説明

無停電電源装置および無停電電源装置を備える情報処理システム

【課題】無停電電源装置は、商用電源から得られる電力エネルギーにて蓄電池をあらかじめ充電しておく。停電時等には上記蓄電池に蓄積した電力エネルギーを電子機器に供給(放電)することで、該電子機器が動作するに必要な電力をバックアップするように構成される。例えば電子機器がデータ保存等の所定の処理を実行して停止するまでの期間にわたって電力を供給した後、その動作を停止するように無停電電源装置を構成する。
蓄電池は、室温より温度が高い状態で充電や保管をすると、室温時の充電や保管に比べて電池寿命が早まるという問題があった。また、室温より温度が低い状態で放電を行うと、室温時での放電に比べて放電容量が低下するという問題があった。
【解決手段】
無停電電源装置の蓄電池において、充電時は冷却により電池寿命が延伸され、放電時は昇温により放電容量の低下が抑制されるように、蓄電池に対して、冷却手段および昇温手段を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無停電電源装置および無停電電源装置を備える情報処理システムに関する。
【背景技術】
【0002】
サーバの高性能化および高密度化に伴いサーバの消費電力は年々増大し、データセンターにおける消費電力は近年、年率プラス10%という非常に高い伸び率を示している。このため消費電力を低減する目的で、省エネルギー型データセンターの構築が急務となっている。その一環として、ひとつの電子機器収納用ラックに複数のサーバ(数台から数十台)を搭載する試みが進められている。ひとつの電子機器収納用ラックに複数のサーバを搭載することにより、複数台のサーバが一つのラック筐体に収納される。これにより、設置スペース削減や、ディスプレイ、マウスの共有化によるコスト削減、接続ケーブルの繁雑さから起こるケーブル抜け等の事故の軽減、耐震対策による安全性の向上等のメリットがある。
【0003】
電力源として商用電源(交流)を用いたパーソナルコンピュータやサーバ等の電子機器においては、その動作(稼動)中に瞬時停電等が発生すると、処理動作自体にエラーが生じる、または、貴重な処理データが損なわれる等の不具合が発生する。
【0004】
そこで、この種の電子機器の電源系に蓄電池を備えた無停電電源装置を設け、商用電源の停電時等には上記蓄電池から電子機器に対して電力を供給する。省エネルギー型データセンターを進めるために、電子機器収納用ラック内に無停電電源装置をもコンパクト化して設置する動きも始まっている。
【0005】
この種の無停電電源装置は、商用電源から得られる電力エネルギーにて蓄電池をあらかじめ充電しておく。停電時等には上記蓄電池に蓄積した電力エネルギーを電子機器に供給(放電)することで、該電子機器が動作するに必要な電力をバックアップするように構成される。また蓄電池に蓄積した電力エネルギーの無駄な消費を防ぐべく、例えば電子機器がデータ保存等の所定の処理を実行して停止するまでの期間にわたって電力を供給した後、その動作を停止するように無停電電源装置を構成する。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2002−27683号公報
【特許文献2】特開2002−258993号公報
【特許文献3】特開2002−124225号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
蓄電池は、室温より温度が高い状態で充電や保管をすると、室温時の充電や保管に比べて電池寿命が早まるという問題があった。また、蓄電池は、室温より温度が低い状態で放電を行うと、室温時での放電に比べて放電容量が低下するという問題があった。
【課題を解決するための手段】
【0008】
実施形態の一観点によれば、蓄電池と、前記蓄電池を冷却する冷却手段と、前記蓄電池を昇温する昇温手段と、前記蓄電池の充電と放電との切替、および、前記冷却手段と前記昇温手段との稼動切替を行う制御部とを有することを特徴とする無停電電源装置が提供される。
【0009】
また、本発明の他の観点によれば、電子機器と、前記電子機器に接続された蓄電池と、前記蓄電池を冷却する冷却手段と、前記蓄電池を昇温する昇温手段と、前記蓄電池の充電と放電との切替、および、前記冷却手段と前記昇温手段との稼動切替を行う制御部とを備えることを特徴とする情報処理システムが提供される。
【発明の効果】
【0010】
開示の無停電電源装置により、無停電電源装置の蓄電池は充電や保管時は冷却されて電池寿命を延伸し、放電時に昇温されて蓄電池の放電容量の低下を抑制する。
【図面の簡単な説明】
【0011】
【図1】図1は、無停電電源装置の構成を示す模式図である。
【図2】図2は、電子機器収納用ラック内に収納された開示の無停電電源装置の構成を示す模式図である。
【図3】図3は、電子機器収納用ラック内の各部位が制御される工程の流れを示した、フローチャートである。
【図4】図4は、蓄熱部22内の蓄熱材保持量が規定量未満の場合における電子機器収納用ラックに収納された開示の無停電電源装置の模式図である。図3のフローチャートでは、S3の状態(工程)に相当する。
【図5】図5は、蓄熱部22内の蓄熱材保持量が規定量以上に達している場合における電子機器収納用ラックに収納された開示の無停電電源装置の模式図である。図3のフローチャートでは、S5の状態(工程)に相当する。
【図6】図6は、外部電源11に停電が発生した場合における電子機器収納用ラックに収納された開示の無停電電源装置の模式図である。図3のフローチャートでは、S7の状態(工程)に相当する。
【図7】図7は、電子機器収納用ラック内に収納された開示の無停電電源装置の正面図である。
【図8】図8は、電子機器収納用ラック内に収納された開示の無停電電源装置の左側面図である。
【図9】図9は、電子機器収納用ラック内に収納された開示の無停電電源装置の左側面図である。
【図10】図10は、蓄電池熱交換用流路24および蓄電池1の斜視図である。
【図11】図11は、電子機器収納用ラック内に収納された開示の無停電電源装置の右側面図である。
【図12】図12は、電子機器収納用ラック内に収納された開示の無停電電源装置の右側面図である。
【図13】図13は、蓄電池における容量維持比のサイクル数依存性を実験にて調査した結果のグラフである。
【図14】図14は、蓄電池放電容量の放電電流依存を表したグラフである。
【発明を実施するための最良の形態】
【0012】
以下に実施例を示す。
【実施例1】
【0013】
図1は無停電電源装置の構成を示す模式図である。
1は蓄電池、1aは充電用導線、1bは放電用導線、2はAC/DCコンバータ、3はDC/ACコンバータ、3aは電力供給用導線、4は充電回路、4aは充電回路用信号線、5は放電回路、5aは放電回路用信号線、6は制御モジュール、7は通信制御部、7aは通信制御用信号線、8は表示部、8aは表示用信号線、9が電子回路ユニット、10は無停電電源装置制御部、11は外部電源、11aが外部電源供給用導線、12は電子機器、12aは電子機器用信号線である。
【0014】
開示の無停電電源装置10−1は図1に示すように、たとえば、蓄電池1、AC/DCコンバータ2、DC/ACコンバータ3、充電回路4、放電回路5、制御モジュール6、通信制御部7、表示部8を含む。特に、充電回路4、放電回路5、制御モジュール6および通信制御部7、表示部8を含むユニットは、電子回路ユニット9である。また、電子機器12との接続のために、電力供給用導線3aおよび電子機器用信号線12aを有する。
【0015】
開示の無停電電源装置10−1は、図1に示すように、たとえば蓄電池1は無停電電源装置制御部10と充電用導線1a、放電用導線1bで接続され、無停電電源装置制御部10から離れた場所に設置されるタイプである。蓄電池1が無停電電源装置制御部10の外部に設置されるため、寿命や劣化等により蓄電池1の交換作業する場合において、無停電電源装置制御部10を開放する必要がなく、交換作業が簡便になる。
【0016】
開示の無停電電源装置10−1は、外部電源(商用電源;AC)11を電力源として動作する電子機器12の、バックアップ電源として用いられるものである。
【0017】
蓄電池1は、例えばNi-MH電池やLiイオン電池等である。蓄電池1は、一般的には複数個の電池セルを直・並列に接続して必要な電池容量を備えたものである。
【0018】
図1に例示する電子機器12は、無停電電源装置10−1を介して、外部電源11からの電力を受けて動作するものとなっている。外部電源11からの電力は、外部電源供給用導線11aを介して、無停電電源装置10−1に供給される。無停電電源装置制御部10内では、AC/DCコンバータ(交流・直流変換器)2により、たとえば交流電力から一旦直流電力に変換され、DC/ACコンバータ(直流・交流変換器)3により直流電力から再び交流電力へ変換される、さらに電力供給用導線3aを介して、電子機器12へ供給される。
【0019】
AC/DCコンバータ2およびDC/ACコンバータ3は、一般的には無停電電源装置10−1内にユニットとして構築されることが多いが、電子機器12に組み込まれた内部電源ユニットとして実現されることもある。
【0020】
また、外部電源11が停電していない場合は、外部電源11からの電力は、外部電源供給用導線11a、AC/DCコンバータ2、充電回路4および充電用導線1aを介して、蓄電池1に充電される。
【0021】
一方、外部電源11が停電するなどした場合、すなわち、電子機器12が必要とする電力エネルギーが不足する場合、蓄電池1に蓄えた充電エネルギー(電力エネルギー)は、蓄電池1から放電用導線1b、放電回路5、DC/ACコンバータ3および電力供給用導線3aを介して電子機器12に供給される。
【0022】
蓄電池1への充電とその放電をそれぞれ制御するべく、無停電電源装置10−1には図1に示すように充電回路4と放電回路5とが設けられている。
【0023】
充電回路4および放電回路5は、その充電路および放電路を選択的にオン・オフする半導体スイッチ素子(例えばFET)等を備えたものである。
【0024】
蓄電池1に充電を行う場合は、充電回路用信号線4aを介して、制御モジュール6から充電回路4へ指令が発せられる。
【0025】
蓄電池1を放電に切り替える場合は、放電回路用信号線5aを介して、制御モジュール6から放電回路5へ指令が発せられる。
【0026】
前述のように、充電回路4、放電回路5、制御モジュール6、通信制御部7、表示部8を含むユニットは、電子回路ユニット9である。蓄電池1の充放電制御は、上記のように電子回路ユニット9により行われる。
【0027】
蓄電池1の充放電は、前記蓄電池1の端子電圧(充放電電圧)や充放電電流、更には充電回数、放電回数、電池容量、電池温度、外部電源11の停電状態等を検出しながら、電子回路ユニット9により制御される。
【0028】
電子回路ユニット9は、通信制御部7および通信制御用信号線12aを介して電子機器12との間で情報通信し、電子機器12の動作状態に応じて蓄電池1の充放電を制御したり、また電子機器12からの指令を受けてその処理動作が制御されるようになっている。
【0029】
電子回路ユニット9によって監視される蓄電池1の充放電状態などの情報や、通信制御部7を介して指示された動作モード等の情報は、適宜、表示用信号線8aを介して、電子回路ユニット9内部の表示部8にて表示されるようになっている。
【0030】
表示部8は、例えばLEDアレイやマルチカラーLEDを備えたもので、蓄電池1の概略的な充電容量を段階的に表示したり、蓄電池1の充電・放電の状態をLEDの点滅等により表示するものである。
【0031】
電子回路ユニット9により、蓄電池1の充放電の他に、上記のように電子機器12の制御も行われる。
【0032】
また、電子回路ユニット9により、そのほかに、後述のように、給気部開閉機構21、蓄熱部開閉機構23、リザーブ部開閉機構25、循環流路開閉機構27、循環ポンプ29の制御も行われる(図1では「その他の制御」と記載)。
図2は、電子機器収納用ラック内に収納された開示の無停電電源装置の構成を示す模式図である。20は電子機器収納用ラック、20aは給気部、20bは排気部、21は給気部開閉機構、21aは給気部開閉信号線、22は蓄熱部、22aは蓄熱材保持量監視信号線、23は蓄熱部開閉機構、23aは蓄熱部開閉信号線、24は蓄電池熱交換用流路、25はリザーブ部開閉機構、25aはリザーブ部開閉信号線、26はリザーブ部、27は循環流路開閉機構、27aは循環流路開閉信号線、28は循環流路、29は循環ポンプ、29aは循環ポンプ用信号線である。
【0033】
図2に示すように、無停電電源装置制御部10およびその蓄電池1は、電子機器収納用ラック20内に設置される。図1と同様に、無停電電源装置制御部10および蓄電池1は、別々に設置される。
【0034】
無停電電源装置制御部10内には、図1と同様に、電子回路ユニット9がある。電子回路ユニト9により、蓄電池1の充放電等が制御される。
【0035】
電子機器収納用ラック20は、空調空気を給気として取り込めるように、給気部20aを有する。給気部20aには、給気部開閉機構21が設置されている。給気部開閉機構21の開閉は、給気部開閉信号線21aを介して、電子回路ユニット9により制御される。給気部開閉機構21が開である場合は、たとえば床下からの空調空気が給気として、電子機器収納用ラック20内に取り込まれる。取り込まれた給気により、蓄電池1および電子機器12は冷却される。給気部開閉機構21が閉である場合は、床下からの空調空気は電子機器収納用ラック20内には取り込まれない。
【0036】
電子機器収納用ラック20は、給気した空調空気を排気するための、排気部20bを有する。
【0037】
外部電源11からの電力供給で、電子機器12が稼動する。電子機器12は、給気部20aから取り込まれる空調空気にて冷却される。一方、電子機器収納用ラック20内では、電子機器12から熱が発生する。この電子機器12からの排熱が蓄熱されるように、電子機器収納用ラック20内には蓄熱部22が設置されている。蓄熱部22内には、電子機器12からの排熱を蓄熱できるように、蓄熱材が内蔵されている。
【0038】
電子機器収納用ラック20内では、開示の無停電電源装置10−1は、無停電電源装置制御部10と蓄電池1と別々に設置される。図2の例では、蓄電池1は、たとえば蓄電池熱交換用流路24の内部に設置される。蓄電池1は、電子回路ユニット9にて、その充放電を制御される。充電は充電用導線1aを介して行われ、放電は放電用導線1bを介して行われる。
【0039】
蓄熱部22と蓄電池熱交換用流路24とは、蓄熱部開閉機構23を介してつながっている。
【0040】
蓄熱部開閉機構23が閉である場合には、蓄熱材は蓄熱部22内に収まっている。このため、電子機器12の排熱が、蓄熱部22内の蓄熱材により蓄熱される。
【0041】
蓄熱部開閉機構23が開である場合には、蓄熱材は蓄熱部22から、蓄電池熱交換用流路24へ放出される。蓄電池熱交換用流路24へ蓄熱材が放出されると、蓄熱材に蓄えられた熱により、蓄電池1は昇温される。
【0042】
蓄熱部開閉機構23の開閉は、蓄熱部開閉信号線23aを介して、電子回路ユニット9により制御される。
【0043】
蓄電池熱交換用流路24にて蓄電池1の昇温に寄与した蓄熱材は、最終的には蓄熱部22へ回収される。回収のため、一旦は、リザーブ部26に回収される。蓄電池熱交換用流路24はリザーブ部開閉機構25を介してリザーブ部26とつながっている。
【0044】
リザーブ部開閉機構25が閉である場合には、蓄熱材は蓄電池熱交換用流路24内に収まっている。
【0045】
リザーブ部開閉機構25が開である場合には、蓄熱材は蓄電池熱交換用流路24から、リザーブ部26へ放出される。
【0046】
リザーブ部開閉機構25の開閉は、リザーブ部開閉信号線25aを介して、電子回路ユニット9により制御される。
【0047】
リザーブ部26に移動した蓄熱材は、循環流路開閉機構27、循環流路28、循環ポンプ29、循環流路28を介して、蓄熱部22に回収される。
【0048】
リザーブ部26と循環流路28とは、循環流路開閉機構27を介してつながっている。
【0049】
循環流路28は、蓄熱部22とつながっており、途中には循環ポンプ29が設置されている。
【0050】
循環流路開閉機構27が閉である場合には、蓄熱材はリザーブ部26内に収まっている。
【0051】
循環流路開閉機構27が開である場合には、蓄熱材はリザーブ部26から、循環流路28へ放出される。循環流路28へ放出された蓄熱材は、循環ポンプ29により、蓄熱部22へ送り返され、回収される。
【0052】
循環流路開閉機構27の開閉は、循環流路開閉信号線27aを介して、電子回路ユニット9により制御される。
【0053】
循環ポンプ29の稼動・停止は、循環ポンプ用信号線29aを介して、電子回路ユニット9により制御される。
【0054】
蓄熱部開閉機構23、リザーブ部開閉機構25、循環流路開閉機構27は、液体等の蓄熱材を「閉」の時には流動停止とし、「開」の時には流動するものである。たとえば、電気的な制御で開閉する、典型的なバルブであっても良い。
【0055】
循環ポンプ29は、液体等の蓄熱材の循環するポンプであれば良い。
【0056】
図3は、電子機器収納用ラック内の各部位が制御される工程の流れを示した、フローチャートの例である。
【0057】
工程の開始は、外部電源11から電力供給から始まり、STARTとなる。
【0058】
S1では、電子回路ユニット9から以下の指令が発せられる。蓄電池1は「充電」、電子機器12は「電力供給停止」、給気部開閉機構21は「開」、蓄熱部開閉機構23は「閉」の指令がそれぞれ発せられる。
【0059】
S1では、蓄電池1には充電が開始される。
【0060】
電子機器12へは、電力供給はまだ行われない。電子機器12への電力供給は、次工程以降の準備事項が整ってからとなる。
【0061】
給気部開閉機構21は「開」となり、空調空気が電子機器収納用ラック20内に取り込まれ、蓄電池1は冷却される。冷却により、蓄電池1は例えば、25℃になる。
【0062】
蓄熱部開閉機構23は、「閉」である。蓄熱材は、蓄熱部22から蓄電池熱交換用流路24へ移動しない。
【0063】
S2では、蓄熱部22内の蓄熱材の保持量が監視され、規定量以上であるか、規定量未満であるかが判定される。蓄熱部22に設置した、たとえば蓄熱材監視モニターにより監視され、その信号が蓄熱材保持量監視信号線22aを介して電子回路ユニット9に送信される。送信されてきた信号に基づき、電子回路ユニット9により、蓄熱部22内の蓄熱材保持量が規定量未満か規定量以上かが判定される。
【0064】
蓄熱部22において蓄熱材が規定量未満であり、すなわち不足していると判定されると、蓄熱部22では電子機器12からの排熱を蓄熱することが困難となる。
【0065】
一方、蓄熱部22において蓄熱材が規定量以上保持されていると判定されると、蓄熱部22では電子機器12からの排熱を蓄熱する準備ができたことになる。
【0066】
蓄熱部22内の蓄熱材が規定量未満である場合は、図3のフローチャートで「規定量未満」のほうへ進み、S3へ進む。
【0067】
S3では、蓄熱部22内の蓄熱材が規定量未満のため、蓄電池熱交換用流路24およびリザーブ部26から、蓄熱部22へ蓄熱材を送り返すことが実施される。
【0068】
すなわち、電子回路ユニット9から、リザーブ部開閉機構25を「開」、循環流路開閉機構27を「開」とする指令が出される。また、循環流路28の途中に設置された循環ポンプ29にも、電子回路ユニット9から「稼動」とする指令が出される。
【0069】
これにより、蓄電池熱交換用流路24およびリザーブ部26に残留していた蓄熱材が、循環流路28を経由して、蓄熱部22へ送り返され、回収される。
【0070】
S3ののちに、再び、S2にて蓄熱部22内の蓄熱材の保持量が規定量以上であるか、規定量未満であるかが判定される。
【0071】
S2にて、蓄熱部22内の蓄熱材が規定量以上である判定された場合は、電子機器12からの排熱を蓄熱材に蓄熱することが可能となる。
【0072】
S2にて、蓄熱部22内の蓄熱材が規定量以上である場合は、図3のフローチャートで「規定量以上」のほうへ進み、S4へ進む。
【0073】
S4では、電子回路ユニット9から、リザーブ部開閉機構25を「閉」、循環流路開閉機構27を「閉」とする指令が出される。循環流路28の途中に設置された循環ポンプ29には、電子回路ユニット9から「停止」とする指令が出される。
【0074】
S5で、外部電源11から電子機器12へ電力供給が開始される。これまでの工程にて、停電した場合を想定した準備事項が整ったためである。
【0075】
S6では、外部電源11の停電が監視される。
S6で外部電源11が停電していない場合は、継続して停電が監視される。図3のフローチャートでは「No」へ進む。
【0076】
S6で外部電源11が停電となった場合は、図3のフローチャートでは「Yes」へ進み、S7へ進む。
【0077】
S7では、電子回路ユニット9から以下の指令が発せられる。
【0078】
電子回路ユニット9からの指令により、蓄電池1は「充電停止」から「放電開始」となり、電子機器12は「シャットダウン開始」、給気部開閉機構21は「開」から「閉」となり、蓄熱部開閉機構23は「閉」から「開」となる。
【0079】
外部電源からの電力供給が完全に停止する前に、蓄電池1は、充電から放電に切り替わる。また、電子機器12は、データ保存等の所定の処理を実行し、その後シャットダウンを開始する。そのため、この工程では、蓄電池1は、電子機器12に対して、シャットダウン完了までに必要な電力を供給する。蓄電池1の電力供給時間は、データ保存からシャットダウン完了に至るまでの時間であり、5分から30分程度であると考えられる。
【0080】
S7で、給気部開閉機構21「閉」で、電子機器収納用ラック20内への空調空気は取り込み停止となる。これにより、蓄電池1の冷却も停止となる。
【0081】
また、蓄熱部開閉機構23「開」で、蓄熱材は蓄熱部22から蓄電池熱交換用流路24へ放出される。蓄電池熱交換用流路24へ放出された蓄熱材は、蓄熱されているため、蓄電池1は昇温される。昇温により、例えば、蓄電池1は最終的に40℃まで昇温されても良い。場合によっては、昇温により、最終的に70℃となっても良い。放電開始とともに蓄電池1は昇温されると、放電容量の劣化が抑制できる。放電時における蓄電池の昇温温度は、30℃〜70℃が望ましい。
【0082】
S8で、電子機器12のシャットダウンを監視する。シャットダウンが未完了であれば、フローとしては「No」となり、さらに継続監視する。シャットダウンが完了すれば、フローとしては「Yes」となり、S9へ進む。
【0083】
S9では、蓄電池1からの放電が停止される。給気部開閉機構21は「開」となり、再び、蓄電池1は冷却される。蓄熱部開閉機構23は、「閉」となる。
【0084】
蓄電池1からの放電が停止すると、図3のフローチャートの全工程は完了となる。
【0085】
以上が、電子機器収納用ラック内の各部位が制御される工程の流れを示した、S1〜S9の全工程の例である。
【0086】
図4は、蓄熱部22内の蓄熱材保持量が規定量未満の場合における、電子機器収納用ラックに収納された開示の無停電電源装置の模式図である。図3のフローチャートでは、S3の状態(工程)に相当する。
【0087】
外部電源11は、電力供給している状態である。外部電源11は、停電ではない。電子回路ユニット9では、停電ではないと判定されている。
外部電源11からの電力は、無停電電源装置10へ供給される。
【0088】
電子機器12への電力供給はまだ行われていない。
【0089】
蓄熱部22内の蓄熱材の保持量は、蓄熱材保持量監視信号線22aを介して、電子回路ユニット9にて判定される。
【0090】
図4では、蓄熱部22内の蓄熱材が規定量未満であると判定されているため、電子機器12へ電力供給を行う前の準備として、蓄熱部22内の蓄熱材を規定量以上となるようにする。すなわち、以下の動作により、蓄電池熱交換用流路24やリザーブ部26に残留している蓄熱材が蓄熱部22に回収される。
【0091】
蓄熱部開閉機構23は「閉」である。蓄熱部開閉機構23を「閉」としておくのは、蓄熱部22へ回収した蓄熱材が、蓄熱部22から蓄電池熱交換用流路24へ再び移動してしまわないようにするためである。
【0092】
蓄熱部22内へ蓄熱材を回収するには、リザーブ部開閉機構25を「開」とし、蓄電池熱交換用流路24内の蓄熱材を移動可能とする。
【0093】
また、循環流路開閉機構27も「開」とし、リザーブ26内の蓄熱材を移動可能とする。蓄熱部開閉機構23「閉」、リザーブ部開閉機構25「開」、循環流路開閉機構27「開」とした状態で、循環ポンプ29を「稼動」とする。これにより、蓄電池熱交換用流路24やリザーブ部26に残留している蓄熱材は、循環流路28を通って、蓄熱部22へ送り返され、回収される。回収の動作は、電子回路ユニット9により、蓄熱部22内の蓄熱材が規定量以上となるまで継続される。
【0094】
蓄熱部開閉機構23「閉」は、蓄熱部開閉信号線23aを介して、電子回路ユニット9から指令が発せられる。リザーブ部開閉機構25「開」は、リザーブ部開閉信号線25aを介して、電子回路ユニット9から指令が発せられる。循環流路開閉機構27「開」は、循環流路開閉信号線27aを介して、電子回路ユニット9から指令が発せられる。循環ポンプ29「稼動」は、循環ポンプ用信号線29aを介して、電子回路ユニット9から指令が発せられる。
【0095】
一方、蓄電池1は、外部電源11から充電されている状態である。
【0096】
給気部開閉機構21は「開」であり、電子機器収納用ラック20内に空調空気を給気として取り込む。取り込まれた給気により、蓄電池1は冷却される。冷却により、蓄電池1は例えば、25℃になる。これにより、充電中の蓄電池1は、冷却状態となる。蓄電池1の充電は、電子回路ユニット9から指令される。給気部開閉機構21の「開」は、電子回路ユニット9から給気部開閉信号線23aを介して指令される。
【0097】
図5は、蓄熱部22内の蓄熱材保持量が規定量以上に達している場合における、電子機器収納用ラックに収納された開示の無停電電源装置の模式図である。図3のフローチャートでは、S5の状態(工程)に相当する。
【0098】
外部電源11は、電力供給している状態である。外部電源11は、停電ではない。電子回路ユニット9では、停電ではないと判定されている。
【0099】
外部電源11からの電力は、無停電電源装置10へ供給される。
【0100】
蓄熱部22内の蓄熱材の保持量は、蓄熱材保持量監視信号線22aを介して、電子回路ユニット9にて判定される。
【0101】
図5では、蓄熱部22内の蓄熱材が規定量以上と判定されているため、外部電源11から電子機器12への電力供給が開始されており、電子機器12は「稼動」状態である。
【0102】
電子機器12は稼動しているため、電子機器12は排熱を発生する。電子機器12の近傍には蓄熱部22が配置されている。蓄熱部22内に蓄熱材が内蔵されており、蓄熱材には、電子機器12からの排熱が蓄熱される。蓄熱部開閉機構23は「閉」である。
【0103】
給気部開閉機構21は「開」であり、前図の図4と同様に蓄電池1は冷却されている。冷却により、蓄電池1の温度は例えば、25℃になる。
【0104】
図6は、外部電源11に停電が発生した場合における、電子機器収納用ラックに収納された開示の無停電電源装置の模式図である。図3のフローチャートでは、S7の状態(工程)に相当する。
【0105】
外部電源11は、停電状態である。電子回路ユニット9では、停電と判定されている。電子回路ユニット9からの指令により、電子機器12は、データ保存等の所定の処理を実行し、その後シャットダウンを開始する。
【0106】
蓄電池1は、外部電源からの電力供給が完全に停止する前に、充電から放電に切り替わる。蓄電池1は、電子機器12に対して、シャットダウン完了までに必要な電力を供給する。データ保存からシャットダウン完了に至るまでのシャットダウン時間は、5分から30分程度であると考えられる。
【0107】
給気部開閉機構21は「閉」となり、空調空気は取り込まれなくなる。その結果、蓄電池1の冷却は行われなくなる。
【0108】
蓄熱部開閉機構23は「開」となる。これにより、蓄熱部22内の蓄熱材は、蓄電池熱交換用流路24へ放出される。蓄電池熱交換用流路24に放出された蓄熱材は、蓄電池1に熱を渡し、蓄電池1は昇温される。昇温により、例えば、蓄電池1は最終的に35℃まで昇温される。蓄電池1は、昇温により、30℃〜70℃となることが望ましい。
【0109】
蓄電池1は、図4、図5に示したように放電時以外、たとえば充電時は冷却状態であることが好ましい。電池寿命を延伸させることが可能であるためである。一方で、図6で示したように放電時は、昇温されていることが好ましい。放電時の蓄電池1は、冷却状態のままであるよりも、昇温されていたほうが、放電容量の劣化が抑制できる。
【0110】
図7は、電子機器収納用ラック内に収納された開示の無停電電源装置の正面図である。
電子機器収納用ラック20の正面側には、通常、前方パネルが設置されている。
【0111】
図7では、前方パネルを外した状態であり、電子機器収納用ラック20内を示した図である。10aは無停電電源用取っ手、12bは電子機器用取っ手、30は床、31はラック用キャスター、31aはキャスター用カバー、32はラックの底面パネル、33はラックの右側パネル、34はラックの左側パネル、35はラックの天井パネル、36は仕切り板である。電子機器収納用ラック20は、底面パネル32、側面パネル33、天井パネル35により、周辺を覆われる。
【0112】
底面パネル32には、ラック用キャスター31が取り付けられている。
【0113】
天井パネル33は天板で構成され閉鎖されるが、フレームで構成された開放型であっても、多孔性の部材により構成されていてもよい。
【0114】
開示の電子機器収納用ラック20の大きさは、一例として、外形で高さ2000mm、幅700mmである。電子機器収納用ラック20の奥行き方向(図7で紙面表から裏)には1050mmである。
【0115】
電子機器収納用ラック20は、複数の仕切り板36により、段数が設定される。各仕切り板36上には、少なくとも無停電電源装置10および電子機器12を1台ずつ取り付け可能である。
【0116】
電子機器12は、たとえばサーバーであり、大きさはたとえば、高さ1778mm、幅482mm、奥行き(図7で紙面表から裏)782mmである。
無停電電源装置10は、例えば、電子機器12の下に配置し、大きさはたとえば、高さ300mm、幅480mm、奥行き(図7で紙面表から裏)700mmである。
【0117】
たとえば、1台の電子機器12に対して、1台の無停電電源装置10を対応させるように配置するのが好ましい。
【0118】
電子機器12を囲むように、蓄熱部22、蓄電池熱交換用流路24、リザーブ部26が設置される。また、蓄電池1は、蓄電池熱交換用流路24内に設置され、無停電電源装置10とは別に配置される。
【0119】
図7の蓄電池1は1個の大きさが、たとえば、高さ83mm、幅36mm、奥行き(図7で紙面表から裏)190mmである。図7では、蓄電池1を24個並べた例を示す。例えば、上下方向に6段、奥行き方向(図7で紙面表から裏)に4列並べて、計24個の蓄電池1を並べる。蓄電池1が1個では、体積0.57リットルである。24個の合計体積は、約13.6リットルである。
【0120】
蓄熱部22の大きさは、例えば、高さ35mm、幅531mm、奥行き(図7で紙面表から裏)782mmである。蓄熱部22の容積は、たとえば、約14.5リットルである。そのため、蓄熱材は最大で14.5リットルを蓄熱部22内に内蔵可能である。
【0121】
蓄電池熱交換用流路24の大きさは、例えば、高さ540mm、幅60mm、奥行き(図7で紙面表から裏)800mmである。蓄電池熱交換用流路24内の容積は、たとえば、約25.9リットルである。
【0122】
蓄電池熱交換用流路24内には、上記約13.6リットルの蓄電池1が設置されているので、蓄熱材が入りこめる容積としては最大で、25.9リットルから13.6リットルを引き算した約12リットルである。
【0123】
リザーブ部26の大きさは、例えば、高さ37mm、幅60mm、奥行き(図7で紙面表から裏)921mmである。リザーブ部26の容積は、たとえば、約2リットルである。
【0124】
外部電源11が正常に電力供給できている場合は、蓄熱部開閉機構23は「閉」である。そのため、蓄熱部22内に蓄熱材がとどまり、電子機器12から発生する排熱が蓄熱材に蓄積される。蓄熱部22内には、前述のように、最大で約14.5リットルの蓄熱材に蓄熱される。
【0125】
蓄熱部22と蓄電池熱交換用流路24とは、蓄熱部開閉機構23を介してつながっている。
【0126】
外部電源11に停電が発生し、蓄熱部開閉機構が「開」となると、蓄熱材は、蓄熱部22から蓄電池熱交換用流路24へ移動し、蓄電池熱交換用流路24には約12リットルの蓄熱材が充填される。蓄熱材により、蓄電池1は昇温される。
【0127】
蓄熱材の昇温能力が飽和状態になった場合は、リザーブ部開閉機構25を「閉」から「開」とし、昇温能力が飽和状態になった蓄熱材の一部を、リザーブ部26へ放出することができる。 その後、蓄熱部22内に残留している蓄熱材を、蓄電池熱交換用流路24に追加放出しても良い。追加放出した蓄熱材は、蓄電池1に対して昇温能力を有している。
【0128】
図8、図9は、電子機器収納用ラック内に収納された開示の無停電電源装置の左側面図である。電子機器収納用ラック20の左側パネル34を外した状態であり、電子機器収納用ラック20内を示した図である。
【0129】
図8、図9は、電子機器収納用ラックの正面から見て、左側に蓄電池1を設置する場合の一例を示す。
37は電子機器収納用ラック20の前方パネル、38は電子機器収納用ラック20の後方パネルである。
【0130】
天井パネル35は、電子機器収納用ラック20内に給気した空調空気を排気する排気部20bを有していることが望ましい。
【0131】
後方パネル38は閉鎖されるか、開口のあるパーティションによりカバーされる。
【0132】
底面パネル32は、床下からの空調空気を導入できるように、底面パネル32には給気部20aが設けられている。給気部20aには開閉可能な給気部開閉機構21を有している。開示の電子機器収納用ラック20には、複数の無停電電源装置10を配置しても良い。その場合、給気部開閉機構21は、近傍の無停電電源装置10により制御されることが好ましい。
【0133】
図8は、給気部開閉機構21が「開」である場合を示す。この場合は、給気部開閉機構21は、たとえば床下からの空調空気を給気として、電子機器収納用ラック20内に取り込む。取り込まれた給気により、蓄電池1は冷却される。
【0134】
図9は、給気部開閉機構21が「閉」である場合を示す。この場合は、給気部開閉機構21は、床下からの空調空気を電子機器収納用ラック20内には取り込まない。
【0135】
図10は、蓄電池熱交換用流路24および蓄電池1の斜視図である。39は、蓄熱材と接触しない面である。図10では、蓄電池熱交換用流路24内に蓄電池1が収納されている状態である。
【0136】
前述のように、蓄電池熱交換用流路24内の容積は、たとえば、約25.9リットルである。
【0137】
蓄電池熱交換用流路24内には、上記約13.6リットルの蓄電池1が設置されているので、蓄熱材が入りこめる容積としては最大で、25.9リットルから13.6リットルを引き算した約12リットルである。
【0138】
蓄電池1は、たとえば24個の集合体である。
24個の集合体である蓄電池1の熱容量はたとえば11300J/℃である。充電時は、25℃に冷却されている。
【0139】
蓄熱材は、たとえば水である。
水の比熱は、ほぼ1cal/(℃・g)である。
水の密度は、1g/ccであるから、たとえば12.3リットルは12300gである。
水の比熱に12300gを掛けると、水の熱容量12300cal/℃が得られる。
calをJ(ジュール)に換算するには、4.184を掛ければ良い。従って、12.3リットルの水の熱容量はJ(ジュール)に換算して、51500J/℃となる。
【0140】
蓄熱材は、蓄熱部22において、電子機器12の排熱を蓄熱し、40℃となっている。
【0141】
停電が発生し、蓄電池熱交換用流路24に蓄熱材が放出されると、25℃の蓄電池1と40℃の蓄熱材が熱的に接触することになる。
【0142】
接触前の蓄電池1の温度をT1、蓄電池1の熱容量をC1、
接触前の蓄熱材の温度をT2、蓄熱材の熱容量をC2とすると、
熱力学的平衡の観点から、接触後の両者の最終的な温度は、
T=(T1・C1+T2・C2)/(C1+C2)となる。
そのため、T=(11300×25+51500×40)/(11300+51500)
= 37.3℃
となる。
【0143】
蓄電池1と蓄熱材とが接触すると、蓄電池1は25℃から37.3℃に12.3℃昇温し、その際、
(蓄電池1の熱容量)×(昇温温度)
=11300J/℃×12.3℃
=138990J(ジュール)
の熱が蓄熱材から蓄電池1に移動したことになる。
【0144】
一方、蓄熱材は40℃から37.3℃に2.7℃温度低下し、同様に138990J(ジュール)の熱が蓄熱材から蓄電池に流出したことになる。
【0145】
蓄電池1は、図10のように24個並べて配置する。そのため、1個あたりに約5800Jの熱が流れ込むことになる。
【0146】
蓄電池1の形状は、例えば直方体であり、
前述のように、蓄電池1の1個の大きさは、たとえば、高さ83mm、幅36mm、奥行き190mmである。
蓄電池1が蓄熱材と接触するのは、図10に示すように、ひとつの直方体において、1面を除いて、6面中5面である。図10において、蓄熱材と接触しない面39のみは、蓄熱材と接触しないため、昇温に寄与しない。そのため、ひとつの蓄電池1が蓄熱材と接触する面積は、
(高さ83mm×幅36mm)×2面
+ (奥行き190mm×幅36mm)×2面
+ (高さ83mm×奥行き190mm)×1面
= 35426m■ =0.035■
である。
【0147】
蓄電池1の熱伝達係数は、220W/(℃・■)である。蓄電池1内部は液体であり、
液体の熱伝達係数は、空気(11W/(℃・■))の20倍と言われているためである。
【0148】
以上から、熱伝達係数×接触面積×変化温度 を計算することができる。この計算結果で、前述の5800J/個を割れば、蓄電池1が25℃から37.3℃に昇温するまでに要する時間が求められる。
【0149】
5800(J)/(熱伝達係数×接触面積×変化温度)
= 5800/(220×0.035×12.3)
= 61秒
上記昇温時間の計算は、蓄電池1が1個について行った。
【0150】
蓄電池1を24個として計算しても、結果は同様に61秒となる。
【0151】
外部電源11に停電発生後、電子機器12において、データ保存からシャットダウン完了まで要する時間すなわち、シャットダウン時間としては、たとえば5分から30分程度要すると考えられる。蓄電池1の電力供給は、電子機器12のデータ保存動作当初から供給される。そのため、停電後、約1分で蓄電池の昇温が完了するのであれば、シャットダウン時間に比べて、昇温時間は早いと言える。
【0152】
蓄熱材が水の場合を示したが、特に制限はなく、目的に応じて適宜選択することができる。たとえば、アンモニア(密度0.6942:比熱1.152(40℃にて))、イソプロピルアルコール(密度0.78084:比熱0.709(40℃にて))、プロピレングリコール(密度1.036:比熱0.59)、エチレングリコール(密度1.1132:比熱0.599(40℃にて))、エチルアルコール(密度0.789:比熱0.642(40℃にて))、メチルアルコール(密度0.7918:比熱0.726(40℃にて))、フロン11(密度1.476:比熱0.219(40℃にて))などでも良い。いずれも、密度の単位は(g/cc)、比熱の単位は(cal/(℃・g))である。
【0153】
水の場合と同様に、蓄電池1との接触後の最終的な温度を熱力学的平衡の観点から計算すると、たとえばアンモニアでは36.8℃となる。また、イソプロピルアルコールでは35.7℃、プロピレングリコールでは36℃、エチレングリコールでは36.3℃、エチルアルコールでは35.5℃、メチルアルコールでは35.9℃、フロン11では33.9℃となる。
【0154】
蓄電池1は蓄熱材にて昇温されることにより、30℃から70℃となることが望ましい。
【実施例2】
【0155】
上記例では、蓄熱部22の容積を14.5リットル、蓄電池熱交換用流路24の容積を25.9リットル、蓄電池全体の容積を13.6リットルとして例示した。ただし、特に制限はなく、目的に応じて適宜選択することができ、これらに限るものではない。
【0156】
蓄熱部容積、蓄熱部周辺部容積や、蓄熱材の選定には、上記計算にならって行うことが可能である。
【0157】
蓄電池の容積をX(リットル)、Xリットルの蓄電池の熱容量をY(J/℃)とする。
【0158】
蓄電池は充電中は冷却されて、温度はa(℃)であるとする。
【0159】
蓄熱部の容積をZ(リットル)とし、蓄熱部周辺部の容積をW(リットル)とする。
【0160】
蓄熱材の密度をb(g/cc)として、蓄熱材の比熱をc(cal/(g・℃))とする。
【0161】
蓄熱部におけるZリットルの蓄熱材は、電子機器の排熱により昇温され、d(℃)になっているとする。蓄電池の温度a(℃)と蓄熱材の温度d(℃)との大小関係は、d>aである。
【0162】
外部電源に停電が発生し、蓄熱部の蓄熱材が蓄電池熱交換用流路に移動される。
【0163】
蓄電池熱交換用流路に入り込める蓄熱材の体積は、蓄電池熱交換用流路の容積Wと蓄電池の容積Xから、(W−X)リットルである。(W−X)リットルの蓄熱材の熱容量は、
1000・(W−X)・b・c(cal/℃)である。calをJ(ジュール)に換算するには、4.184を掛ければよい。その結果、(W−X)リットルの蓄熱材の熱容量Zとすると、Zは
Z=4184・(W−X)・b・c(J/℃) ・・・ (式1)
である。
【0164】
熱力学的平衡の観点から、蓄電池a(℃)と蓄熱材d(℃)との接触後、最終的な温度は、式1を用いて
(a・Y+d・Z)/(Y+Z) ・・・ (式2)
となる。上記例では、式2の単位は℃である。
【0165】
また、蓄電池1の昇温時間については、蓄電池1の熱伝達係数U(W/(℃・■))、
蓄電池1が蓄熱材と接触する面積M(■)、蓄電池1の昇温温度ΔT(℃)、および、蓄
電池1の熱容量Y(J/℃)より求まる。
【0166】
Y/(U・M・ΔT) ・・・ (式3)
となる。上記例では、式3の単位は秒である。
【0167】
図11、図12は、電子機器収納用ラック内に収納された開示の無停電電源装置の右側面図である。電子機器収納用ラック20の右側パネル34を外した状態であり、電子機器収納用ラック20内を示した図である。
【0168】
40は無停電電源装置内蔵ファン、41は電子機器内蔵ファンである。
【0169】
図11は、給気部開閉機構21が開である場合を示す。この場合は、給気部開閉機構21は、たとえば床下からの空調空気を、給気部20aから給気として電子機器収納用ラック20内に取り込む。取り込まれた給気により、蓄電池(図示無し)は冷却される。給気はその後、排気部20bから排気される。
【0170】
無停電電源装置10内には、無停電電源装置内蔵ファン40により、ラック前方パネル側から給気を取り込む。取り込まれた給気により、無停電電源装置10内は冷却される。無停電電源装置10内を冷却した給気は、無停電電源装置内蔵ファン40を経由して、電子機器収納用ラック20の排気部20bから排気される。
【0171】
電子機器12内には、電子機器内蔵ファン41により、ラック前方パネル側から給気を取り込む。取り込まれた給気により、電子機器12内は冷却される。電子機器12内を冷却した給気は、電子機器内蔵ファン41を経由して、電子機器収納用ラック20の排気部20bから排気される。電子機器12の上方には、蓄熱部22が設置されている。そのため、電子機器12からの排熱は、蓄熱部22に蓄熱される。
【0172】
図12は、給気部開閉機構21が閉である場合である。この場合は、床下からの空調空気は電子機器収納用ラック20内には取り込まれない。
【実施例3】
【0173】
図13は、蓄電池放電容量の放電電流依存を表したグラフである。
【0174】
実験条件としては、蓄電池から放電電流0.2Cを放電させ、規定の電圧値に下がるまでの時間tを測定した。この電流0.2Cと時間tとの掛け算
0.2C×t ・・・ (式4)
の値を基準の放電容量とした。
【0175】
同様に放電電流0.4C、1C、2C、3C、4C、5C、6Cについて、規定の電圧値まで下がるまでのそれぞれの時間を測定し、各放電電流に対する、放電容量=(放電電流×時間)を求めた。
【0176】
図13のグラフは、縦軸を相対放電容量とし、横軸を放電電流とした。
【0177】
蓄電池の温度を、20℃の場合と40℃の場合との2条件にて実験を行った。
【0178】
図13より、実際の実験結果では、(1) 0.2Cを超える大きい放電電流で蓄電池を使用すると、放電電流が大きくなるに従い、放電容量は下がってしまう。
(2) 同じ放電電流値で比較すると、蓄電池の温度は20℃よりも40℃のほうが、放電容量が大きい、という結果となった。
【0179】
結果(1)より、実際の蓄電池を大きな放電電流で使用すると、本来の放電容量の性能を発揮できず、規定の蓄電池電圧値には、より早い時間で到達してしまうことを示している。すなわち、大きな放電電流で使用すると、放電容量が劣化する。
【0180】
また、結果(2)より、蓄電池1は20℃よりも40℃のほうが、相対放電容量の劣化が抑制されていることを示している。
【0181】
これらの結果より、開示の無停電電源装置の蓄電池は、放電時には昇温し、かつ、放電電流値を3Cを超えない範囲としたほうが、放電容量の劣化が抑制できることがわかった。
【0182】
蓄電池は、内部抵抗が上昇すると、放電容量が劣化してしまう。そのため、昇温により内部抵抗の上昇が抑えられ、放電容量の劣化を抑制できると考えられる。
【実施例4】
【0183】
図14は、蓄電池における容量維持比のサイクル数依存性を実験にて調査した結果のグラフである。蓄電池1としては、放電容量3.5Ah、体積0.57リットル(高さ83mm、幅36mm、奥行き190mm)である。
【0184】
サイクル条件として、充電は、1Cの相当する電流値を用い、4.2Vに達するまで行った。放電は、1Cに相当する電流値を用い、3.0Vに達するまでとした。サイクル回数は、1回、130回、230回、300回、400回、500回とし、サイクル回数は500回まで行った。各サイクルでの放電容量を調査した。
ここで、容量維持比は、1サイクル目を基準とし、
容量維持比 =(測定時サイクル回数の放電容量/1サイクル目の放電容量)
である。
【0185】
蓄電池1を25℃に保った状態と、45℃に保った状態との2種類について、調査を実施した。
【0186】
図14のグラフは、縦軸を容量維持比とし、横軸をサイクル数としてプロットした。
【0187】
図14より、サイクル数が増えるほど、容量維持比が減少していくことがわかった。また、蓄電池の温度は、45℃よりも25℃でのサイクル実験のほうが、容量維持比の減少の度合いが小さいことがわかった。
【0188】
図13の結果より、放電時では蓄電池が昇温されているほうが、放電容量の劣化を抑制できることがわかっている。そのため、図14の実験でも、サイクルの放電のみを考慮すると、45℃の方が有利と予想される。
【0189】
しかしながら、25℃でのサイクルの方が容量維持率の劣化を抑制できた。すなわち、開示の無停電電源装置の蓄電池は、充電時では昇温されているよりも、冷却されているほうが、電池寿命が長くなることがわかった。
【0190】
蓄電池は、蓄電池内に不要な反応が発生すると、電池寿命を短縮してしまう。そのため、充電時の蓄電池は冷却することにより、不要な反応が抑制され、蓄電池寿命の延伸となっていると考えられる。
【実施例5】
【0191】
開示の無停電電源装置を、種々の電子機器と組合せて、情報処理システムを構築することも可能である。
【0192】
以上本発明の好ましい実施の形態について詳述したが、本発明は係る特定の実施の形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。
【符号の説明】
【0193】
1 蓄電池、
1a 充電信号線、
1b 放電信号線、
2 AC/DCコンバータ、
3 DC/ACコンバータ、
3a 電力供給用導線、
4 充電回路、
4a 充電回路用信号線、
5 放電回路、
5a 放電回路用信号線、
6 制御モジュール、
7 通信制御部、
7a 通信制御用信号線
8 表示部、
8a 表示用信号線、
9 電子回路ユニット、
10 無停電電源装置、
10−1 無停電電源装置制御部、
10a 無停電電源装置用取っ手
11 外部電源、
11a 外部電源供給用導線、
12 電子機器、
12a 電子機器用信号線、
12b 電子機器用取っ手
20 電子機器収納用ラック、
20a 給気部、
20b 排気部、
21 給気部開閉機構、
21a 給気部開閉信号線、
22 蓄熱部、
22a 蓄熱材保持量監視信号線、
23 蓄熱部開閉機構、
23a 蓄熱部開閉信号線、
24 蓄電池熱交換用流路、
25 リザーブ部開閉機構、
25a リザーブ部開閉信号線、
26 リザーブ部、
27 循環流路開閉機構、
27a 循環流路開閉信号線、
28 循環流路、
29 循環ポンプ、
29a 循環ポンプ用信号線、
30 床、
31 ラック用キャスター、
31a キャスター用カバー
32 ラックの底面パネル、
33 ラックの右側パネル、
34 ラックの左側パネル、
35 ラックの天井パネル、
36 仕切り板、
37 ラックの前方パネル、
38 ラックの後方パネル、
39 蓄熱材と接触しない面
40 無停電電源装置内蔵ファン
41 電子機器内蔵ファン





【特許請求の範囲】
【請求項1】
蓄電池と、
前記蓄電池を冷却する冷却手段と、
前記蓄電池を昇温する昇温手段と、
前記蓄電池の充電と放電との切替、および、前記冷却手段と前記昇温手段との稼動切替を行う制御部と
を有する
ことを特徴とする無停電電源装置。
【請求項2】
前記制御部は、
前記蓄電池が充電される場合は、前記冷却手段稼動に切り替え、
前記蓄電池が放電される場合は、前記昇温手段稼動に切り替える
ことを特徴とする請求項1に記載の無停電電源装置。
【請求項3】
前記昇温手段は、
蓄熱部と、
前記蓄熱部内に備えられ、前記電子機器からの排熱を蓄熱する蓄熱材と
を備える
ことを特徴とする請求項1または2のいずれかに記載の無停電電源装置。
【請求項4】
前記昇温手段は、
前記蓄熱材と前記蓄電池とが熱的に接触して昇温される
ことを特徴とする請求項3に記載の無停電電源装置。
【請求項5】
前記蓄熱材が、
水、アンモニア、イソプロピルアルコール、プロピレングリコール、エチレングリコール、エチルアルコール、メチルアルコール、フロン11のいずれかである
ことを特徴とする請求項3または4のいずれかに記載の無停電電源装置。
【請求項6】
前記制御部から前記電子機器へシャットダウン信号が与えられ、
前記蓄電池は、接続された前記電子機器に電力を供給する
ことを特徴とする請求項1〜5のいずれか1項に記載の無停電電源装置。
【請求項7】
電子機器と、
前記電子機器に接続された蓄電池と、
前記蓄電池を冷却する冷却手段と、
前記蓄電池を昇温する昇温手段と、
前記蓄電池の充電と放電との切替、および、前記冷却手段と前記昇温手段との稼動切替を行う制御部と
を備えることを特徴とする情報処理システム。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2012−175874(P2012−175874A)
【公開日】平成24年9月10日(2012.9.10)
【国際特許分類】
【出願番号】特願2011−37921(P2011−37921)
【出願日】平成23年2月24日(2011.2.24)
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】