説明

生体情報処理装置および方法、プログラム並びに記録媒体

【課題】 発現プロファイル画像データを基に、未知の励起光強度を推定する。
【解決手段】
第1の発現プロファイル画像データの第1のスポットの蛍光強度pfw(pj)におけるハイブリダイズ量は、第2の発現プロファイル画像データの第1のスポットの蛍光強度pfs(pj)におけるハイブリダイズ量と等しく(図中βで示される値)、第1の発現プロファイル画像データの第2のスポットの蛍光強度pfw(pi)におけるハイブリダイズ量は、第2の発現プロファイル画像データの第2のスポットの蛍光強度pfs(pi)におけるハイブリダイズ量と等しい(図中αで示される値)。そして、第1の発現プロファイル画像データの全てスポットでは、変換式hybridizew(pf)を用いてハイブリダイズ量を求めることが可能であり、第2の発現プロファイル画像データの全てのスポットでは、の変換式hybridizes(pf)を用いてハイブリダイズ量を求めることが可能である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、生体情報処理装置および方法、プログラム並びに記録媒体に関し、特に、生体物質の生体反応状態を示す画像データを得たときの励起光強度を推定することができるようにした、生体情報処理装置および方法、プログラム並びに記録媒体に関する。
【背景技術】
【0002】
近年、DNAチップ、または、DNAマイクロアレイ(以下、本明細書では両者を個々に区別する必要がない場合、まとめて単にDNAチップと称する)の実用化が進んでいる。DNAチップは、多種・多数のDNAオリゴ鎖を、検出用核酸として基板表面に集積して固定したものである。DNAチップを用いて、基板表面のスポットに固定されたプローブと、細胞などから採取したサンプル中のターゲットとのハイブリダイゼーションを検出することにより、採取した細胞内における遺伝子発現を網羅的に解析することができる。
【0003】
DNAチップなどによって得られた遺伝子発現量の解析方法、補正方法などに関する先行文献として、例えば、特許文献1乃至特許文献3がある。
【特許文献1】特開2002−71688号公報
【特許文献2】特表2002−267668号公報
【特許文献3】特開2003−28862号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
従来、DNAチップにおけるターゲットのプローブに対するハイブリダイズ量を測定する場合、DNAチップのハイブリダイゼーションに伴うスポットの蛍光画像がディスプレイに表示される。ハイブリダイズ量は、スポット領域内の蛍光強度の平均値に基づいて判定される。
【0005】
スポット領域内の蛍光強度は、蛍光画像を得るときにハイブリダイズ済みのDNAチップに照射される励起光の強度によって異なる。
【0006】
したがって、例えば、異なる装置によって撮像された蛍光画像を解析する場合など、ハイブリダイズ済みのDNAチップに照射された励起光強度が不明である場合には、ハイブリダイズ量を判定することができなかった。
【0007】
本発明は、このような状況に鑑みてなされたものであり、ハイブリダイズ済みのDNAチップに照射された励起光強度が不明である場合に、励起光強度を推定することができるようにするものである。
【課題を解決するための手段】
【0008】
本発明の生体情報処理装置は、基板上に設けられた反応領域に固定された第1の生体物質と、第1の生体物質に対して生体反応する第2の生体物質との生体反応の状態を測定する生体情報処理装置であって、同一の生体反応の状態にある反応領域に対して、異なる強度の励起光を照射したときの反射光を撮像することによって得られる反応領域の画像情報を取得する第1の取得手段と、第1の取得手段により取得された画像情報に基づいて、励起光の強度の推定値を算出する励起光強度推定手段とを備えることを特徴とする。
【0009】
第1の生体物質と第2の生体物質とが生体反応して得られる蛍光強度と、第1の生体物質と第2の生体物質との生体反応の状態との関係を示す関数を取得する第2の取得手段を更に備えさせるようにすることができ、励起光強度推定手段には、第2の取得手段により取得された関数に基づいて、励起光の強度の推定値を算出させるようにすることができる。
【0010】
励起光強度推定手段には、第1の取得手段により取得された複数の画像情報において、基板に照射された励起光強度の大小関係を推定する励起光強度関係推定手段と、第2の取得手段により取得された関数に基づいて、励起光強度関係推定手段により基板に照射された励起光の強度の大小関係が推定された複数の画像情報における励起光の強度の推定値を算出する推定値算出手段とを備えさせるようにすることができる。
【0011】
励起光強度関係推定手段には、第1の取得手段により取得された複数の画像情報における蛍光強度の積算値を算出することにより、基板に照射された励起光強度の大小関係を推定させるようにすることができる。
【0012】
基板上に複数の反応領域が設けられるようにすることができ、推定値算出手段には、複数の画像情報における反応領域の蛍光強度と関数とを基に、複数の反応領域の組合せによって、励起光の強度の候補値を複数検出する候補値検出手段と、候補値検出手段により検出された複数の候補値の平均値を算出する平均値算出手段とを備えさせるようにすることができる。
【0013】
第1の生体物質と第2の生体物質は、相互に相補的な塩基配列を有する遺伝子またはそれから派生する物質であるものとすることができる。
【0014】
本発明の生体情報処理方法は、基板上に設けられた反応領域に固定された第1の生体物質と、第1の生体物質に対して生体反応する第2の生体物質との生体反応の状態を測定する生体情報処理装置の生体情報処理方法であって、同一の生体反応の状態にある反応領域に対して、異なる強度の励起光を照射したときの反射光を撮像することによって得られる反応領域の画像情報を取得する取得ステップと、取得ステップの処理により取得された画像情報に基づいて、励起光の強度の推定値を算出する励起光強度推定ステップとを含むことを特徴とする。
【0015】
本発明のプログラム、および、記録媒体に記録されているプログラムは、基板上に設けられた反応領域に固定された第1の生体物質と、第1の生体物質に対して生体反応する第2の生体物質との生体反応の状態を測定する処理をコンピュータに実行させるためのプログラムであって、同一の生体反応の状態にある反応領域に対して、異なる強度の励起光を照射したときの反射光を撮像することによって得られる反応領域の画像情報の取得を制御する取得制御ステップと、取得制御ステップの処理により取得が制御された画像情報に基づいて、励起光の強度の推定値を算出する励起光強度推定ステップとを含むことを特徴とする処理をコンピュータに実行させる。
【0016】
本発明の生体情報処理装置および生体情報処理方法、並びに、プログラムにおいては、基板上に設けられた反応領域に固定された第1の生体物質と、第1の生体物質に対して生体反応する第2の生体物質との生体反応の状態を測定するために、同一の生体反応の状態にある反応領域に対して、異なる強度の励起光を照射したときの反射光を撮像することによって得られる反応領域の画像情報が取得され、取得された画像情報に基づいて、励起光の強度の推定値が算出される。
【発明の効果】
【0017】
本発明によれば、生体反応の状態を測定することができ、特に、第1の生体物質と第2の生体物質が生体反応した状態(例えば、ハイブリダイズ済み)の蛍光強度を表す画像情報において、照射された励起光強度が不明である場合に、励起光強度を推定することができる。
【発明を実施するための最良の形態】
【0018】
以下に本発明の実施の形態を説明するが、請求項に記載の構成要件と、発明の実施の形態における具体例との対応関係を例示すると、次のようになる。この記載は、請求項に記載されている発明をサポートする具体例が、発明の実施の形態に記載されていることを確認するためのものである。したがって、発明の実施の形態中には記載されているが、構成要件に対応するものとして、ここには記載されていない具体例があったとしても、そのことは、その具体例が、その構成要件に対応するものではないことを意味するものではない。逆に、具体例が構成要件に対応するものとしてここに記載されていたとしても、そのことは、その具体例が、その構成要件以外の構成要件には対応しないものであることを意味するものでもない。
【0019】
さらに、この記載は、発明の実施の形態に記載されている具体例に対応する発明が、請求項に全て記載されていることを意味するものではない。換言すれば、この記載は、発明の実施の形態に記載されている具体例に対応する発明であって、この出願の請求項には記載されていない発明の存在、すなわち、将来、分割出願されたり、補正により追加される発明の存在を否定するものではない。
【0020】
請求項1に記載の生体情報処理装置(例えば、図1の生体情報処理装置)は、基板上に設けられた反応領域(例えば、図2のスポット12)に固定された第1の生体物質(例えば、図2の発現解析用プローブ112)と、第1の生体物質に対して生体反応(ハイブリダイズ)する第2の生体物質(例えば、図12のターゲット112A)との生体反応の状態を測定する生体情報処理装置であって、同一の生体反応の状態にある反応領域に対して、異なる強度の励起光を照射したときの反射光を撮像することによって得られる反応領域の画像情報を取得する第1の取得手段(例えば、図10のデータ取得部101)と、第1の取得手段により取得された画像情報に基づいて、励起光の強度の推定値を算出する励起光強度推定手段(例えば、図10の蛍光強度積算値算出部102、励起光強度候補値検出処理部104、および、平均値算出部105)とを備えることを特徴とする。
【0021】
第1の生体物質と第2の生体物質とが生体反応して得られる蛍光強度と、第1の生体物質と第2の生体物質との生体反応の状態(例えば、ハイブリダイズ量)との関係を示す関数(例えば、蛍光強度−ハイブリダイズ量変換式記憶部30に記憶されている蛍光強度−ハイブリダイズ量変換式)を取得する第2の取得手段(例えば、図10の蛍光強度−ハイブリダイズ量変換式取得部103)を更に備えることができ、励起光強度推定手段は、第2の取得手段により取得された関数に基づいて、励起光の強度の推定値を算出することができる。
【0022】
励起光強度推定手段は、第1の取得手段により取得された複数の画像情報において、基板に照射された励起光強度の大小関係を推定する励起光強度関係推定手段(例えば、図10の蛍光強度積算値算出部102)と、第2の取得手段により取得された関数に基づいて、励起光強度関係推定手段により基板に照射された励起光の強度の大小関係が推定された複数の画像情報における励起光の強度の推定値を算出する推定値算出手段(例えば、図10の励起光強度候補値検出処理部104、および、平均値算出部105)とを備えることができる。
【0023】
基板上に複数の反応領域を設けることができ、推定値算出手段は、複数の画像情報における反応領域の蛍光強度と関数とを基に、複数の反応領域の組合せによって、励起光の強度の候補値を複数検出する候補値検出手段(例えば、図10の励起光強度候補値検出処理部104)と、候補値検出手段により検出された複数の候補値の平均値を算出する平均値算出手段(例えば、図10の平均値算出部105)とを備えることができる。
【0024】
請求項7に記載の生体情報処理方法は、基板上に設けられた反応領域(例えば、図2のスポット12)に固定された第1の生体物質(例えば、図2の発現解析用プローブ112)と、第1の生体物質に対して生体反応する第2の生体物質(例えば、図12のターゲット112A)との生体反応の状態を測定する生体情報処理装置(例えば、図1の生体情報処理装置)の生体情報処理方法であって、同一の生体反応の状態にある反応領域に対して、異なる強度の励起光を照射したときの反射光を撮像することによって得られる反応領域の画像情報を取得する取得ステップ(例えば、図6のステップS31の処理)と、取得ステップの処理により取得された画像情報に基づいて、励起光の強度の推定値を算出する励起光強度推定ステップ(例えば、図6のステップS33の処理)とを含むことを特徴とする。
【0025】
請求項8に記載のプログラムおよび請求項9に記載の記録媒体に記録されているプログラムは、基板上に設けられた反応領域(例えば、図2のスポット12)に固定された第1の生体物質(例えば、図2の発現解析用プローブ112)と、第1の生体物質に対して生体反応する第2の生体物質(例えば、図12のターゲット112A)との生体反応の状態を測定する処理をコンピュータに実行させるためのプログラムであって、同一の生体反応の状態にある反応領域に対して、異なる強度の励起光を照射したときの反射光を撮像することによって得られる反応領域の画像情報の取得を制御する取得制御ステップ(例えば、図6のステップS31の処理)と、取得制御ステップの処理により取得が制御された画像情報に基づいて、励起光の強度の推定値を算出する励起光強度推定ステップ(例えば、図6のステップS33の処理)とを含むことを特徴とする処理をコンピュータに実行させる。
【0026】
以下に本明細書において使用する用語の意味を説明する。
【0027】
プローブとは、DNAチップなどのバイオアッセイ用の基板に固定された生体物質であって、ターゲットと生体反応するものをいう。
【0028】
ターゲットとは、DNAチップなどのバイオアッセイ用の基板に固定された生体物質に生体反応する生体物質をいう。
【0029】
生体物質とは、蛋白質、核酸、糖などの生体内において生成される物質の他、相互に相補的な塩基配列を有する遺伝子またはそれから派生する物質を含む。
【0030】
生体反応とは、2以上の生体物質が生化学的に反応することをいう。その代表例は、ハイブリダイゼーションである。
【0031】
ハイブリダイゼーションとは、相補的な塩基配列構造を備える核酸間の相補鎖(二本鎖)形成反応をいう。
【0032】
以下、図を参照して、本発明の実施の形態について説明する。
【0033】
図1は、本発明の実施形態の生体情報処理装置の構成例を表している。この生体情報処理装置1は、DNAチップ11、ピックアップ部21、蛍光強度取得部22、励起光強度計算部23、ハイブリダイズ量推定部24、発現量計算部25、標準化部26、出力部27、発現プロファイルデータ記憶部28、表示部29Aを有するユーザインターフェース(UI)部29、および、蛍光強度−ハイブリダイズ量変換式記憶部30により構成されている。
【0034】
DNAチップ11は、スポット12とガイド13を有している。図2は、DNAチップ11のより詳細な構成例を表している。
【0035】
DNAチップ11は、その基板11A上に、発現解析用反応槽101と細胞数計数用反応槽102を有している。基板11Aの図中下側の端部には、直線状の開始位置ガイド13Aが設けられ、図中上側の端部には、終了位置ガイド13Bが設けられている。図1のガイド13は、具体的には、この開始位置ガイド13Aと終了位置ガイド13Bにより構成される。
【0036】
発現解析用反応槽101と細胞数計数用反応槽102は、この開始位置ガイド13Aと終了位置ガイド13Bの間に配置されている。
【0037】
発現解析用反応槽101には、反応領域としての複数のスポット12が形成されており、各スポット12には、生体物質(第1の生体物質)としてのハイブリダイズ検証用プローブ111、発現解析用プローブ112、並びに発現標準化用コントロールプローブ113が固定されている。発現解析用反応槽101にサンプルが滴下された場合、ハイブリダイズ検証用プローブ111には、その塩基と相補的構成を有する塩基を有する生体物質(第2の生体物質)としてのターゲット111Aがハイブリダイズする。同様に、発現解析用プローブ112には、その塩基と相補的構成を有する塩基を有する生体物質(第2の生体物質)としてのターゲット112Aがハイブリダイズする。また、発現標準化用コントロールプローブ113には、その塩基と相補的構成の塩基を有する生体物質(第2の生体物質)としてのターゲット113Aがハイブリダイズする。
【0038】
細胞数計数用反応槽102においては、生体物質(第1の生体物質)としてのハイブリダイズ検証用プローブ114と細胞数計数用コントロールプローブ115が、それぞれ反応領域としてのスポット12に取り付けられている。細胞数計数用反応槽102にサンプルが滴下された場合、ハイブリダイズ検証用プローブ114には、その塩基と相補的構成の塩基を有する生体物質(第2の生体物質)としてのターゲット114Aがハイブリダイズし、細胞数計数用コントロールプローブ115には、その塩基と相補的構成の塩基を有する生体物質(第2の生体物質)としてのターゲット115Aがハイブリダイズする。
【0039】
ハイブリダイズした(生体反応した)生体物質としてのプローブとターゲットには、インターカレータ116が結合されている。インターカレータ116は励起光が照射されると蛍光を発生する。
【0040】
図2には、このように、各プローブに対してターゲットがハイブリダイズした状態が示されている。なお、図2には便宜上、1つのスポット12に1つのプローブのみが示されているが、実際には1つのスポット12に対して同一種類の複数のプローブが固定されている。また、各反応槽には同一種類のプローブが固定された任意の数のスポットが、予め定められた所定の位置に配置されている。
【0041】
図1のピックアップ部21は、蛍光強度取得用ピックアップ41、ガイド信号取得用ピックアップ42、コントロール部43、対物座標計算部44、および畳み込み展開部45で構成されている。
【0042】
蛍光強度取得用ピックアップ41は、図2のDNAチップ11の発現解析用反応槽101と細胞数計数用反応槽102の画像を取得するピックアップである。これに対して、ガイド信号取得用ピックアップ42は、開始位置ガイド13Aと終了位置ガイド13Bを読み取るためのピックアップである。
【0043】
蛍光強度取得用ピックアップ41は、対物レンズ51、プリズム52、半導体レーザ53、およびフォトダイオード54を有している。半導体レーザ53より出射されたレーザ光(励起光)は、プリズム52を介して対物レンズ51に入射され、対物レンズ51は、入射されたレーザ光を基板11A(スポット12)上に照射する。対物レンズ51はまた、スポット12からの光を、プリズム52を介してフォトダイオード54に入射する。各スポット12には、複数のプローブが固定されており、プローブとターゲットがハイブリダイゼーションした場合、さらに両者にはインターカレータ116が結合される。すなわち、プローブとターゲットがハイブリダイゼーションしていない場合には、両者の間にインターカレータ116は存在せず、ハイブリダイゼーションした場合においてのみ、両者の間にインターカレータ116が存在する。インターカレータ116は、励起光が照射されると蛍光を発生する。対物レンズ51により集光された蛍光はプリズム52により励起光と分離されて、フォトダイオード54に入射される。
【0044】
ハイブリダイゼーションしている量が多ければ、それだけインターカレータ116の量も多く、したがって、そこから発生する蛍光量も多い。したがって、蛍光の強度に基づいて、ハイブリダイゼーションの状態を測定する(ハイブリダイゼーションの情報を得る)ことが可能となる。
【0045】
コントロール部43は、半導体レーザ53の電流制御を行い、その励起光の強度を調整する。また、コントロール部43は、フォトダイオード54の出力(電流量変化)を読み取る。
【0046】
畳み込み展開部45は、フォトダイオード54より出力された電流量変化に基づく信号をコントロール部43から受け取り、ピクセル単位の画像データを生成する。
【0047】
ガイド信号取得用ピックアップ42は、対物レンズ61、プリズム62、半導体レーザ63、およびフォトダイオード64により構成されている。半導体レーザ63は、コントロール部43からの制御に基づいて、レーザ光を発生する(このレーザ光は、ガイド検出光として機能する)。プリズム62は、半導体レーザ63からのレーザ光を対物レンズ61に入射し、対物レンズ61はこのレーザ光を基板11Aに照射する。対物レンズ61は、基板11Aからの反射光を受光し、プリズム62はこの反射光を照射光から分離してフォトダイオード64に出射する。フォトダイオード64は、プリズム62より入射された反射光を光電変換し、ガイド信号としてコントロール部43に出力する。コントロール部43は、フォトダイオード64より入力されたガイド信号を対物座標計算部44に出力する。ガイド13(開始位置ガイド13Aと終了位置ガイド13B)は、基板11Aの他の領域に較べて反射率が高く(または低く)なるように形成されている。対物座標計算部44は、コントロール部43を介して、ガイド信号取得用ピックアップ42より供給されたガイド信号のレベルに基づいて、開始位置ガイド13Aと終了位置ガイド13Bの位置、並びに開始位置ガイド13Aから終了位置ガイド13Bに向けて等速度で移動されるガイド信号取得用ピックアップ42の位置(座標)を計算する。
【0048】
コントロール部43は、対物座標計算部44により計算されたガイド信号取得用ピックアップ42の位置に基づいて、蛍光強度取得用ピックアップ41(対物レンズ51)の位置を制御する。ガイド信号取得用ピックアップ42と蛍光強度取得用ピックアップ41は、相互に所定の位置関係に固定されており、蛍光強度取得用ピックアップ41を図2における開始位置ガイド13Aと終了位置ガイド13Bの間における所定の位置に配置することは、とりもなおさずガイド信号取得用ピックアップ42を開始位置ガイド13Aと終了位置ガイド13Bの間の所定の位置に配置することになる。
【0049】
蛍光強度取得部22は、蛍光強度取得用ピックアップ41のフォトダイオード54が出力した各スポット12(その座標(x,y))からの蛍光強度(pfx,y)の入力を受け、この蛍光強度に関する蛍光強度データをハイブリダイズ量推定部24の励起光強度推定部81に出力する。蛍光強度取得部22からハイブリダイズ量推定部24の励起光強度推定部81に供給される蛍光強度データには、座標(x,y))からの蛍光強度(pfx,y)を示す蛍光画像(または、発現量を求めるために用いられる発現プロファイル画像とも称される)が含まれており、蛍光強度データの詳細に関しては、図7を用いて後述する。
【0050】
蛍光強度取得部22はまた、蛍光強度取得用ピックアップ41の対物レンズ51の基板11A上の対物座標(x,y)、対物面積半径(r)、並びに励起光強度を制御する制御信号をコントロール部43に出力する。コントロール部43は、この制御信号に基づいて対物レンズ51を制御する。これにより、対物レンズ51が基板11A上の所定の座標(x,y)に配置され、対物レンズ51より出射されるレーザ光の照射範囲の半径(対物面積半径)(r)が所定の値に制御され、そのレーザ光の強度(励起光強度)が所定の値に調整される。
【0051】
蛍光強度取得部22は、コントロール部43から供給された蛍光強度を、励起光強度計算部23に出力する。励起光強度計算部23は、蛍光強度−ハイブリダイズ量変換式記憶部30に記憶されている変換式に基づいて、プリスキャン時に蛍光強度取得部22から入力された蛍光強度に基づいて、最適な励起光強度を計算し、その計算して得られた励起光強度を蛍光強度取得部22に出力する。本スキャン時、蛍光強度取得部22は、この励起光強度計算部23からの励起光強度に基づいて半導体レーザ53の電流を制御し、所定の強さの励起光を半導体レーザ53より出射させる。
【0052】
ハイブリダイズ量推定部24は、励起光強度推定部81、画像処理部82、検証部83、並びにハイブリダイズ量計算部84により構成されている。
【0053】
反応領域の画像情報を入力する入力手段としての励起光強度推定部81は、蛍光強度取得部22より供給された蛍光強度データ、または発現プロファイルデータ記憶部28に予め記憶されている発現プロファイルデータの入力を受け、必要に応じて励起光強度を推定する処理を行う。励起光強度推定部81の詳細については、図10を用いて後述する。
【0054】
なお、発現プロファイルデータ記憶部28に予め記憶されている発現プロファイルデータには、ハイブリダイズ量推定部24によりハイブリダイズ量が推定され、後述する発現量計算部25により発現量が計算されて、標準化部26により標準化されて、出力部27により出力されるデータ以外にも、異なる装置において撮像された蛍光画像と、その蛍光画像に関する情報が含まれている場合がある。
【0055】
画像処理部82は、入力された画像データである蛍光画像(発現プロファイル画像データ)を処理し、検証部83とユーザインターフェース部29に出力する。ユーザインターフェース部29は、画像処理部82より入力された画像を表示部29Aに表示する。画像処理部82は、ユーザインターフェース部29を介して、ユーザより指示される入力に基づいて、例えば、供給された発現プロファイル画像データからデブリ(観測を行う上において障害となる物質)の成分を除去したり、供給された発現プロファイル画像データをスポット12毎の画像へ分解する処理などを行う。
【0056】
検証部83は、画像処理部82より入力された発現プロファイル画像データのうち、ハイブリダイズ検証用プローブ111,114のスポット12におけるハイブリダイズ量に基づいて、ハイブリダイズが正しく行われていることを検証する。
【0057】
ハイブリダイズ量計算部84は、ハイブリダイズ量を計算し、計算結果を発現量計算部25に供給する。ハイブリダイズ量計算部84は、例えば、スポット内領域を分割し、スポット内領域単位でハイブリダイズ値の計算を行い、スポット単位でのハイブリダイズ値を出力するようにしてもよい。
【0058】
発現量計算部25は、ハイブリダイズ量計算部84からの出力に基づいて、プローブに対するターゲットの結合強度を求めることで、蛍光強度に対応する発現量を推定する。標準化部26は発現標準化用コントロールプローブ113と細胞数計数用コントロールプローブ115を利用した標準化処理を行う。出力部27は標準化されたデータを発現プロファイルデータ記憶部28に供給する。
【0059】
発現プロファイルデータ記憶部28は、出力部27より供給されたデータを、発現プロファイルデータとして記憶する。さらに、発現プロファイルデータ記憶部28は、異なる装置において撮像された蛍光画像と、その蛍光画像に関する情報も、発現プロファイルデータとして記憶する。異なる装置において撮像された蛍光画像と、その蛍光画像に関する情報のフォーマットの例については、図8を用いて後述する。発現プロファイルデータ記憶部28に記憶されたデータは、必要に応じて、ユーザインターフェース部29に供給され、表示部29Aに表示される。発現量計算部25より出力されたデータも必要に応じて、表示部29Aに表示される。
【0060】
蛍光強度−ハイブリダイズ量変換式記憶部30は、図9を参照して後述するように、蛍光強度とそれに対応するハイブリダイズ量との関係を一義的に決定する変換式(必ずしも式を構成せずとも、変換のためのデータであってもよい)を予め記憶している。
【0061】
遺伝子発現量の定量的な測定は、図3に示される実験過程処理装置131により行われる。図1の生体情報処理装置1は、この図3の実験過程処理装置131の一部を構成している。
【0062】
すなわち、実験過程処理装置131は、調整部141、ハイブリダイズ部142、取得部143、発現量推定部144、標準化部145、出力部146、および記憶部147により構成されている。このうち、取得部143、発現量推定部144、標準化部145、出力部146および記憶部147が、生体情報処理装置1により構成されている。具体的には、取得部143は、ピックアップ部21、蛍光強度取得部22、励起光強度計算部23、および蛍光強度−ハイブリダイズ量変換式記憶部30により構成され、発現量推定部144は、ハイブリダイズ量推定部24、および、発現量計算部25により構成され、標準化部145は標準化部26により構成され、出力部146は出力部27により構成され、記憶部147は発現プロファイルデータ記憶部28により構成される。
【0063】
調整部141はターゲットの調整を行う。ハイブリダイズ部142はプローブとターゲットとのハイブリダイズを行う。取得部143は蛍光強度を取得する。発現量推定部144は、取得部143により取得された蛍光強度、または、記憶部147に記憶されている発現プロファイルデータを基に、発現量の推定処理を行う。標準化部145はデータの標準化を行う。出力部146は発現プロファイルデータを出力する。記憶部147は発現プロファイルデータを記憶する。
【0064】
次に、図3の実験過程処理装置131の処理のうち、調整部141、ハイブリダイズ部142、および、取得部143が実行する実験過程の処理1を、図4のフローチャートを参照して説明する。
【0065】
最初に、ステップS1において、調整部141はターゲットを調整する。具体的には、細胞が含まれるサンプルが取り出され、その中から蛋白質を変性させて除去する処理が行われ、RNA(ribonucleic acid)の抽出、断片化、並びにDNA(deoxyribonucleic acid)の抽出、断片化によりターゲット(発現解析用プローブ112に対するターゲット112A)が生成される。
【0066】
ステップS2において、ハイブリダイズ部142はハイブリダイズする処理を実行する。具体的には、ステップS1の処理で生成されたターゲットが入った溶液に、さらにハイブリダイズ検証用プローブ111,114に対するターゲット111A,114A、発現標準化用コントロールプローブ113に対するターゲット113A、並びに細胞数計数用コントロールプローブ115に対するターゲット115Aが加えられ、この溶液を発現解析用反応槽101と細胞数計数用反応槽102に滴下することで、ターゲットとプローブとがハイブリダイズされる。そして、インターカレータ116が導入され、ハイブリダイズしたターゲットとプローブに結合され、図2に示されるようなDNAチップ11が得られる。同図に示されるように、発現解析用反応槽101のスポット12では、発現解析用プローブ112に対してターゲット112Aがハイブリダイズしている他、発現標準化用コントロールプローブ113に対してターゲット113Aがハイブリダイズしており、ハイブリダイズ検証用プローブ111に対してターゲット111Aがハイブリダイズしている。そして、それらの2本鎖結合したプローブとターゲットの間にはインターカレータ116が結合している。
【0067】
同様に、細胞数計数用反応槽102のスポット12においても、ハイブリダイズ検証用プローブ114に対してターゲット114Aがハイブリダイズしており、細胞数計数用コントロールプローブ115に対してターゲット115Aがハイブリダイズしている。そして、これらのハイブリダイズしたプローブとターゲットの間にも、インターカレータ116が結合されている。
【0068】
ステップS3において、取得部143は蛍光強度を取得する。具体的には、蛍光強度取得部22は、コントロール部43を介して蛍光強度取得用ピックアップ41を駆動し、半導体レーザ53にレーザ光を励起光として出射させる。この励起光は、プリズム52を介して対物レンズ51に入射され、対物レンズ51は、これを基板11A上の発現解析用反応槽101に照射する。
【0069】
インターカレータ116は励起光が照射されると蛍光を発生する。この蛍光が対物レンズ51により集光され、プリズム52を介してフォトダイオード54に入射される。フォトダイオード54は蛍光に対応する電流を出力する。コントロール部43は、この電流に対応する信号を畳み込み展開部45により画像信号に変換させ、変換により生成された蛍光強度に対応する信号を、蛍光強度取得部22に出力する。
【0070】
コントロール部43は、対物レンズ51の位置を開始位置ガイド13Aから終了位置ガイド13Bの方向に向けて移動させる。このとき、ガイド信号取得用ピックアップ42の半導体レーザ63が出射するガイド検出光としてのレーザ光が、プリズム62を介して対物レンズ61に入射され、対物レンズ61がこのガイド検出光を基板11Aに照射する。ガイド検出光の反射光の強度は、開始位置ガイド13Aと終了位置ガイド13Bに照射されたとき強くなる。この反射光が対物レンズ61を介してプリズム62に入射され、プリズム62からフォトダイオード64に入射される。対物座標計算部44はコントロール部43を介してフォトダイオード64からのガイド信号を取得し、この信号に基づいて、ガイド信号取得用ピックアップ42(したがって、それと一体化している蛍光強度取得用ピックアップ41)が基板11Aの開始位置ガイド13Aと終了位置ガイド13Bの間のいずれの位置に位置するのか、その座標を計算する。コントロール部43はその座標に基づいてガイド信号取得用ピックアップ42(蛍光強度取得用ピックアップ41)を開始位置ガイド13Aから終了位置ガイド13Bまで一定の速度で移動させる(走査させる)。
【0071】
このようにして、蛍光強度取得用ピックアップ41が、図2において、開始位置ガイド13Aから終了位置ガイド13Bの位置まで移動されるとともに、さらに、その走査位置が、開始位置ガイド13A(終了位置ガイド13B)と平行な方向(図中x座標方向)に1ピッチ分だけ移動され、新たな移動位置において同様に、開始位置ガイド13Aから終了位置ガイド13Bまで移動される。このようにして、発現解析用反応槽101と細胞数計数用反応槽102の全体が走査され、各座標における画像信号が蛍光強度取得用ピックアップ41より出力される。
【0072】
次に、図3の実験過程処理装置131の処理のうち、発現量推定部144、標準化部145、および、出力部146が実行する実験過程の処理2を、図5のフローチャートを参照して説明する。
【0073】
ステップS11において、発現量推定部144は、発現量推定処理を実行する。この発現量推定処理の詳細は、図6を参照して後述するが、この処理によりハイブリダイズ量の計算が行われ、発現量が計算される。
【0074】
次に、ステップS12において、標準化部145(標準化部26)により、データを標準化する処理が行われる。この標準化としては、発現標準化用コントロールプローブ113による標準化と、細胞数計数用コントロールプローブ115による標準化が行われる。発現標準化用コントロールプローブ113による標準化は、次のようにして行われる。すなわち、図2には、発現標準化用コントロールプローブ113が1箇所にのみ図示されているが、実際には、この発現標準化用コントロールプローブ113は、発現解析用反応槽101の予め定められた所定の複数の位置(例えば、発現解析用反応槽101の4隅と略中央の5ヶ所)に分散して配置されている。そして、この各位置に配置された発現標準化用コントロールプローブ113の蛍光値に基づいて、補正用曲面が、例えば、Bスプライン曲面に基づいて演算され、その補正用曲面によって得られる蛍光値により各ピクセルの蛍光値を割り算することで正規化が行われる。この正規化により、発現解析用反応槽101内のスポット12の位置によるハイブリダイゼーションのばらつきが補正される。
【0075】
また、細胞数計数用コントロールプローブ115による標準化は、細胞数計数用コントロールプローブ115に対するハイブリダイズ量の値(細胞数計数用コントロール115に基づく蛍光値)により、細胞数計数用反応槽102上の各スポット12上のピクセルの蛍光値を割り算することにより行われる。細胞数計算用コントロールプローブ115としては、発現解析用プローブ112を抽出した生体のゲノム中の反覆配列(例えば、人間でいえばAlu配列)が用いられる。この処理により、取得された遺伝子の発現量を一定の細胞数当たりの値に換算することができる。
【0076】
さらに、ステップS13において、出力部146(出力部27)は、発現プロファイルデータを出力する。具体的には、以上のようにして得られた発現プロファイル画像データとそれに関する情報が、記憶部147(発現プロファイルデータ記憶部28)に供給され、記録される。
【0077】
次に、図6のフローチャートを参照して、図5のステップS11において実行される、発現量推定処理について説明する。
【0078】
ステップS31において、励起光強度推定部81は画像情報を入力する。具体的には、励起光強度推定部81は、蛍光強度取得部22から図4を用いて説明した処理により得られる蛍光強度データの供給を受けるか、または、発現プロファイルデータ記憶部28に記憶されている発現プロファイルデータの供給を受ける。
【0079】
ステップS32において、励起光強度推定部81は、ステップS31で入力された画像情報に励起光強度情報があるか(含まれているか)を判定する。
【0080】
励起光強度推定部81が供給を受けるデータのフォーマットは、例えば、図7または図8に示されるものである。蛍光強度取得部22より供給される蛍光強度データは、図7に示されるように、蛍光強度を取得したときに照射された励起光の強度と、DNAチップ11のそれぞれのプローブとして用いられている遺伝子の一覧であるプローブ遺伝子インデックス、縦横ピクセル数、および、蛍光画像を少なくとも含むものである。
【0081】
これに対して、発現プロファイルデータ記憶部28に記憶されている発現プロファイルデータは、蛍光強度取得部22より供給される蛍光強度データと異なり、別の装置によって求められたものである可能性があり、図8に示されるように、画像データ181と共通データ182により構成されている。発現プロファイルデータ記憶部28に記憶されている発現プロファイルデータは、図7を用いて説明した蛍光強度データを基に、ハイブリダイズの推定、発現量の計算、または、標準化などの処理が施されて作成されるデータであるか、または、他の装置により取得された蛍光画像に、生体情報処理装置1で実行される各種処理に必要なデータを付加したものである。すなわち、画像データ181は、セットとなる画像の枚数の他、蛍光強度取得時に照射された励起光強度、縦横ピクセル数、および蛍光画像により構成されている。共通データ182は、生体情報処理装置1で実行される各種処理に必要な、蛍光画像以外のデータであり、例えば、画像処理を実行する場合に、DNAチップのスポット位置を確定するために用いられるスポット位置テンテンプレート画像、スポット数、プローブ遺伝子インデックスなどにより構成されている。
【0082】
したがって、励起光強度推定部81が供給を受けるデータが蛍光強度取得部22より供給される蛍光強度データの場合、励起光強度計算部23の処理により計算されて設定された励起光強度において得られた蛍光画像が含まれているので、蛍光強度データには、励起光強度情報が含まれている。これに対して、発現プロファイルデータ記憶部28から発現プロファイルデータが供給される場合、それが蛍光強度取得部22から供給され、各種処理が施された後に記憶されたデータである場合には上述したように励起光強度情報が存在するが、そうでない場合(例えば、他の装置から供給された画像データである場合)には、発現プロファイルデータに励起光強度情報が存在しないことがある。
【0083】
ステップS32において、励起光強度情報が存在しないと判定された場合、ステップS33において、励起光強度推定部81は、図13を用いて後述する励起光強度推定処理を実行する。
【0084】
この励起光強度を推定する処理は、少なくとも2つの異なる強度の励起光に基づいて測定が行われた画像データが存在する場合に実行可能となる。このため、異なる少なくとも2つの励起光強度に基づく画像データが存在しない場合には、ステップS33の処理はスキップされる。
【0085】
図9は、各スポットの蛍光強度pfとハイブリダイズ量の関係を規定する式hybridize(pf)を表している。同図に示されるように、蛍光強度が与えられると対応するハイブリダイズ量は関数(曲線191乃至曲線194)に基づき一義的に決定される(ハイブリダイゼーションの情報は、第1の生体物質と第2の生体物質とがハイブリダイズして得られる蛍光強度から関数に基づき一義的に決定される)。
【0086】
すなわち、図9に示される曲線群から、画像データが得られたときにDNAチップ11に照射された励起光強度に対応する曲線を選択し、得られた画像データのうち、ハイブリダイズ量を求めたいスポットの単位面積あたりの蛍光強度から、ハイブリダイズ量を求めることが可能となる。
【0087】
ただし、同図に示されるように、図中最も上側に示される曲線191が、励起光強度のレベルが最も弱い場合の曲線を表し、以下、より下側の曲線192、曲線193と、順次励起光強度のレベルが強くなり、最も下側の曲線194が励起光強度のレベルが最も強い場合の曲線を表している。
【0088】
各曲線191乃至194は、いずれも図中左側の端部の領域の部分191A乃至194Aと、図中右側の端部の領域の部分191B乃至194Bにおいて、蛍光強度のわずかな変化に対して、ハイブリダイズ量が著しく変化しているので、これらの領域においては、蛍光強度に対応するハイブリダイズ量を一義的に決定することが困難になる。したがって、これらの部分191A乃至194A、並びに部分191B乃至194Bを除く中央の部分だけが、蛍光強度に対応するハイブリダイズ量の演算に利用される。
【0089】
ここでは、曲線191乃至曲線194の4本の曲線が図示されているが、各スポットの蛍光強度pfとハイブリダイズ量の関係を規定する式hybridize(pf)は、多くの励起光強度における場合について予め求められている。また、予め求められていない蛍光強度に対応する式hybridize(pf)を、例えば、補間処理などにより推定することも可能である。
【0090】
すなわち、ハイブリダイズ量は、図9を用いて説明した、励起光強度に対応する関数hybridize(pf)を基に求められるものであるので、蛍光画像を得たときにDNAチップに照射された励起光強度が明らかではない場合、蛍光画像を取得し、各スポットの蛍光強度pfが分かっても、ハイブリダイズ量を求めることができない。
【0091】
したがって、励起光強度情報が存在しないと判定された場合、図13を用いて後述する励起光強度推定処理が実行されて、励起光強度が求められ、それを用いて、ハイブリダイズ量が推定されるようになされている。
【0092】
ステップS32において、励起光強度情報が存在していると判定された場合、または、ステップS33の処理の終了後、すなわち、励起光強度情報が存在または推定された状態で、ステップS34において、画像処理部82は画像処理を行う。この処理により、供給された画像データに対して、例えば、デブリ領域が除去されたり、スポット毎の画像に分解されるなどの画像処理が施される。
【0093】
ステップS35において、検証部83は、ハイブリダイズを検証する処理を実行する。具体的には、図2に示されるように、発現解析用反応槽101にはハイブリダイズ検証用プローブ111が、また細胞数計数用反応槽102にはハイブリダイズ検証用プローブ114が、それぞれスポット12に固定されている。ハイブリダイズ検証用プローブ111,114としては、実験対象としている生物種にない遺伝子配列が用いられる。例えば、実験対象が動物である場合(発現解析用プローブ112が動物の遺伝子である場合)には、ハイブリダイズ検証用プローブ111,114として植物の葉緑素遺伝子が用いられ、ターゲット111A,114Aとしては、その相補配列が用いられる。すなわち、このハイブリダイズ検証用プローブ111,114と、ターゲット111A,114Aは、発現解析用プローブ112とそのターゲット112Aのハイブリダイズとは無関係に、確実にハイブリダイズを起こすものが用いられる。しかも、その実験対象とは全く異なる種のものが用いられるため、ハイブリダイズ検証用プローブ111,114が充分ハイブリダイズしている場合には、この実験において(測定において)ハイブリダイズが確実に起きていることを検証することができる。逆に、ハイブリダイズ検証用プローブ111,114が充分ハイブリダイズしていない場合には、この測定は何らかの原因によりハイブリダイズが発生し難い環境になっている可能性がある。そこで、ハイブリダイズ検証用プローブ111,114の蛍光値を測定することで、その蛍光値が、例えば予め設定されている基準値以上であれば、正しいハイブリダイズ処理が行われていることを検証することができる。
【0094】
ステップS36において、ハイブリダイズ量計算部84は、ハイブリダイズ量を求める処理を実行する。すなわち、ハイブリダイズ量計算部84は、図9を用いて説明した各スポットの蛍光強度pfとハイブリダイズ量の関係を規定する式hybridize(pf)に対応する曲線群から、画像データが得られたときにDNAチップ11に照射された励起光強度に対応する曲線を選択し、得られた画像データのうち、ハイブリダイズ量を求めたいスポットの単位面積あたりの蛍光強度から、ハイブリダイズ量を求める。
【0095】
ステップS37において、発現量計算部25は、ステップS36の処理で、ハイブリダイズ量計算部84により計算されたハイブリダイズ値に基づいて、発現量を計算する処理を実行する。この処理に基づいて、計算された(取得された)蛍光値に対応する発現量が計算される。
【0096】
図10は、励起光強度推定部81の機能的構成例を表している。同図に示されるように、励起光強度推定部81は、データ取得部101、蛍光強度積算値算出部102、蛍光強度−ハイブリダイズ量変換式取得部103、励起光強度候補値検出処理部104、および、平均値算出部105により構成されている。
【0097】
データ取得部101は、蛍光強度取得部22から供給された蛍光強度データ、または、発現プロファイルデータ記憶部28から供給された発現プロファイルデータを取得し、これらのデータに、励起光強度情報が含まれているか否かを判断する(上述した図6のステップS32の処理)。取得されたデータに蛍光強度情報が含まれている場合、データ取得部101は、取得されたデータを画像処理部82に供給する。しかしながら、取得されたデータに蛍光強度情報が含まれていない場合、データ取得部101は、同一のハイブリダイズ状態のDNAチップ11に対して複数の強度の励起光を照射した場合に得られる発現プロファイル画像データを含む蛍光強度データまたは発現プロファイルデータを取得し、蛍光強度積算値算出部102に供給する。
【0098】
ここで、同一のハイブリダイズ状態のDNAチップ11に対して複数の強度の励起光を照射した場合とは、例えば、同一のスポット構成を有する複数のDNAチップを用意し、それら複数のDNAチップに対して同一のサンプルが滴下されて同一の状況でハイブリダイズが行われ、これらにそれぞれ異なる複数の強度の励起光を照射した場合であっても良いし、ハイブリダイズ済みの1枚のDNAチップ11に対して異なる複数の強度の励起光を照射した場合であっても良く、いずれの場合においても、得られる複数の発現プロファイル画像データは、同一のハイブリダイズ状態でありながら、異なる蛍光強度を示すものとなる。
【0099】
蛍光強度積算値算出部102は、少なくとも2種類の、それぞれ励起光強度が異なる場合に得られた発現プロファイル画像データを含む蛍光強度データまたは発現プロファイルデータの供給を受け、それぞれの発現プロファイル画像データの蛍光強度の積算値を算出し、算出結果を蛍光強度−ハイブリダイズ量変換式取得部103に供給する。
【0100】
なお、励起光強度推定部81は、複数の強度の励起光を照射した場合に得られる発現プロファイル画像データを含む蛍光強度データまたは発現プロファイルデータを取得して処理するが、少なくとも2種類の、それぞれ励起光強度が異なる場合に得られた発現プロファイル画像データがあれば、励起光強度の推定は可能であるので、以下、2種類の励起光強度において得られた発現プロファイル画像データを基に励起光強度を推定する場合について説明する。
【0101】
すなわち、蛍光強度積算値算出部102は、例えば、図11に示されるように、弱い励起光強度において得られた発現プロファイル画像データ131と、発現プロファイル画像データ131における場合よりも強い励起光強度において得られた発現プロファイル画像データ132の供給を受ける。発現プロファイル画像データ131の取得に用いられたDNAチップ11を仮にDNAチップ11−1とし、発現プロファイル画像データ132の取得に用いられたDNAチップ11を仮にDNAチップ11−2とした場合、DNAチップ11−1とDNAチップ11−2とは、同一のDNAチップであるか、または、スポット12の配置が同一である異なるDNAチップに同一のサンプルが滴下されているものである。
【0102】
したがって、DNAチップ11−1とDNAチップ11−2とのそれぞれのスポットにおけるハイブリダイズ量は、基本的に同一であるから、得られた発現プロファイル画像データ131および発現プロファイル画像データ132における蛍光強度の差は、励起光強度によって発生するといえる。具体的には、図11における発現プロファイル画像データ131のスポットj151−1におけるハイブリダイズ量hybridizew(pj)と、発現プロファイル画像データ132のスポットj151−2におけるハイブリダイズ量hybridizes(pj)は同一であるが、励起光強度が弱い状態において得られた発現プロファイル画像データ131のスポットj151−1の蛍光強度pfw(pj)は、励起光強度が強い状態において得られた発現プロファイル画像データ132のスポットj151−2の蛍光強度pfs(pj)よりも弱い。また、同様にして、図11における発現プロファイル画像データ131のスポットi152−1におけるハイブリダイズ量hybridizew(pi)と発現プロファイル画像データ132のスポットi152−2におけるハイブリダイズ量hybridizes(pi)は同一であるが、励起光強度が弱い状態において得られた発現プロファイル画像データ131のスポットi152−1の蛍光強度pfw(pi)は、励起光強度が強い状態において得られた発現プロファイル画像データ132のスポットi152−2の蛍光強度pfs(pi)よりも弱い。
【0103】
すなわち、蛍光強度積算値算出部102により求められた蛍光強度の積算値が小さい場合、励起光強度は弱かったものと推定可能であり、蛍光強度の積算値が大きい場合、励起光強度は強かったものと推定可能である。
【0104】
蛍光強度−ハイブリダイズ量変換式取得部103は、蛍光強度−ハイブリダイズ量変換式記憶部30に記憶されている蛍光強度−ハイブリダイズ量変換式hybridize(pf)を全て取得し、励起光強度候補値検出処理部104に供給する。
【0105】
励起光強度候補値検出処理部104は、蛍光強度−ハイブリダイズ量変換式取得部103から供給された蛍光強度−ハイブリダイズ量変換式hybridize(pf)を基に、発現プロファイル画像データ131を得るために照射された励起光強度値Wと、発現プロファイル画像データ132を得るために得られた励起光強度値Sの候補となる値をそれぞれ検出し、検出結果を平均値算出部105に供給する。
【0106】
図9を用いて説明したように、同一の励起光強度において得られた蛍光強度とハイブリダイズ量との関係は、同一の蛍光強度−ハイブリダイズ量変換式hybridize(pf)によって表される、すなわち、図9において同一の曲線で示されるものである。そして、図11を用いて説明したように、発現プロファイル画像データ131と発現プロファイル画像データ132とでは、同一のスポットにおけるハイブリダイズ量は同一である。
【0107】
すなわち、図12に示されるように、発現プロファイル画像データ131のスポットj151−1の蛍光強度pfw(pj)におけるハイブリダイズ量は、発現プロファイル画像データ132のスポットj151−2の蛍光強度pfs(pj)におけるハイブリダイズ量と等しく(図中βで示される値)、発現プロファイル画像データ131のスポットi152−1の蛍光強度pfw(pi)におけるハイブリダイズ量は、発現プロファイル画像データ132のスポットi152−2の蛍光強度pfs(pi)におけるハイブリダイズ量と等しい(図中αで示される値)。そして、発現プロファイル画像データ131のスポットj151−1の蛍光強度pfw(pj)におけるハイブリダイズ量を求めるための変換式hybridizew(pf)を用いて、発現プロファイル画像データ131のスポットi152−1の蛍光強度pfw(pi)におけるハイブリダイズ量を求めることが可能(同一の曲線状にプロットされる値)であり、発現プロファイル画像データ132のスポットj151−2の蛍光強度pfs(pj)におけるハイブリダイズ量を求めるための変換式hybridizes(pf)を用いて、発現プロファイル画像データ132のスポットi152−2の蛍光強度pfs(pi)におけるハイブリダイズ量を求めることが可能(同一の曲線状にプロットされる値)である。
【0108】
したがって、励起光強度候補値検出処理部104は、図11に示される、弱い励起光強度において得られた発現プロファイル画像データ131と、発現プロファイル画像データ131における場合よりも強い励起光強度において得られた発現プロファイル画像データ132のそれぞれにおいて、上述した関係を満たす励起光強度の候補値を、全てのスポットの組合せにおいて求め、得られた2つの励起光強度の候補値を、平均値算出部105に供給する。
【0109】
平均値算出部105は、励起光強度候補値検出処理部104から供給される2つの励起光強度の候補値の平均値をそれぞれ求め、算出された値を、それぞれの励起光強度の推定値とし、発現プロファイルデータにおいて空欄であった励起光強度情報に、励起光強度の推定値を記載して、画像処理部82に供給する。
【0110】
次に、図13のフローチャートを参照して、図10の励起光強度推定部81が、図6のステップS33において実行する励起光強度推定処理について説明する。
【0111】
ステップS61において、データ取得部101は、同一のサンプルが滴下された同一の配列のスポット12を有するDNAチップ11から取得され、かつ、蛍光強度積算値が異なる2つの発現プロファイル画像データを取得し、蛍光強度積算値算出部102に供給する。
【0112】
なお、ここでは、同一のサンプルが滴下された同一の配列のスポット12を有するDNAチップ11から取得され、かつ、蛍光強度積算値が異なる2つの発現プロファイル画像データが取得されるものとして説明するが、上述したように、同一のDNAチップ11に異なる強度の励起光を照射することによって得られる、蛍光強度積算値が異なる2つの発現プロファイル画像データが取得されるものとしてもよい。
【0113】
ステップS62において、蛍光強度積算値算出部102は、ステップS61において得られた2つの発現プロファイル画像データのそれぞれの蛍光強度積算値を算出し、蛍光強度積算値が小さな発現プロファイル画像データを画像データWとし、蛍光強度積算値が大きな発現プロファイル画像データを画像データSとする。
【0114】
ステップS63において、蛍光強度−ハイブリダイズ量変換式取得部103は、蛍光強度−ハイブリダイズ量変換式記憶部30から、蛍光強度とハイブリダイズ量の関係を規定する式hybridize(pf)を読み込む。
【0115】
ステップS64において、励起光強度候補値検出部104は、図14のフローチャートを用いて後述する励起光強度候補値検出処理を実行する。
【0116】
ステップS65において、平均値算出部105は、得られた励起光強度の候補値の平均を求め、励起光強度の推定値とし、処理は、図6のステップS33に戻り、ステップS34に進む。
【0117】
このような処理により、蛍光画像に対応する励起光強度が不明である場合にも、励起光強度を推定することができる。
【0118】
次に、図14のフローチャートを参照して、図13のステップS64において実行される、励起光強度候補値検出処理について説明する。
【0119】
ステップS91において、励起光強度候補値検出部104は、第1のスポットとして注目するスポット番号を示す変数i(1≦i≦スポット数)を、i=1とする。
【0120】
ステップS92において、励起光強度候補値検出部104は、第2のスポットとして注目するスポット番号を示す変数j(1≦j≦スポット数)を、j=1とする。
【0121】
ステップS93において、励起光強度候補値検出部104は、i=jであるか否かを判断する。ステップS93において、i=jである、すなわち、第1のスポットと第2のスポットが等しいと判断された場合、処理は、後述するステップS96に進む。
【0122】
ステップS93において、i=jではない、すなわち、第1のスポットと第2のスポットが異なるスポットであると判断された場合、ステップS94において、励起光強度候補値検出部104は、供給された蛍光画像から、画像データWのi番目のスポットにおける蛍光強度(pfw(pi))、画像データSのi番目のスポットにおける蛍光強度(pfs(pi))、画像データWのj番目のスポットにおける蛍光強度(pfw(pj))、および、画像データSのj番目のスポットにおける蛍光強度(pfs(pj))を取得する。
【0123】
ステップS95において、励起光強度候補値検出部104は、蛍光強度−ハイブリダイズ量変換式取得部103により取得されている変換式のうち、画像データWに対応する変換式をhybridizew(pfw)とし、画像データSに対応する変換式をhybridizes(pfs)として、hybridizew(pfw(pi))=hybridizes(pfs(pi))、および、hybridizew(pfw(pj))=hybridizes(pfs(pj))が成り立つ2つの変換式を抽出し、抽出された変換式から励起光強度の候補値を抽出し、それぞれ保存する。
【0124】
すなわち、図9を用いて説明したように、同一の励起光強度において得られた蛍光強度とハイブリダイズ量との関係は、同一の蛍光強度−ハイブリダイズ量変換式hybridize(pf)によって表される、すなわち、図9において同一の曲線で示されるものである。そして、図11を用いて説明したように、同一のハイブリダイズ状態である発現プロファイル画像データ131と発現プロファイル画像データ132とでは、励起光強度が異なるために蛍光強度が異なっているが、同一のスポットにおけるハイブリダイズ量は同一である。
【0125】
すなわち、図12に示されるように、発現プロファイル画像データ131のスポットj151−1の蛍光強度pfw(pj)におけるハイブリダイズ量は、発現プロファイル画像データ132のスポットj151−2の蛍光強度pfs(pj)におけるハイブリダイズ量と等しく(図中βで示される値)、発現プロファイル画像データ131のスポットi152−1の蛍光強度pfw(pi)におけるハイブリダイズ量は、発現プロファイル画像データ132のスポットi152−2の蛍光強度pfs(pi)におけるハイブリダイズ量と等しい(図中αで示される値)。そして、発現プロファイル画像データ131のそれぞれのスポットでは、同一の変換式hybridizew(pf)を用いて、蛍光強度に対応するハイブリダイズ量を求めることが可能であり、発現プロファイル画像データ132のそれぞれのスポットでは、同一の変換式hybridizes(pf)を用いて、蛍光強度に対応するハイブリダイズ量を求めることが可能である。
【0126】
したがって、励起光強度候補値検出部104は、蛍光強度−ハイブリダイズ量変換式取得部103により取得されている変換式から、この条件に最も合致している変換式を選び、対応する励起光強度を励起光強度の候補値として得ることができる。
【0127】
ステップS93において、i=jであると判断された場合、または、ステップS95の処理の終了後、ステップS96において、励起光強度候補値検出部104は、第2のスポットとして注目するスポット番号を示す変数jをj←j+1とする。
【0128】
ステップS97において、励起光強度候補値検出部104は、第2のスポットとして注目するスポット番号を示す変数jについて、j>スポット数であるか否かを判断する。ステップS97においてj>スポット数ではないと判断された場合、処理は、ステップS93に戻り、それ以降の処理が繰り返される。
【0129】
ステップS97においてj>スポット数であると判断された場合、ステップS98において、励起光強度候補値検出部104は、第1のスポットとして注目するスポット番号を示す変数iを、i←i+1とする。
【0130】
ステップS99において、励起光強度候補値検出部104は、第1のスポットとして注目するスポット番号を示す変数iについて、i>スポット数であるか否かを判断する。ステップS99において、i>スポット数ではないと判断された場合、処理は、ステップS92に戻り、それ以降の処理が繰り返される。ステップS99において、i>スポット数であると判断された場合、処理は、図13のステップS64に戻り、ステップS65に進む。
【0131】
このような処理により、全てのスポットの組合せにおいて、励起光強度の候補値を求めることが可能となる。
【0132】
そして、図15に示されるように、ハイブリダイズ量計算部84において、得られた励起光強度の推定値(図13のステップS65の処理により算出される励起光強度の候補値の平均値)を基に、蛍光強度−ハイブリダイズ量変換式hybridize(pf)が選択され、選択された変換式と、スポットごとの蛍光強度を基に、スポットiおよびスポットjにおけるハイブリダイズ量が求められ、同様にして、全てのスポットにおける蛍光強度から、対応するハイブリダイズ量が求められる。
【0133】
このようにして、蛍光画像に対応する励起光強度が不明である場合にも、励起光強度を推定し、ハイブリダイズ量を求めることが可能となる。
【0134】
以上、DNAチップのハイブリダイゼーションを測定する場合の実施形態を説明したが、本発明はDNAチップに限らず、各種の生体物質が、他の所定の生体物質と生体結合したかどうかを測定する場合に適用することが可能である。
【0135】
上述した一連の処理は、ハードウエアにより実行させることもできるし、ソフトウエアにより実行させることもできる。この場合、例えば、生体情報処理装置1は、図16に示されるようなパーソナルコンピュータ901により構成される。
【0136】
図16において、CPU(Central Processing Unit)921は、ROM(Read Only Memory)922に記憶されているプログラム、または記憶部928からRAM(Random Access Memory)923にロードされたプログラムに従って各種の処理を実行する。RAM923にはまた、CPU921が各種の処理を実行する上において必要なデータなども適宜記憶される。
【0137】
CPU921、ROM922、およびRAM923は、バス924を介して相互に接続されている。このバス924にはまた、入出力インタフェース925も接続されている。
【0138】
入出力インタフェース925には、キーボード、マウスなどよりなる入力部926、CRT(Cathode Ray Tube)、LCD(Liquid Crystal display)などよりなるディスプレイ、並びにスピーカなどよりなる出力部927、ハードディスクなどより構成される記憶部928、モデムなどより構成される通信部929が接続されている。通信部929は、インターネットを含むネットワークを介しての通信処理を行う。
【0139】
入出力インタフェース925にはまた、必要に応じてドライブ930が接続され、磁気ディスク、光ディスク、光磁気ディスク、あるいは半導体メモリなどのリムーバブルメディア931が適宜装着され、それらから読み出されたコンピュータプログラムが、必要に応じて記憶部928にインストールされる。
【0140】
一連の処理をソフトウエアにより実行させる場合には、そのソフトウエアを構成するプログラムが、専用のハードウエアに組み込まれているコンピュータ、または、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどに、ネットワークや記録媒体からインストールされる。
【0141】
この記録媒体は、図16に示されるように、装置本体とは別に、ユーザにプログラムを提供するために配布される、プログラムが記録されている磁気ディスク(フロッピディスクを含む)、光ディスク(CD-ROM(Compact Disk-Read Only Memory),DVD(Digital Versatile Disk)を含む)、光磁気ディスク(MD(Mini-Disk)を含む)、もしくは半導体メモリなどよりなるリムーバブルメディア931により構成されるだけでなく、装置本体に予め組み込まれた状態でユーザに提供される、プログラムが記録されているROM922や、記憶部928に含まれるハードディスクなどで構成される。
【0142】
なお、本明細書において、記録媒体に記録されるプログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
【0143】
また、本明細書において、システムとは、複数の装置(または特定の機能を実現する機能モジュール)が論理的に集合したものを意味し、各装置や機能モジュールが単一の筐体内にあるか否かは問わない。
【図面の簡単な説明】
【0144】
【図1】本発明の実施形態としての生体情報処理装置の構成例を表すブロック図である。
【図2】DNAチップの構成例を表す斜視図である。
【図3】実験過程処理装置の構成例を表すブロック図である。
【図4】実験過程1の処理を説明するフローチャートである。
【図5】実験過程2の処理を説明するフローチャートである。
【図6】発現量推定処理を説明するフローチャートである。
【図7】入力データのフォーマットの例を示す図である。
【図8】入力データのフォーマットの例を示す図である。
【図9】蛍光強度とハイブリダイズ量の関係を表す図である。
【図10】図1の励起光強度推定部の構成を示すブロック図である。
【図11】異なる励起光が照射されることによって得られる発現プロファイル画像について説明するための図である。
【図12】蛍光強度−ハイブリダイズ量変換式と、異なる励起光が照射されることによって得られる発現プロファイル画像におけるそれぞれのスポットの蛍光強度との関係について説明するための図である。
【図13】励起光強度推定処理について説明するためのフローチャートである。
【図14】励起光強度候補値検出処理について説明するためのフローチャートである。
【図15】推定された励起光強度を基に、ハイブリダイズ量を求めることについて説明するための図である。
【図16】パーソナルコンピュータの構成例を表すブロック図である。
【符号の説明】
【0145】
1 生体情報処理装置, 11 DNAチップ, 21 ピックアップ部, 22 蛍光強度取得部, 23 励起光強度計算部, 24 ハイブリダイズ量推定部, 25 発現量計算部, 28 発現プロファイルデータ記憶部, 29 ユーザインターフェース部, 30 蛍光強度−ハイブリダイズ量変換式記憶部, 81 励起光強度推定部, 82 画像処理部, 83 検証部, 84 ハイブリダイズ量計算部, データ取得部101, 102 蛍光強度積算値算出部, 103 光強度−ハイブリダイズ量変換式取得部, 104 励起光強度候補値検出処理部, 105 平均値算出部

【特許請求の範囲】
【請求項1】
基板上に設けられた反応領域に固定された第1の生体物質と、前記第1の生体物質に対して生体反応する第2の生体物質との生体反応の状態を測定する生体情報処理装置において、
同一の生体反応の状態にある前記反応領域に対して、異なる強度の励起光を照射したときの反射光を撮像することによって得られる前記反応領域の画像情報を取得する第1の取得手段と、
前記第1の取得手段により取得された前記画像情報に基づいて、前記励起光の強度の推定値を算出する励起光強度推定手段と
を備えることを特徴とする生体情報処理装置。
【請求項2】
前記第1の生体物質と前記第2の生体物質とが生体反応して得られる蛍光強度と、前記第1の生体物質と前記第2の生体物質との生体反応の状態との関係を示す関数を取得する第2の取得手段を更に備え、
前記励起光強度推定手段は、前記第2の取得手段により取得された前記関数に基づいて、前記励起光の強度の推定値を算出する
ことを特徴とする請求項1に記載の生体情報処理装置。
【請求項3】
前記励起光強度推定手段は、
前記第1の取得手段により取得された複数の前記画像情報において、前記基板に照射された励起光強度の大小関係を推定する励起光強度関係推定手段と、
前記第2の取得手段により取得された前記関数に基づいて、前記励起光強度関係推定手段により前記基板に照射された前記励起光の強度の大小関係が推定された複数の前記画像情報における前記励起光の強度の推定値を算出する推定値算出手段と
を備えることを特徴とする請求項2に記載の生体情報処理装置。
【請求項4】
前記励起光強度関係推定手段は、前記第1の取得手段により取得された複数の前記画像情報における前記蛍光強度の積算値を算出することにより、前記基板に照射された励起光強度の大小関係を推定する
ことを特徴とする請求項3に記載の生体情報処理装置。
【請求項5】
前記基板上に複数の前記反応領域が設けられており、
前記推定値算出手段は、
複数の前記画像情報における前記反応領域の前記蛍光強度と前記関数とを基に、複数の前記反応領域の組合せによって、前記励起光の強度の候補値を複数検出する候補値検出手段と、
前記候補値検出手段により検出された複数の前記候補値の平均値を算出する平均値算出手段と
を備えることを特徴とする請求項3に記載の生体情報処理装置。
【請求項6】
前記第1の生体物質と前記第2の生体物質は、相互に相補的な塩基配列を有する遺伝子またはそれから派生する物質である
ことを特徴とする請求項1に記載の生体情報処理装置。
【請求項7】
基板上に設けられた反応領域に固定された第1の生体物質と、前記第1の生体物質に対して生体反応する第2の生体物質との生体反応の状態を測定する生体情報処理装置の生体情報処理方法において、
同一の生体反応の状態にある前記反応領域に対して、異なる強度の励起光を照射したときの反射光を撮像することによって得られる前記反応領域の画像情報を取得する取得ステップと、
前記取得ステップの処理により取得された前記画像情報に基づいて、前記励起光の強度の推定値を算出する励起光強度推定ステップと
を含むことを特徴とする生体情報処理方法。
【請求項8】
基板上に設けられた反応領域に固定された第1の生体物質と、前記第1の生体物質に対して生体反応する第2の生体物質との生体反応の状態を測定する処理をコンピュータに実行させるためのプログラムであって、
同一の生体反応の状態にある前記反応領域に対して、異なる強度の励起光を照射したときの反射光を撮像することによって得られる前記反応領域の画像情報の取得を制御する取得制御ステップと、
前記取得制御ステップの処理により取得が制御された前記画像情報に基づいて、前記励起光の強度の推定値を算出する励起光強度推定ステップと
を含むことを特徴とする処理をコンピュータに実行させるプログラム。
【請求項9】
請求項8に記載のプログラムが記録されている記録媒体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2006−300796(P2006−300796A)
【公開日】平成18年11月2日(2006.11.2)
【国際特許分類】
【出願番号】特願2005−124563(P2005−124563)
【出願日】平成17年4月22日(2005.4.22)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】