、前記水素感応体が形成された面を被測定物の反対側に向けて配置されることを特徴とする、
請求項1または2に記載の水素センサ。
【請求項4】
前記基板は、フッ素樹脂からなることを特徴とする、
請求項1乃至3のいずれかに記載の水素センサ。
【請求項5】
前記基板は、FEP、PFAまたはPTFEからなることを特徴とする、
請求項4に記載の水素センサ。
【請求項6】
前記水素感応体は、パラジウム合金からなることを特徴とする、
請求項1乃至5のいずれかに記載の水素センサ。
【請求項7】
前記基板は、被測定物側に配置されるメッシュ状の正面側支持板と、前記被測定物の反対側に配置される背面側支持板と、の間に挟持されることを特徴とする、
請求項1乃至6のいずれかに記載の水素センサ。
【請求項8】
前記背面側支持板は、前記基板側の面と前記基板の反対側の面との間で貫通する複数の微細孔を備える、またはメッシュ状であることを特徴とする、
請求項7に記載の水素センサ。
【請求項9】
測定用の前記水素感応体および温度補正用の前記水素感応体が、前記基板の同一面に略同一形状で形成されることを特徴とする、
請求項1乃至8のいずれかに記載の水素センサ。
【請求項10】
請求項1乃至9のいずれかに記載の水素センサと、
前記水素感応体の物性値の変化を検出する検出手段と、を備えることを特徴とする、
水素検出器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2011−232141(P2011−232141A)
【公開日】平成23年11月17日(2011.11.17)
【国際特許分類】
【出願番号】特願2010−101947(P2010−101947)
【出願日】平成22年4月27日(2010.4.27)
【出願人】(508126561)有限会社共栄電子研究所 (2)
【出願人】(504157024)国立大学法人東北大学 (2,297)
【Fターム(参考)】