説明

焼入れ品質検査装置

【課題】非破壊検査により検査対象物の焼入れ品質を精度良く検査することができる焼入れ品質検査装置を提供する。
【解決手段】 検査対象物1の表面に接触させる通電用電極2,2と、電源4と、検査対象物1を流れる電流が生成する磁界を測定する磁界検出手段5とを備える。磁界検出手段5で測定した磁界により、検査対象物1の焼入れ品質を測定する品質測定手段18を設ける。検査対象物1の外部を流れる電流が生成する磁界が磁界検出手段5の測定に影響を与えるのを防止する外乱磁界除去手段7を設ける。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、鋼材製品における焼入れ硬度分布、焼入れ深さ等の焼入れ品質を検査する焼入れ品質検査装置に関する。
【背景技術】
【0002】
軸受等の転動製品には焼入れ処理や焼戻し処理が施される。これらの処理の中でも、高周波焼入れ処理や、浸炭処理、浸炭窒化処理等の表面硬化処理では、品質保証のために表面硬化層の検査が行われる。この検査では、実際の製品を切断して、その切断面上で、製品表面から深さ方向に硬度を測定して硬化層の深さを測定している。製品を切断できないものでは、テストピースに製品と同じ炉で熱処理を施し、そのテストピースを切断して前記と同様に硬化層深さを測定して、製品の硬化層深さの保証を行っている。
【0003】
このように、熱処理した転動製品の焼入れ硬化層深さの検査では、製品を切断する破壊検査が行われているが、この場合には製品が破壊されるため、マテリアルコストが大きくなる問題がある。また、製品の切断、および硬度計による深さ方向の硬度測定に時間がかかり、工数が大きくなる問題点もある。
製品を切断できない場合には、上記したようなテストピースにより保証が行われているが、実際の製品の検査ではないため、保証精度が悪い等の問題点がある。
【0004】
そこで、破壊検査での上記した課題を解決するために、焼入れ硬化層を非破壊で検査する方法が提案されている。その非破壊検査の提案例の一つは、焼入れによる導電率の変化を利用して検査する電位差法である。この方法は、検査対象物に接触させたプローブで、検査対象物に直流電流を通電し、この検査対象物におけるプローブの接触位置とは異なる位置で接触させた2つの探針間の電位差を測定して焼入れ深さを求めるものである(例えば特許文献1,2)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2004−309355号公報
【特許文献2】特開2007−064817号公報
【特許文献3】特願2009−134727号
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記した非破壊検査方法では、検査対象物に直流電流を通電していることから、焼入れ深さの測定には有効であるものの、硬度の深さ方向の分布を測定できない。焼入れの品質保証精度を向上させるためには、焼入れ深さだけでなく、焼入れ硬度の深さ方向の分布検出が必要である。
【0007】
上記問題を解決するため、本件出願人は、図8に示すように、検査対象物21に電流を通電し、その検査対象物中を流れる電流がつくる磁界を測定することで焼入れ深さや焼入れ硬度分布などを検査する焼入れ品質検査装置を提案した(特許文献3)。この装置では、電流の周波数を変化させることで電流が流れる深さを制御できるため、深さ方向の硬度分布を検出できる。しかし、この装置では、電流を通電する通電用電極22,22と磁界を測定する磁界センサ25とを一体として検出ヘッド28を構成し、この検出ヘッド28ではその上方から下方へと電流を通電するように通電用電極22,22を配置しているので、磁界センサ25の測定対象である磁界が通電用電極22,22を流れる電流の影響を受けて、検出精度が悪くなるという問題点がある。
【0008】
この発明の目的は、非破壊検査により検査対象物の焼入れ品質を精度良く検査することができる焼入れ品質検査装置を提供することである。
【課題を解決するための手段】
【0009】
この発明の焼入れ品質検査装置は、検査対象物に電流を通電し、その検査対象物中を流れる電流がつくる磁界を測定することで焼入れ品質を検査する焼入れ品質検査装置であって、前記検査対象物の表面に接触させる通電用電極と、この通電用電極を介して前記検査対象物に電流を印加する電源と、この電源により前記検査対象物を流れる電流が生成する磁界を測定する磁界検出手段と、この磁界検出手段で測定した磁界により、前記検査対象物の焼入れ品質を測定する品質測定手段と、前記検査対象物の外部を流れる電流が生成する磁界が前記磁界検出手段の測定に影響を与えるのを防止する外乱磁界除去手段とを備えることを特徴とする。
【0010】
この構成によると、検査対象物の表面に一対の通電用電極を接触させ、電源からこれら通電用電極を通して電流を通電する。この状態において、検査対象物を流れる電流が生成する磁界を、磁界検出手段で測定する。品質測定手段は、磁界検出手段で測定した磁界により、検査対象物の焼入れ品質を測定する。例えば、磁界の磁路断面積の変化が磁気抵抗の変化として現れ、この磁気抵抗の変化に基づく磁界の変化から、検査対象物の焼入れ硬度、焼入れ深さ等の焼入れ品質等を求める。
焼入れにより鋼材の透磁率、導電率が変化する。一般に焼入れにより鋼材の硬度が高くなる程、透磁率、導電率共に小さくなる。この理由により、焼入れ硬度、深さによって検査対象物に流れる電流が変化する。よって、電流がつくる磁界の磁路断面積の変化による磁界の変化を磁界検出手段で測定することにより、電流の変化を検出する。
【0011】
検査対象物1を電流が流れる深さは、表皮効果により周波数f、導電率σ、透磁率μにより変化する。ここで電流が流れる深さδは、次式(1)で表される。
δ=√(1/πfσμ) …(1)
上式(1)より、検査対象物1を電流が流れる侵入深さは周波数により変化する。このため、周波数を変化させることで、電流が流れる深さを変えながら測定を行うことができる。例えば、高周波電流を通電したときは、電流は検査対象物表面しか流れることができないので、検査対象物表面の焼入れ硬度を知ることができる。周波数を高周波側から次第に小さくしていくと、電流の侵入深さは大きくなっていく。したがって、例えば、周波数を高周波側から小さくしつつ磁界を測定することで、焼入れ硬度の深さ方向の分布を推定することができる。このように、非破壊検査により検査対象物の焼入れ品質を精度良く検査することができる。
特に、外乱磁界除去手段を設けて、検査対象物の外部を流れる電流が生成する外乱磁界が磁界検出手段の測定に影響を与えるのを防止するようにしているので、非破壊検査により検査対象物の焼入れ品質をさらに精度良く検査することができる。
【0012】
この発明において、前記外乱磁界除去手段は、前記通電用電極に施した磁気シールドであっても良い。この場合の磁気シールドは、通電用電極を強磁性体からなるシールド材で被覆したものであっても良い。磁気シールドによると、外乱磁界の影響を簡単にかつ効果的に除去することができる。また、前記シールド材は軟磁性金属であっても良いし、軟磁性酸化物であっても良い。軟磁性であると、外乱磁界の影響をより効果的に除去することができる。前記シールド材の形状はビーズ形状であっても良い。ここで言う「ビーズ形状」は、通し用の孔が明いた形状を言い、円筒状であっても、玉状であっても良い。ビーズ形状であれば、通電用電極を中に通すことで、通電用電極に対して容易に取付けることができる。
【0013】
この発明において、前記通電用電極と前記磁界検出手段とを一体として検出ヘッドを構成し、前記外乱磁界除去手段は、前記通電用電極を流れる電流の流れを前記検出ヘッドの側面から内部に向かわせるものとしても良い。上記の「一体として」とは、互いに固定状態にある一つの組立部品としてと言う意味である。
【0014】
この発明において、前記通電用電極がL字形であり、前記外乱磁界除去手段は、前記通電用電極を、その一端が前記検出ヘッドの側面に位置し他端が検出ヘッドの前記検査対象物1と対向する面に位置するように配置する電極位置決め手段であっても良い。
【0015】
この発明において、前記検出ヘッドにおける前記通電用電極を含めた全ての電極の材質が非磁性材であっても良い。このように、検出ヘッドにおける全ての電極の材質を非磁性材とすると、外乱磁界が磁界検出手段の測定に影響を与えるのをさらに防止できる。
【0016】
この発明において、前記電源から前記検査対象物に印加する電流が直流電流であっても良く、交流電流であっても良い。直流電流と交流電流とを切り換えて印加するようにしても良い。
【0017】
電源から検査対象物に印加する電流が交流電流である場合に、前記品質測定手段は、前記電源の出力する交流電流の周波数を種々変化させる周波数変更指令部を有し、かつこの周波数変更指令部で変化させた各周波数における磁界を測定し、焼入れ品質を測定する機能を有するものとしても良い。この構成の場合、検査目的となる焼入れ品質を求めるのに適した周波数の変更が行い易い。
【0018】
この発明において、前記磁界検出手段は、低周波の磁界を測定可能な磁界センサであるのが望ましい。検査対象物に印加する交流電流の周波数が低い程、その交流電流は検査対象物1の深い部分を流れるので、より深い位置での焼入れ硬度を知るためには、磁界センサは、低周波の磁界を測定できるものが望ましい。
【0019】
この発明において、前記磁界センサは、ホールセンサ、MRセンサ、GMRセンサ、TMRセンサ、MIセンサ、およびフラックスゲートセンサのうちのいずれか一つであっても良い。
【0020】
この発明において、前記品質測定手段は、前記焼入れ品質として、前記検査対象物の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さの少なくとも一つを検査するものとしても良い。
【発明の効果】
【0021】
この発明の焼入れ品質検査装置は、検査対象物に電流を通電し、その検査対象物中を流れる電流がつくる磁界を測定することで焼入れ品質を検査する焼入れ品質検査装置であって、前記検査対象物の表面に接触させる通電用電極と、この通電用電極を介して前記検査対象物に電流を印加する電源と、この電源により前記検査対象物を流れる電流が生成する磁界を測定する磁界検出手段と、この磁界検出手段で測定した磁界により、前記検査対象物の焼入れ品質を測定する品質測定手段と、前記検査対象物の外部を流れる電流が生成する磁界が前記磁界検出手段の測定に影響を与えるのを防止する外乱磁界除去手段とを備えるため、非破壊検査により検査対象物の焼入れ品質を精度良く検査することができる。
【図面の簡単な説明】
【0022】
【図1】この発明の一実施形態にかかる焼入れ品質検査装置の概要を示す説明図である。
【図2】同焼入れ品質検査装置の構成を示すブロック図である。
【図3】(A)は同焼入れ品質検査装置におけるプローブの拡大断面図、(B)は同プローブにおける通電用電極の磁気シールドに用いられるシールド材の斜視図である。
【図4】同プローブの他の構成例を示す拡大断面図である。
【図5】同プローブのさらに他の構成例を示す拡大断面図である。
【図6】同プローブのさらに他の構成例を示す拡大断面図である。
【図7】この発明の他の実施形態にかかる焼入れ品質検査装置の構成を示すブロック図である。
【図8】提案例の構成を示すブロック図である。
【発明を実施するための形態】
【0023】
この発明の一実施形態を図1ないし図3と共に説明する。図1において、この実施形態の焼入れ品質検査装置の原理について説明する。この焼入れ品質検査装置では、検査対象物1に電流を通電し、その検査対象物1中を流れる電流3がつくる磁界6を測定することで焼入れ品質を検査する。図中で、磁界6は磁束を示す線により、電流3は流れ経路を示す線により、それぞれ図示している。検査対象物1は、焼入れ処理が施された部品、例えば軸受や軸受部品等の鋼材製品である。ただし、これらの鋼材製品に限定されるものではない。
【0024】
この例では、通電電流として交流電流が使用される。図1に示すように、交流電流は、検査対象物1に接触させた一対の通電用電極2,2を介して交流電源である電源4から供給、すなわち印加する。検査対象物1に交流電流を印加して、検査対象物1上に設けた磁界検出手段である磁界センサ5で、検査対象物1を流れる電流3が生成する磁界6を測定する。磁界センサ5は、磁界の強さまたは大きさおよび方向を検出するセンサであり、例えば電圧値で出力する。この明細書で言う「磁界センサ」は、磁気センサを含む。
検査対象物1となる鋼材は、焼入れにより透磁率、導電率が変化する。一般に焼入れにより鋼材の硬度が高くなる程、透磁率、導電率共に小さくなる。この理由により、焼入れ硬度、深さによって検査対象物1に流れる電流が変化する。よって、電流がつくる磁界の強さまたは大きさを磁界センサ5で測定することにより、電流の変化を検出する。
【0025】
検査対象物1を電流が流れる深さは、表皮効果により周波数f、導電率σ、透磁率μにより変化する。ここで電流が流れる深さδは、次式(1)で表される。
δ=√(1/πfσμ) …(1)
上式(1)より、検査対象物1を電流が流れる侵入深さδは周波数fにより変化する。このため、周波数fを変化させることで、電流が流れる深さδを変えながら測定を行うことができる。例えば、高周波電流を通電したときは、電流は検査対象物表面しか流れることができないので、検査対象物表面の焼入れ硬度を知ることができる。この観点から、より深い位置での焼入れ硬度を知るためには、磁界センサ5は、低周波の磁界を測定できるものが望ましい。周波数を高周波側から次第に小さくしていくと、電流の侵入深さδは大きくなっていく。したがって、例えば、周波数fを高周波側から小さくしつつ磁界を測定することで、焼入れ硬度の深さ方向の分布を推定することができる。このように、非破壊検査により検査対象物1の焼入れ品質を精度良く検査することができる。周波数fを変化させる場合、段階的に変化させても、また連続的に変化させても良い。
【0026】
図2は、焼入れ品質検査装置の構成を示す。この焼入れ品質検査装置は、検出ヘッドとなるプローブ8と、測定装置9とを有する。プローブ8は、検査対象物1の表面1aに接触させる一対の通電用電極2,2と、電源4により検査対象物1を流れる電流が生成する磁界を測定する磁界センサ5とを一体にしたものである。すなわち磁界センサ5は、センサ基板11に実装され、モールド材12等でセンサハウジング13に固定されている。センサハウジング13は樹脂等の非磁性体であることが望ましい。センサハウジング13は、図示の例では、ブロック状に形成されて下面の外周に周壁が突出し、その周壁の内方が凹み部となった形状を成しており、その凹み部の底面にセンサ基板11が配置される。前記モールド材12は、磁界センサ5が実装されセンサ基板11と前記センサハウジング13の前記周壁との間の隙間を埋める。
【0027】
センサハウジング13には、センサ基板11への配線である電極14,15および前記一対の通電用電極2,2が固定される。各通電用電極2は丸棒状に形成されこの通電用電極2の少なくとも一端部が、センサハウジング13の端面から突出するように、プローブ8に上から下に向けて配置されている。電極14,15および通電用電極2は、センサハウジング13に設けられた貫通孔に挿通される。また一対の通電用電極2,2は所定距離離隔てて平行に配置され、且つ、これら通電用電極2,2間に磁界センサ5が配置されている。各通電用電極2の他端部は、測定装置9における後述の増幅回路16に電気的に接続され、センサ基板11に固着される電極14,15が測定装置9における後述のセンサ信号処理回路17に電気的に接続されている。
【0028】
前記一対の通電用電極2,2には磁気シールド7が施されている。この磁気シールド7は、検査対象物1の外部を流れる電流が生成する磁界が前記磁界センサ5の測定に影響を与えるのを防止する外乱磁界除去手段となるものである。すなわち、この場合、検査対象物1の外部を流れる電流とは、通電用電極2,2を流れる電流のことであり、この電流が生成する磁界が磁界センサ5の測定に影響を及ぼさないように、通電用電極2,2に磁気シール7が施される。磁気シールド7は、ここでは図3(A)に拡大して示すように、通電用電極2,2における磁界センサ5に近接した部位を強磁性体からなるシールド材10で被覆して構成される。シールド材10の形状は、例えば図3(B)に示すようなビーズ形状とされる。シールド材10の形状は、ビーズ状であればよく、図示のような円筒状であっても、また玉状などであっても良い。この場合のシールド材10として、軟磁性金属や軟磁性酸化物などを用いることができる。軟磁性金属としては、ケイ素鋼、パーマロイ、アモルファス合金など を用いることができ、軟磁性酸化物としては、軟磁性フェライトなどを用いることができる。
【0029】
図2において、前記測定装置9は、電源4と、品質測定手段18を有する。電源4は、周波数可変の発振回路19と、この発振回路19から出力された交流信号を増幅して検査対象物1に通電する電流を供給つまり印加する増幅回路16とを含む。発振回路19は、品質測定手段18の信号処理部20に電気的に接続され、この信号処理部20からの指示により周波数および振幅を変化させる。
品質測定手段18は、発振回路19により交流電流の周波数を変化させながら磁界センサ5で測定した磁界により、検査対象物1の焼入れ品質を測定するものである。この品質測定手段18は、磁界センサ5の信号に増幅、リニア化、フィルタ処理等の前処理を施すセンサ信号処理回路17と、センサ信号処理回路17で前処理された磁界センサ信号から焼入れ深さや硬度分布を推定する信号処理部20とを有する。
【0030】
信号処理部20は、焼入れ品質として、検査対象物1の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さ(「焼入れ硬度等」と称す)を推定する手段である。信号処理部20は、検出された電圧値を、これらの各品質項目毎に定められた磁気抵抗の変化量に見合う電圧値と品質値(表面硬度、深さ方向の焼入れ硬度分布、焼入れ深さ等)の関係に照らし、対応する前記表面硬度、深さ方向の焼入れ硬度分布、焼入れ深さ等を推定値として出力する。ただし、これら検査対象物1の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さのうちの少なくともいずれか1つを測定するものとしても良い。信号処理部20は、判定部20aと周波数変更指令部20bとを有し、判定部20aにより、上記の推定と、次の異常判定とを行う。
【0031】
判定部20aは、測定値から上記のように推定した焼入れ品質が設定品質値を下回るときに、品質異常つまり焼入れ異常と判定する。判定部20aは、センサ信号処理回路17で処理された信号に比例する深さ方向の焼入れ硬度等を算出する電子回路と、異常判定を行う電子回路とからなる。判定部20aの上記焼入れ硬度等を算出する電子回路は、検出された電圧値と深さ方向の焼入れ硬度等との関係を演算式またはテーブル等で設定した関係設定手段(図示せず)を有し、測定した磁界の強さまたは大きさおよび方向に基づく信号である電圧値を、前記関係設定手段に照らし深さ方向の焼入れ硬度等を算出する。
前記設定品質値は、種々の試験等から求めて適宜設定される閾値であり、例えば書換え可能な不図示の記憶媒体等に記憶される。判定部20aは、異常判定として、前記関係設定手段に照らして算出した任意の深さの焼入れ硬度が、同深さにおける設定品質値を下回るか否かを判定する。前記算出した焼入れ硬度が設定品質値を下回るとき、品質異常と判定する。
【0032】
周波数変更指令部20bは、交流電源4の発振回路19に交流信号の周波数および振幅を可変設定する指令を与える。この周波数変更指令部20bの指令を受け、発振回路19の出力する交流信号の周波数および振幅が可変設定される。周波数変更指令部20bは、例えば、周波数を変える変更幅、頻度、変更の繰り返し周期等の規則等が、目的とする焼入れ品質の種類や、検査対象物1の種類等に応じて複数種類設定されていて、適宜の入力により任意の規則が選択可能なものとしても良い。
【0033】
前記のように判定部20aが任意の深さの焼入れ硬度を算出した後、検査対象物1の同一箇所において周波数変更指令部20bが発振回路19に周波数を変更する指令を与える。これにより、検査対象物1を電流が流れる侵入深さが変化する。この場合に測定した磁界の強さまたは大きさおよび方向に基づく信号を、前記関係設定手段に照らし前記任意の深さとは異なる深さの焼入れ硬度を算出する。このような周波数変更を繰り返すことで、判定部20aは焼入れ硬度の深さ方向の分布を推定し得る。なお、複数の周波数における、磁界の強さまたは大きさおよび方向に基づく信号を一旦記憶しておき、焼入れ硬度の深さ方向の分布を推定するようにしても良い。
【0034】
このように、この焼入れ品質検査装置では、通電用電極2,2を検査対象物1の表面に接触させ、電源4から通電用電極2,2を介して検査対象物1に電流を印加し、このとき検査対象物1を流れる電流が生成する磁界を磁界検出手段である磁界センサ5で測定し、この磁界センサ5で測定した磁界により品質測定手段18で検査対象物1の焼入れ品質を測定するようにしたので、非破壊検査により検査対象物1の焼入れ品質を精度良く検査することができる。
特に、外乱磁界除去手段となる磁気シールド7を前記通電用電極2,2に施すことにより、検査対象物1の外部を流れる電流つまり通電用電極2,2を流れる電流が生成する外乱磁界を除去して、外乱磁界が磁界センサ5の測定に影響を与えるのを防止するようにしてので、非破壊検査により検査対象物1の焼入れ品質をさらに精度良く検査することができる。
【0035】
この実施形態では、前記品質測定手段18が、交流電源の出力する周波数を種々変化させる周波数変更指令部20bを有し、かつこの周波数変更指令部20bで変化させた各周波数における磁界を測定し、焼入れ品質を測定する機能を有するものとしているので、検査目的となる焼入れ品質を求めるのに適した周波数の変更が行い易い。
【0036】
図4は、図1〜図3に示した実施形態におけるプローブ8の他の構成例を示す。この構成例では、外乱磁界除去手段として、プローブ8内における通電用電極2,2の全部位に磁気シールド7が施されている。詳しくは、プローブ8のセンサハウジング13内の全部位に磁気シールド7が施され、通電用電極2,2のセンサハウジング13から突出する部分のみ、磁気シールド7から露出している。その他の構成は図3の例と同様である。
このように、プローブ8内における通電用電極2,2の全部位に磁気シールド7を施した場合、通電用電極2,2の生成する外乱磁界が磁界センサ5の測定に与える影響をより確実に除去できるので、検査対象物1の焼入れ品質をさらに精度良く検査することができる。
【0037】
図5は、図1〜図3に示した実施形態におけるプローブ8のさらに他の構成例を示す。この構成例では、外乱磁界除去手段として、プローブ8内における通電用電極2,2の磁界センサ5に近接した部位に磁気シールド7が施されると共に、磁界センサ5が実装されるセンサ基板11のセンサ実装面とは反対側の面にも磁気シールド7Aが施されている。この場合の磁気シールド7Aにも、通電用電極2,2の磁気シールド7と同様の材質のシールド材10が用いられる。その他の構成は図3の場合と同様である。
このように、通電用電極2,2だけでなく、センサ基板11にも磁気シールド7Aを施した場合、通電用電極2,2の生成する外乱磁界が磁界センサ5の測定に与える影響をさらに確実に除去できるので、検査対象物1の焼入れ品質をさらに精度良く検査することができる。
【0038】
図6は、図1〜図3に示した実施形態におけるプローブ8のさらに他の構成例を示す。この構成例では、通電用電極2,2がL字形とされている。また、外乱磁界除去手段の機能は、通電用電極2,2を、その一端がプローブ8の側面に位置し他端がプローブ8の検査対象物1と対向する面に位置するように位置決めする電極位置決め手段13aが担っている。この場合の電極位置決め手段13aは、具体的には通電用電極2,2を固定するセンサハウジング13の一部である。すなわち、この場合の外乱磁界除去手段は、通電用電極2,2を流れる電流の流れを、検出ヘッドであるプローブ8の側面から内部に向かわせることで、通電用電極2,2を流れる電流が生成する外乱磁界が磁界センサ5の測定に影響を与えないようにしている。この場合に、外乱磁界が磁界センサ5の測定に与える影響をより確実に防止する観点から、検出ヘッドであるプローブ8における通電用電極2,2や電極14,15などの全ての電極の材質は非磁性材であることが望ましい。その他の構成は図3の場合と同様である。
このように、通電用電極2,2を流れる電流の向きを、プローブ8の側面から内部に向かわせるようにした場合にも、通電用電極2,2の生成する外乱磁界が磁界センサ5の測定に与える影響を除去できるので、検査対象物1の焼入れ品質を精度良く検査することができる。
【0039】
図7は、この発明の他の実施形態にかかる焼入れ品質検査装置の構成を示すブロック図である。以下の説明において、図1〜図3に示した実施形態で説明している事項に対応している部分には同一の参照符を付し、重複する説明を略する。図7の例では、測定装置9Aは、直流電源4Aを備えている。また信号処理部20Aは、判定部20aと電源制御部20cとを備えている。すなわち、電源制御部20cは、通電用電極2,2間に印加する電流の少なくとも方向、大きさを切り換える。所定時間毎に電流の方向、大きさを切り換えても良い。上記所定時間は、任意に定めた時間で良い。品質測定手段18は、この電流切換え毎に磁界センサ5の信号を処理しても良い。この構成においては検査対象物1の焼入れ深さを測定し得る。
なお、交流電源を用いて、一対の通電用電極を介して検査対象物に周波数fを変化させない単一周波数の電流を通電することも可能である。
直流電源4Aを用いて検査対象物1に直流電流を通電する場合において、検査対象物1に、方向、大きさが種々異なる電流を印加して、方向、大きさが異なる電流毎の磁界の強さまたは大きさおよび方向を測定しても良い。この場合にも、前記実施形態のものと同様に検査対象物1の焼入れ深さを測定し得る。
【0040】
上記各実施形態において磁界検出手段として用いた磁界センサ5には、磁気インピーダンス素子(MIセンサ、MI:Magneto-Impedance)、磁気抵抗素子(MRセンサ、MR: Magnetoresistive)、巨大磁気抵抗素子(GMRセンサ、GMR: Giant Magnetoresistive )、TMRセンサ(TMR:Tunnel Magnetoresistive )、ホールセンサ、フラックスゲートセンサ等を使用することができる。交流磁界のみを測定する場合、巻き線型の磁界センサを使用しても良い。
【符号の説明】
【0041】
1…検査対象物
2…通電用電極
4,4A…電源
5…磁界センサ(磁界検出手段)
7…磁気シールド(外乱磁界除去手段)
8…プローブ(検出ヘッド)
10…シールド材
13…センサハウジング
13a…電極位置決め手段
18…品質測定手段
20b…周波数変更指令部

【特許請求の範囲】
【請求項1】
検査対象物に電流を通電し、その検査対象物中を流れる電流がつくる磁界を測定することで焼入れ品質を検査する焼入れ品質検査装置であって、
前記検査対象物の表面に接触させる通電用電極と、この通電用電極を介して前記検査対象物に電流を印加する電源と、この電源により前記検査対象物を流れる電流が生成する磁界を測定する磁界検出手段と、この磁界検出手段で測定した磁界により、前記検査対象物の焼入れ品質を測定する品質測定手段と、前記検査対象物の外部を流れる電流が生成する磁界が前記磁界検出手段の測定に影響を与えるのを防止する外乱磁界除去手段とを備えることを特徴とする焼入れ品質検査装置。
【請求項2】
請求項1において、前記外乱磁界除去手段は、前記通電用電極に施した磁気シールドである焼入れ品質検査装置。
【請求項3】
請求項2において、前記磁気シールドは、前記通電用電極を強磁性体からなるシールド材で被覆したものである焼入れ品質検査装置。
【請求項4】
請求項3において、前記シールド材が軟磁性金属である焼入れ品質検査装置。
【請求項5】
請求項3において、前記シールド材が軟磁性酸化物である焼入れ品質検査装置。
【請求項6】
請求項3ないし請求項5のいずれか1項において、前記シール材の形状がビーズ形状である焼入れ品質検査装置。
【請求項7】
請求項1において、前記通電用電極と前記磁界検出手段とを一体として検出ヘッドを構成し、前記外乱磁界除去手段は、前記通電用電極を流れる電流の流れを前記検出ヘッドの側面から内部に向かわせるものとした焼入れ品質検査装置。
【請求項8】
請求項7において、前記通電用電極がL字形であり、前記外乱磁界除去手段は、前記通電用電極を、その一端が前記検出ヘッドの側面に位置し他端が検出ヘッドの前記検査対象部と対向する面に位置するように配置する電極位置決め手段である焼入れ品質検査装置。
【請求項9】
請求項7または請求項8のいずれか1項において、前記検出ヘッドにおける前記通電用電極を含めた全ての電極の材質が非磁性材である焼入れ品質検査装置。
【請求項10】
請求項1ないし請求項9のいずれか1項において、前記電源から前記検査対象物に印加する電流が直流電流である焼入れ品質検査装置。
【請求項11】
請求項1ないし請求項9のいずれか1項において、前記電源から前記検査対象物に印加する電流が交流電流である焼入れ品質検査装置。
【請求項12】
請求項11において、前記品質測定手段は、前記電源の出力する交流電流の周波数を種々変化させる周波数変更指令部を有し、かつこの周波数変更指令部で変化させた各周波数における磁界を測定し、焼入れ品質を測定する機能を有するものとした焼入れ品質検査装置。
【請求項13】
請求項1ないし請求項12のいずれか1項において、前記磁界検出手段は、低周波の磁界を測定可能な磁界センサである焼入れ品質検査装置。
【請求項14】
請求項13において、前記磁界センサが、ホールセンサ、MRセンサ、GMRセンサ、TMRセンサ、MIセンサ、およびフラックスゲートセンサのうちのいずれか一つである焼入れ品質検査装置。
【請求項15】
請求項1ないし請求項14のいずれか1項において、前記品質測定手段は、前記焼入れ品質として、前記検査対象物の表面硬度、深さ方向の焼入れ硬度分布、および焼入れ深さの少なくとも一つを検査する焼入れ品質検査装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−257223(P2011−257223A)
【公開日】平成23年12月22日(2011.12.22)
【国際特許分類】
【出願番号】特願2010−130914(P2010−130914)
【出願日】平成22年6月8日(2010.6.8)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】