説明

画像化ジオメトリ

複数の処置角度の範囲から、画像化システム又は放射線処置を妨害することなく放射線処置を実施することができるよう、患者を放射線処置システム内の複数の位置で立体的に画像化するためのシステム及び方法である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般に画像案内放射線処置システムに関し、詳細には放射線処置を導くための画像化システムのジオメトリに関する。
【背景技術】
【0002】
放射線治療や放射線処置法は、外部放射線ビームを使用して、周囲の組織と解剖学的に危険な構造(たとえば脊髄)の被曝を最小にしながら、処方線量の放射線(たとえばX線又はガンマ線)を病理組織に投射し、病理組織(たとえば腫瘍、病変、血管奇形、神経障害など)を処置するための放射線処置システムである。放射線治療や放射線手術は、いずれも、病理組織が壊死し、健康な組織と危険な構造が残るように設計されている。放射線治療は、処置毎の放射線量が少なく、かつ、多数回にわたる処置(たとえば30日ないし45日の処置)を特徴としている。放射線治療は、1回の処置又は多くても数回の処置における放射線量が比較的多いことを特徴としている。放射線治療、放射線手術のいずれの治療でも、複数の角度から病理組織に放射線量が投射される。個々の放射線ビームの角度が異なるため、病理組織が占めているターゲット領域を個々のビームが通過するが、個々のビームがターゲット領域に至るまでの間に通過する健康な組織の領域、及び個々のビームがターゲット領域を通過した後に通過する健康な組織の領域は、ビーム毎にそれぞれ異なっている。したがってターゲット領域の放射線量は、個々の放射線量が累積して多くなり、健康な組織と危険な構造に対する平均放射線量は少ない。
【0003】
フレーム・ベース放射線治療や放射線手術の処置システムには、診断と処置計画立案のための前処置画像化(たとえばCTスキャンあるいはMRI又はPETなどの他の三次元画像化モダリティを使用した画像化)の間、また、前処置画像化に続く放射線処置の間、患者を固定するための堅いな侵襲性定位固定フレームが使用されている。これらのシステムは、堅いフレームを、ターゲット領域に固定した空間関係を有する骨性構造に取り付けなければならないため、頭蓋内の処置に限定されており、頭骨と脳がその基準を満足する唯一の解剖学的形状である。
【0004】
あるタイプのフレーム・ベース放射線治療システムでは、分散させた放射線源(たとえばコバルト60ガンマ線源)を使用して、ビーム形成アセンブリ内の孔を介して同時放射線ビームの概ね半球状の分布を生成させる。これらの放射線ビームの軸は、一定の角度をなして一点(処置アイソセンタ)で交差し、これらのビームが相俟って、強度の大きい放射線の概ね球面状の軌跡を形成している。分散放射線源には厳重な遮蔽が必要であり、そのため、装置が重く、また、装置を動かすことができない。したがって、システムは単一の処置アイソセンタに限定されている。
【0005】
強度変調放射線治療(IMRT:intensity modulated radiation therapy)として知られている他のタイプのフレーム・ベースの放射線治療システムでは、放射線処置源は、固定回転平面内で患者の周りを回転するガントリ構造の中に取り付けられたx線ビーム・デバイス(たとえば線形加速器)である。IMRTは、マルチ・リーフ・コリメータ(ビームの一部を遮断する)又は補償器ブロック(ビームの一部を減衰させる)を使用して、患者の周りを移動する際に放射線ビームの断面強度を適合させる能力に関連している。個々のビームの軸は、ターゲット領域に線量分布を引き渡すべく、回転の中心(処置アイソセンタ)で交差している。ガントリーの回転の中心は移動しないため、このタイプのシステムも同じく単一の処置アイソセンタに限定されている。
【0006】
画像案内による放射線治療システムや放射線手術システム(共に画像案内放射線処置(IGRT(image-guided radiation treatment)システムである)は、前処置画像化段階と処置実施段階(処置中の段階)との間における患者の位置の変化を追跡することによって侵襲性フレーム固定の必要性を除去している。この修正は、処置実施段階の間、実時間で立体X線画像を取得し、かつ、取得した画像を、前処置CATスキャンから得られる、ディジタル再構成X線写真(DRR:digitally reconstructed radiogram)として知られている基準画像を使用して位置合せすることによって達成されている。DRRは、CATスキャン・スライスからのデータを組合せ、かつ、実時間画像化システムのジオメトリを近似するスライスを介して二次元(2−D)投影を計算することによって生成される合成X線である。
【0007】
ガントリー・ベースIGRTシステムは、LINACの回転平面(LINACからたとえば90度オフセットしている)に配置され、LINACと共に回転する処置システムに画像化x線源と検出器を追加したものである。画像化x線ビームは、処置ビームとして同じアイソセンタを通過するため、画像化アイソセンタと処置アイソセンタは一致しており、また、画像化アイソセンタと処置アイソセンタは、いずれも空間に固定されている。
【0008】
図1は、California州在所のAccuray社が製造しているCyberKnife Radiosurgery Systemなどの画像案内ロボット・ベース放射線処置システム100の構成を示したものである。このシステムでは、処置x線ビームの軌道は、画像化x線ビームの位置に無関係である。図1では、放射線処置源はLINAC101である。LINAC101は、患者の周囲の手術部位における多くの平面内で様々な角度から送られたビームが、病理組織(ターゲット領域又はターゲット部位)を照射するようにLINAC101を配置するために、複数の自由度(たとえば5自由度以上)を有するロボット・アーム102の端部に取り付けられている。処置には、場合によっては単一のアイソセンタ又は複数のアイソセンタを有するビーム経路が必要であり、あるいは非アイソセンタのアプローチを有するビーム経路(つまりビームが病理ターゲット部位を通過しさえすればよく、必ずしもターゲット内の単一点すなわちアイソセンタに収束する必要のない経路)が必要である。
【0009】
図1では、画像化システムは、X線源103A、103B及びX線検出器(イメージャ)104A、104Bを備えている。通常、2つのx線源103A、103Bは、手術室の天井の固定位置に取り付けられており、機械アイソセンタ105(処置の間、患者が位置することになる処置台106上の点)で交差し、かつ、患者を通過した後、対応する検出器104A、104Bの画像化表面(たとえば非晶質シリコン検出器)を照射するよう、2つの異なる角位置(たとえば90度分離された位置)から画像化x線ビームを投射するべく整列している。図2は、放射線処置システム100のジオメトリを示したものである。通常、x線検出器104A、104Bは、手術室の床109の上に、互いに90度の角度で、かつ、対応する画像化x線ビームの軸107A、107Bに対して直角に取り付けられている。この直交立体画像化ジオメトリは極めて精度が高く、位置決め誤差をミリメートル未満のレベルまで小さくすることができる。しかしながら、天井の高さが9フィート又は10フィート以下の通常の手術室に設置されると、この画像化ジオメトリにはいくつかの固有の限界がある。
【0010】
図2に示すように、LINAC101は、操縦性が優れており、かつ、比較的コンパクトであるが、患者の上方から処置を施すためには、患者108と手術室の天井110の間に最小限の分離が依然として必要である。また、LINACは、場合によっては複数の画像化x線ビームのうちの1つを遮断し、あるいは場合によっては複数のx線検出器のうちの1つが放射線処置ビームを遮断することがあるため、LINACが占有することができない特定の位置が存在している。さらに、患者の上方からのアクセスを可能にするためには、天井から少なくとも最小限の距離に患者を配置しなければならないため、患者の下方からの処置がより有利な場合であっても(たとえば患者が顔を上にして横たわっている間の脊髄領域の処置)、患者の下方から処置を施すための患者の下方の空間が場合によっては不十分である。したがって、画像化システムの画像化中心の位置は、場合によっては、処置のためのアクセスと画像化のためのアクセスとの間の妥協として選択しなければならない。
【0011】
添付の図面は、本発明の非制限的な例を示したものである。
【発明を実施するための最良の形態】
【0012】
放射線処置システムにおける画像化ジオメトリのための装置及び方法について説明する。以下の説明には、本発明の実施形態を完全に理解するために、特定のコンポーネント、デバイス、方法等の例などの多くの特定の詳細が示されている。しかしながら、本発明の実施形態を実践するためにこれらの特定の詳細を使用する必要がないことは当業者には明らかであろう。他の例では、本発明の実施形態が不必要に曖昧になることがないよう、良く知られている材料又は方法については、その詳細な説明は省略されている。本明細書に使用されている「結合された」という用語は、場合によっては、直接結合された状態、あるいは介在する1つ又は複数のコンポーネント又はシステムを介して間接的に結合された状態を意味している。本明細書に使用されている「X線画像」という用語は、場合によっては、視覚X線画像(たとえばビデオ・スクリーンに表示された画像)又はX線画像のディジタル表現(たとえばX線検出器のピクセル出力に対応するファイル)を意味している。本明細書に使用されている「処置中の画像」又は「実時間画像」という用語は、場合によっては、放射線治療手順又は放射線手術手順の処置実施段階の間の任意の時間ポイントで捕獲される画像を意味しており、これには、場合によっては、放射線源がオン又はオフされた時間が含まれている。本明細書に使用されているIGRという用語は、場合によっては、画像案内放射線治療、画像案内放射線手術又はその両方を意味している。
【0013】
図3Aは、California州在所のAccuray社が製造しているCyberKnife Radiosurgery Systemなどのロボット・ベースIGRTシステムと結合した画像化ジオメトリの一実施形態における画像化システム300を示したものである。画像化システム300は、第1のx線ビーム302Aと第2のx線ビーム302Bを生成するための第1の対のx線源301A、301Bを備えており、第1のx線ビームの軸303Aと第2のx線ビームの軸303Bは、第1の画像化平面を決めている。また、画像化システム300は、第3のx線ビーム302Cと第4のx線ビーム302Dを生成するための第2の対のx線源301C、301Dを備え、第3のx線ビームの軸303Cと第2のx線ビームの軸303Dは、第2の画像化平面を決めている。第1のx線ビーム302Aと第2のx線ビーム302Bは、第1の画像化中心304で第1の角度β1で交差するように配置されている。第3のx線ビーム302Cと第4のx線ビーム302Dは、第2の画像化中心305で第2の角度β2で交差するように配置されている。また、画像化システム300は、第1のx線ビーム302Aと第2のx線ビーム302Bを検出するための第1の対のx線検出器306A、306Bを第1の画像化平面に備え、かつ第3のx線ビーム302Cと第4のx線ビーム302Dを検出するための第2の対のx線検出器306C、306Dを第2の画像化平面に備えている。
【0014】
したがって、図3Aに示すように、画像化システム300の画像化ジオメトリは、異なる高さに配置された2つの画像化中心304と305を設けることができる。x線源301A、301Bは、画像化中心の上方に配置し、また、x線源301C、301Dは、画像化中心の下方に配置している。角度β1及びβ2を選択することにより(たとえばx線源とx線源の間及び/又はx線検出器とx線検出器の間の分離を変更することによって)、互いに対する画像化中心の位置を決定し、x線源とx線検出器に対する画像化中心の位置を決定することができる。詳細には、角度β1、β2は、x線ビーム302Aとx線ビーム302Bの交点と、x線ビーム302Cと302Dの交点とが釣りあうよう、同じ角度(たとえば90度)になるように選択することができる。
【0015】
画像化中心304、305などの2つの画像化中心によって、複数の基準処置フレームを確立することができ、また、患者の上下からの画像案内放射線処置を可能にする。たとえば、図3Bに示すように、x線源301A、301B及びx線検出器306C、306Dは、手術室の天井307に取り付けることができる。x線源301C、301D及びx線検出器306A、306Bは、手術室の床308に取り付けることができる。患者309が第1の機械中心304の近くに配置されると(たとえば処置台306などのロボット台上で患者を移動させることによって)、ロボット制御LINAC311が患者の上方の領域312から放射線処置を実施している間、患者を画像化することができる。領域312は、1つ又は複数の角度から放射線処置を実施するべくLINAC311を配置することができる処置ノードすなわち処置位置の予め決めたセットを含む。たとえば、領域312は、100ヶ所のノードを含むことができ、また、LINAC311は、12の異なる角度で個々のノードに配置されることができ、したがって合計1200の個別の処置ビームを投射することができる。一実施形態では、たとえば頭蓋内放射線処置の場合、領域312は、患者309の頭を中心とする、半径約650ミリメートルから約800ミリメートルの概ね半球状の領域とすることができる。代替実施形態では、患者309の身体を放射線処置する場合、領域312は、半径約900mmから1000mmの概ね円筒状にすることができる。一方、それとは逆に、図3Cに示すように、患者309が第2の機械中心305の近くに配置されると、ロボット制御LINAC311が患者の下方の、領域312と同じ全体寸法を鑑写しにした領域313から放射線処置を実施している間、患者を画像化することができる。
【0016】
図3Aには、第1の画像化平面と第2の画像化平面が共面平面である画像化システム300が示されている。(たとえば手術室の限られた床空間を最も良好に利用し、あるいは遮断される処置ノードの数を少なくするためには)他の構成の第1の画像化平面と第2の画像化平面も場合によっては有利である。図4は、第1の画像化平面314が第2の画像化平面315に対して角度γだけ回転したシステム400の代替実施形態を示したものである。一実施形態では、システム400を上から見た図4Bに示すように、γは90度の角度である。図4Bは、ロボット・アーム320上のLINAC311に対して、また、像平面314、315に対して、さらには機械中心304、305に対して処置台310を複数の角度で配置することができる様子を示したものである。システム400のこの構成によって提供される位置決めの柔軟性により、上で説明した、処置ノードが遮断される問題を除去することができることは理解されよう。
【0017】
もう一度図3Aを参照すると、x線検出器306Aは、x線ビーム302Aの軸303Aに対して画像化角θ1で配置されていることが分かるであろう。同様に、x線検出器306B、306C、306Dは、x線ビーム302B、302C、302Dの軸303B、303C、303Dに対して画像化角θ2、θ3、θ4で配置されている。一実施形態では、画像化角θ1ないしθ4は、x線検出器306Aないし306Dの画像化表面の各々がそれぞれ対応するx線ビームの軸に対して直角になるよう、90度の角度にすることができる。他の実施形態では、画像化角θ1ないしθ4は、x線検出器306A、306Bを第1の画像化平面314内のベースライン316に沿って配置し、かつ、x線検出器306C、306Dを第2の画像化平面315内のトップライン317に沿って配置するべく選択される鋭角にすることができる。一実施形態では、図3B、3Cに示す天井307、床308にベースライン316とトップライン317を対応させることができる。
【0018】
図5に示す画像化ジオメトリの一実施形態では、画像化システム500は、3つのx線源と3つのx線検出器を備えている。図5では、第1のx線源501Aは、軸503Aを有するx線ビーム502Aを第1のx線検出器506Aの画像化表面508Aに投射する。第2のx線源501Bは、軸503Bを有するx線ビーム502Bを第2のx線検出器506Bの画像化表面508Bに投射する。x線ビーム502Bは、軸503Bと軸503Aが第1の画像化中心504で角度α1で交差するようにx線ビーム502Aと交差するべく配置される。第3のx線源501Cは、軸503Cを有する第3のx線ビームを第3のx線検出器506Cの画像化表面508Cに投射する。x線ビーム502Cは、軸503Cと軸503Aが第2の画像化中心505で角度α2で交差するようにx線ビーム502Aと交差するべく配置される。また、x線ビーム502Cは、軸503Cと軸503Bが第3の画像化中心507で角度α3で交差するようにx線ビーム502Bと交差するべく配置される。
【0019】
一実施形態では、軸503Aに対して画像化角φ1で画像化表面508Aを配置し、軸503Bに対して画像化角φ2で画像化表面508Bを配置し、また、軸503Cに対して画像化角φ3で画像化表面508Cを配置する。一実施形態では、角度φ1、φ2、φ3は直角であってもよい。他の実施形態では、画像化表面508A、508B、508Cがベースライン509に平行になるように角度φ1、φ2、φ3のうちの1つ又は複数を選択することができる。
【0020】
一実施形態では、第1のx線ビーム502Aが、第2のx線ビーム502Bや第3のx線ビーム502Cと交差する点を調整し、それにより第1の画像化中心504と第2の画像化中心505との位置及び/又は第1の画像化中心504と第2の画像化中心505との間の分離Δを調整するために、それぞれ水平方向に一体又は個別に移動するようにx線源501Aとx線検出器506Aを構成してもよい。
【0021】
図6は、画像化ジオメトリのさらに他の実施形態における画像化システム600を示したものである。画像化システム600は、第1のx線ビーム602Aと第2のx線ビーム602Bを投射するために、δ1だけ離した第1の対のx線源601A、601Bを備えている。第1のx線ビーム602Aと第2のx線ビーム602Bは、これらのx線源の上方h1の高さに配置された第1の画像化中心604で角度ρ1で交差している。また、画像化システム600は、第3のx線ビーム602Cと第4のx線ビーム602Dを投射するための第2の対のx線源601C、601Dをδ2だけ分離させて備えている。第3のx線ビーム602Cと第4のx線ビーム602Dは、これらのx線源の上方h2の高さに配置された第2の画像化中心605で角度ρ2で交差している。分離δ1、δ2、δ3を選択することにより、角度ρ1とρ2を調整することができ、また、画像化中心604と605の位置を調整することができる。図6に示すように、画像化中心604は、x線ビーム602A、602Bが境界を形成している画像化部位V1によって囲まれている。画像化中心605は、x線ビーム602C、602Dが境界を形成している画像化部位V2によって囲まれている。部位V1とV2も、分離δ1、δ2、δ3を選択することによって調整することができる。図には示されていないが、図6に示すジオメトリは、反転させることができることは理解されよう。つまり、x線源とx線検出器の位置を逆にすることができる。
【0022】
図7は、画像化ジオメトリの他の実施形態におけるシステム700を示したものである。システム700は、x線源701A、701Bがδ1又はδ2のいずれかで分離された場合に、x線検出器606A、606Bとの整列を維持するように構成することができる1対の可動x線源を備えている。線形変位によって角整列を維持する方法については当分野で知られており、ここではその説明は省略する。したがって、画像化システム700は、2つのx線源しか備えていない画像化システム600の機能と同じ機能を提供することができることは理解されよう。
【0023】
図8Aは、画像化ジオメトリの他の実施形態における画像化システム800を示したものである。画像化システム800は、フロアライン808の下方に取り付けられた、x線透明材料809で覆われた2対のx線源801Aと801B及び801Cと801Dを備えている。x線源をフロアラインより下方に取り付けることにより、処置のためのLINAC311などのLINACを配置するために利用することができる手術室内の空間を最大化することができることは理解されよう。x線源801A、801Bは、画像化中心804で交差し、それぞれ対応するx線検出器806A、806Bを照射するx線ビーム802A、802Bを投射する。x線源801C、801Dは、画像化中心805で交差し、それぞれ対応するx線検出器806A、806Bを照射するx線ビーム802C、802Dを投射することができる。
【0024】
図8B、8Cは、図8Aに示す画像化システムを組み込んだ放射線処置実施システム825の一例を示したものである。放射線処置実施システム825は、ロボット・アーム810に取り付けられたLINAC311を備えている。また、このシステムは、処置台310を画像化中心804、805に対して複数の位置に配置するために、複数の運動自由度(たとえば5自由度以上)を有するロボット・アーム・アセンブリ811を備えている。図8Bには、画像化中心804の近傍に配置された処置台310が示されており、また、図8Cには、画像化中心805の近傍に配置された処置台310が示されている。
【0025】
図9A、9Bは、画像化ジオメトリの他の実施形態における画像化システム900を示したものである。画像化システム900は、x線源とx線源の間の分離をσ1からσ1’まで変化させるために直線的に移動させることができる1対の可動x線源901A、901Bを備えている。また、画像化システム900は、x線検出器とx線検出器の間の分離をσ2からσ2’まで変化させるために直線的に移動させることができる1対の可動x線検出器906A、906Bを備えている。図9Aでは、x線ビーム902A、902Bは、画像中心904で交差している。LINAC911(点線で示されている)は、LINACを図に示すように配置すると、x線ビーム902Bを遮断し、画像化システム900による立体画像の取得を妨害することになるため、図9Aに示すx線源とx線検出器の位置では処置することができないことが分かるであろう。図9Bは、LINAC911によって遮断されることなく画像化中心904で交差するx線ビームを生成するためにx線源901A、901B及びx線検出器906A、906Bの位置が変更された画像化システム900を示したものである。
【0026】
図10は、画像化ジオメトリの一実施形態における方法925を示す流れ図である。図3A〜3C、4Aを参照すると、この方法には、基準処置フレーム内の第1の領域312からターゲット組織304の放射線処置を可能にするために、第1の位置h1に第1の画像化中心304を確立するステップ(ステップ1001)が含まれている。また、この方法には、基準処置フレーム内の第2の領域313からターゲット組織304の放射線処置を可能にするために、第2の位置h2に第2の画像化中心305を確立するステップ(ステップ1002)が含まれている。
【0027】
一実施形態では、第1の画像化中心を確立するステップ(ステップ1001)は、第1の軸303Aを有する第1の画像化ビーム302Aと第2の軸303Bを有する第2の画像化ビーム302Bを生成するステップであって、第1の軸及び第2の軸が第1の像平面314を決め、第2の画像化ビームが、第1の位置で第1の画像化ビームと交差するように、第1の画像化ビームに対して第1の角度β1で配置されるステップを含む。一実施形態では、第2の画像化中心を確立するステップ(ステップ1002)は、第3の軸303Cを有する第3の画像化ビーム302Cと第4の軸303Dを有する第4の画像化ビーム302Dを生成するステップであって、第3の軸及び第4の軸が第2の像平面315を決め、第4の画像化ビームが、第2の位置で第3の画像化ビームと交差するように、第3の画像化ビームに対して第2の角度β2で配置されるステップを含む。
【0028】
図11は、放射線処置を実行するために使用することができる、本発明の特徴を具体化することができるシステムの一実施形態を示したものである。以下で説明するように、また、図11に示すように、システム4000は、診断画像化システム1000、処置計画立案システム2000、処置実施システム3000を備えている。
【0029】
診断画像化システム1000には、引き続いて実施される医療診断、処置計画立案及び/又は処置の実施に使用することができる、患者の重要な部位(VOI)の医療診断画像を生成することができる任意のシステムを使用することができる。診断画像化システム1000は、たとえば、コンピュータ断層撮影(CT)システム、磁気共鳴像(MRI)システム、陽子射出断層撮影(PET)システム、単光子射出CT(SPECT)、超音波システムなどであってもよい。説明を分かり易くするために、以下、診断画像化システム1000について、適宜、CTx線画像化モダリティに関連して説明する。しかしながら、上で説明したモダリティなどの他の画像化モダリティを使用することも可能である。
【0030】
診断画像化システム1000は、画像化ビーム(たとえばx線、超音波、無線周波数波など)を生成するための画像化源1010、及び画像化源1010によって生成されるビーム又は画像化源からのビームによって誘導される二次ビーム又は放出(たとえばMRIスキャン又はPETスキャンにおける二次ビーム又は放出)を検出し、かつ、受け取るための画像化検出器1020を備えている。一実施形態では、診断画像化システム1000は、複数の診断X線源と対応する複数の画像化検出器を備えることができる。たとえば、画像化すべき患者の周囲に、互いに一定の角分離(たとえば90度、45度等)で固定された、x線源に対して直径方向に反対側に配置する1つ又は複数の画像化検出器に患者を介して照準を合わせた2つのx線源を配置する。また、個々のx線画像化源によって照射される単一の大型画像化検出器又は複数の画像化検出器を使用することも可能である。別法としては、他の数及び構成の画像化源と画像化検出器を使用することも可能である。
【0031】
画像化源1010と画像化検出器1020は、画像化動作を制御し、かつ、画像データを処理するべくディジタル処理システム1030に結合されている。診断画像化システム1000は、ディジタル処理システム1030、画像化源1010、画像化検出器1020の間でデータとコマンドを送信するためのバス又は他の手段1035を備えている。ディジタル処理システム1030は、1つ又は複数の汎用プロセッサ(たとえばマイクロプロセッサ)、ディジタル信号プロセッサ(DSP)などの専用プロセッサ、又はコントローラあるいは書替え可能ゲート・アレイ(FPGA)などの他のタイプのデバイスを備えることができる。また、ディジタル処理システム1030は、メモリ、記憶装置、ネットワーク・アダプタなどの他のコンポーネント(図示せず)を備えることも可能である。ディジタル処理システム1030は、たとえばDICOM(Digital Imaging and Communications in Medicine)フォーマットなどの標準フォーマットでディジタル診断画像を生成するように構成される。他の実施形態では、ディジタル処理システム1030は、他の標準ディジタル画像フォーマット又は非標準ディジタル画像フォーマットを生成する。ディジタル処理システム1030は、たとえばダイレクト・リンク、ローカル・エリア・ネットワーク(LAN)リンク又はインターネットなどの広域ネットワーク(WAN)リンクであってもよいデータ・リンク1500を介して、処置計画立案システム2000に診断画像ファイル(たとえば前述のDICOMフォーマット・ファイル)を送信することができる。さらに、システム間で送信される情報を、たとえば遠隔診断構成又は遠隔処置計画立案構成でシステムを接続している通信媒体の両端間でプル又はプッシュすることができる。遠隔診断又は遠隔処置計画立案の場合、システムの使用者と患者の間が物理的に分離されているにもかかわらず、使用者は、本発明による実施形態を利用して診断し、あるいは処置計画を立案することができる。
【0032】
処置計画立案システム2000は、画像データを受け取り、かつ、処理するための処理デバイス2010を備えている。処理デバイス2010は、1つ又は複数の汎用プロセッサ(たとえばマイクロプロセッサ)、ディジタル信号プロセッサ(DSP)などの専用プロセッサ、又はコントローラあるいは書替え可能ゲート・アレイ(FPGA)などの他のタイプのデバイスであってもよい。処理デバイス2010は、本明細書において説明されている処置計画立案を実行するための命令を実行するように構成することができる。
【0033】
また、処置計画立案システム2000は、バス2055によって処理デバイス2010に結合された、情報を記憶し、処理デバイス2010によって実行される命令を記憶するためのランダム・アクセス・メモリ(RAM)又は他の動的記憶装置などからなるシステム・メモリ2020を備えることができる。また、処理デバイス2010が命令を実行している間、システム・メモリ2020を使用して一時的数値変数又は他の中間情報を記憶することも可能である。また、システム・メモリ2020は、バス2055に結合された、処理デバイス2010のための静的情報や命令を記憶するためのリード・オンリ・メモリ(ROM)及び/又は他の静的記憶装置を備えることができる。
【0034】
また、処置計画立案システム2000は、バス2055に結合された、情報と命令を記憶するための1つ又は複数の記憶装置(たとえば磁気ディスク・ドライブ又は光ディスク・ドライブ)である記憶装置2030を備えることができる。記憶装置2030を使用して、本明細書において説明されている処置計画立案ステップを実行するための命令を記憶することができる。
【0035】
また、処理デバイス2010は、情報(たとえばVOIの二次元表現又は三次元表現)を使用者に表示するための陰極線管(CRT)又は液晶ディスプレイ(LCD)などの表示装置2040に結合される。情報及び/又はコマンドの選択を処理デバイス2010に伝えるためのキーボードなどの入力装置2050を処理デバイス2010に結合することができる。また、1つ又は複数の他のユーザ入力装置(たとえばマウス、トラックボール又はカーソル方向キー)を使用して、処理デバイス2010のためのコマンドを選択し、かつ、ディスプレイ2040上のカーソルの移動を制御するための方向情報を伝えることも可能である。
【0036】
処置計画立案システム2000は、多くの異なる構成及びアーキテクチャを有することができ、また、処置計画立案システム2000より多いコンポーネントあるいは処置計画立案システム2000より少ないコンポーネントを備えることができ、さらには本発明と共に使用することができる処置計画立案システムの一例を示したものにすぎないことは理解されよう。たとえば、いくつかのシステムは、しばしば、周辺バス、専用キャッシュ・バスなどの多重バスを有している。また、処置計画立案システム2000は、DICOMの取込みをサポートし(したがって異なるシステム上で画像を融合させ、ターゲットを正確に描写した後、計画を立案し、また、線量を計算するために処置計画立案システムに取り込むことができる)、また、使用者が様々な画像化モダリティ(たとえばMRI、CT、PETなど)のうちの任意のモダリティ上で処置計画を立案し、かつ、線量分布を観察することができる拡張画像融合機能をサポートするためのMIRIT(Medical Image Review and Import Tool)を備えることができる。処置計画立案システムについては当分野で知られており、したがってこれ以上の詳細な説明は省略する。
【0037】
処置計画立案システム2000は、処置実施システム3000などの処置実施システムとデータベース(たとえば記憶装置2030に記憶されているデータ)を共有することができ、したがって場合によっては処置の実施に先だって処置計画立案システムから送信する必要はない。処置計画立案システム2000は、データ・リンク1500に関連して上で説明した直接リンク、LANリンク又はWANリンクであってもよいデータ・リンク2500を介して処置実施システム3000にリンクさせることができる。データ・リンク1500と2500をLAN接続又はWAN接続として実施する場合、診断画像化システム1000、処置計画立案システム2000及び/又は処置実施システム3000のうちの任意のシステムを分散した位置に配置し、これらのシステムを物理的に互いに遠隔のシステムにすることができることに留意されたい。別法としては、診断画像化システム1000、処置計画立案システム2000及び/又は処置実施システム3000のうちの任意のシステムを、1つ又は複数のシステムに互いに統合することも可能である。
【0038】
処置実施システム3000は、処置計画と一致するターゲット部位への処方放射線線量を管理するための処置及び/又は外科的放射線源3010(たとえばLINAC311)を備えている。また、処置実施システム3000は、上で説明した診断画像に対して位置決めし、あるいは相関させるために患者の部位(ターゲット部位を含む)の処置内画像を捕獲し、それにより患者を放射線源に対して位置決めするための画像化システム3020を備えることができる。画像化システム3020は、上で説明した任意の画像化システムと画像化ジオメトリ(たとえばシステム300、400、500、600、700、800及び900)を備えることができる。また、処置実施システム3000は、放射線源3010を制御するためのディジタル処理システム3030、画像化システム3020、処置台3040などの患者支持デバイスを備えることができる。ディジタル処理システム3030は、1つ又は複数の汎用プロセッサ(たとえばマイクロプロセッサ)、ディジタル信号プロセッサ(DSP)などの専用プロセッサ、又はコントローラあるいは書替え可能ゲート・アレイ(FPGA)などの他のタイプのデバイスを備えることができる。また、ディジタル処理システム3030は、メモリ、記憶装置、ネットワーク・アダプタなどの他のコンポーネント(図示せず)を備えることができる。ディジタル処理システム3030は、バス3045又は他のタイプの制御及び通信インタフェースによって放射線源3010、画像化システム3020、処置台3040に結合される。
【0039】
ディジタル処理システム3030は、処置実施システム3000内の処置台3040上の患者を整列させ、かつ、放射線源をターゲット部位に対して正確に位置決めするために、画像化システム3020から得られる画像と手術前の処置計画画像とを位置合せするためのアルゴリズムを実施することができる。
【0040】
処置台3040は、複数の自由度(たとえば5つ以上)を有するロボット・アーム(図示せず)に結合される。台アームは、5つの回転自由度と実質的に垂直方向の1つの直線自由度を有する。別法としては、台アームは、6つの回転自由度と実質的に垂直方向の1つの直線自由度又は少なくとも4つの回転自由度を有することができる。台アームは、支柱又は壁に垂直に取り付けることも、あるいは台座、床又は天井に水平に取り付けることも可能である。別法としては、処置台3040は、California州在所のAccuray社が開発したAxum(登録商標)処置台などの他の機械機構のコンポーネント、あるいは当業者に知られている他のタイプの従来の処置台であってもよい。
【0041】
図12は、画像化ジオメトリの一実施形態における方法950を示す流れ図である。もう一度図3B、3Cを参照すると、上記方法は、ステップ951で第1の画像化ビーム302Aを生成することによって開始される。ステップ952で、第1の画像化中心304で第1の画像化ビームと交差する第2の画像化ビーム302Bが生成される。ステップ953で、ほぼ第1の画像化中心に患者309が配置される。ステップ954で、第1の画像化ビームを使用して第1の画像が生成され、かつ第2の画像化ビームを使用して第2の画像が生成される。ステップ955で、第1の画像と第2の画像が第1のセットの事前処置基準画像に位置合せされる。ステップ956で、位置合せの結果を使用して放射線処置源(たとえばLINAC311)が配置される。ステップ957で、第1の角度範囲312から患者309のターゲット組織に放射線処置が実施される。ステップ958で、第3の画像化ビーム303Cが生成される。ステップ959で、第2の画像化中心305で第3の画像化ビームと交差する第4の画像化ビーム302Dが生成される。ステップ960で、ほぼ第2の画像化中心に患者309が配置される。ステップ961で、第3の画像化ビームを使用して第3の画像が生成され、かつ第4の画像化ビームを使用して第4の画像が生成される。ステップ962で、第3の画像と第4の画像が第2のセットの事前処置基準画像に位置合せされる。ステップ963で、位置合せの結果を使用して放射線処置源(たとえばLINAC311)が配置される。ステップ964で、第2の角度範囲313から患者309のターゲット組織に放射線処置が実施される。
【0042】
本明細書において説明されている方法及び装置は、医療診断画像化及び処置のためだけの使用に限定されないことに留意されたい。代替実施形態では、本明細書における方法及び装置は、材料の産業画像化及び非破壊試験などの医療技術分野以外のアプリケーション(たとえば自動車産業におけるモータ・ブロック、航空産業における機体、建設産業における溶接及び石油産業におけるドリル・コア)及び地震調査に使用することができる。たとえばこのようなアプリケーションの場合、「処置」は、通常、1つ又は複数の放射線ビームの適用を意味している。
【0043】
以上、本発明のいくつかの特定の実施形態について示したが、本発明は、これらの実施形態に限定されない。本発明は、本明細書において説明されている特定の実施形態によってではなく、唯一、特許請求の範囲の各請求項によってのみ制限されるものとして理解されたい。
【図面の簡単な説明】
【0044】
【図1】従来の画像案内放射線処置システムを示す図である。
【図2】従来の画像案内放射線処置システムのジオメトリを示す図である。
【図3A】画像化ジオメトリの一実施形態における画像化システムを示す図である。
【図3B】図3Aに示す実施形態の一アプリケーションを示す図である。
【図3C】図3Aに示す実施形態の他のアプリケーションを示す図である。
【図4A】画像化ジオメトリの第2実施形態の画像化システムを示す図である。
【図4B】画像化ジオメトリの第2実施形態の画像化システムを示す図である。
【図5】画像化ジオメトリの第3実施形態の画像化システムを示す図である。
【図6】画像化ジオメトリの第4実施形態の画像化システムを示す図である。
【図7】画像化ジオメトリの第5実施形態の画像化システムを示す図である。
【図8A】画像化ジオメトリの第6実施形態の画像化システムを示す図である。
【図8B】図8Aに示す実施形態を組み込んだ処置実施システムを示す図である。
【図8C】図8Aに示す実施形態を組み込んだ処置実施システムを示す図である。
【図9】画像化ジオメトリの第7実施形態の画像化システムを示す図である。
【図10】画像化ジオメトリの一実施形態における方法を示す流れ図である。
【図11】画像化ジオメトリの実施形態を実践することができるシステムを示す図である。
【図12】画像化ジオメトリの一実施形態における方法を示す流れ図である。

【特許請求の範囲】
【請求項1】
放射線処置システムにおける立体画像化の方法であって、
基準処置フレーム内の第1の領域からのターゲット組織の放射線処置を可能にするために、第1の位置に第1の画像化中心を確立するステップと、
前記基準処置フレーム内の第2の領域からの前記ターゲット組織の放射線処置を可能にするために、第2の位置に第2の画像化中心を確立するステップと
を含む方法。
【請求項2】
前記第1の画像化中心を確立するステップが、第1の軸を有する第1の画像化ビームと第2の軸を有する第2の画像化ビームとを生成するステップであって、前記第1の軸と前記第2の軸が第1の画像化平面を決め、前記第2の画像化ビームが、前記第1の位置で前記第1の画像化ビームと交差するよう、前記第1の画像化ビームに対して第1の角度で配置されるステップを含む請求項1に記載の方法。
【請求項3】
前記第2の画像化中心を確立するステップが、第3の軸を有する第3の画像化ビームを前記第1の画像化平面に生成するステップであって、前記第3の画像化ビームが、前記第2の位置で前記第1の画像化ビームと交差するよう、前記第1の画像化ビームに対して第2の角度で配置されるステップを含む請求項2に記載の方法。
【請求項4】
前記第3の画像化ビームが前記第2の画像化ビームに対して第3の角度で配置され、前記第1の画像化平面内の前記第2の画像化ビームと前記第3の画像化ビームの交点からなる第3の位置に第3の画像化中心を確立するステップをさらに含む請求項3に記載の方法。
【請求項5】
前記第2の画像化中心を確立するステップが、第3の軸を有する第3の画像化ビームと第4の軸を有する第4の画像化ビームとを生成するステップであって、前記第3の軸と前記第4の軸が第2の画像化平面を決め、前記第4の画像化ビームが、前記第2の位置で前記第3の画像化ビームと交差するよう、前記第3の画像化ビームに対して第2の角度で配置されるステップを含む請求項2に記載の方法。
【請求項6】
前記第1の画像化平面と前記第2の画像化平面とが共面平面である請求項5に記載の方法。
【請求項7】
前記第1の画像化平面と前記第2の画像化平面とが非共面平面である請求項5に記載の方法。
【請求項8】
前記ターゲット組織をほぼ前記第1の画像化中心に配置するステップと、
前記第1の画像化ビームを使用して第1の画像を生成し、かつ、前記第2の画像化ビームを使用して第2の画像を生成するステップと、
第1の位置合せ結果を得るために、前記第1の画像と前記第2の画像を、第1の複数の基準画像と位置合せするステップと、
前記第1の位置合せ結果を使用して放射線処置源を配置するステップと、
前記第1の角度範囲から前記ターゲット組織に対する放射線処置を実施するステップと
をさらに含む請求項3に記載の方法。
【請求項9】
前記ターゲット組織をほぼ前記第2の画像化中心に配置するステップと、
前記第3の画像化ビームを使用して第3の画像を生成し、かつ、前記第1の画像化ビームを使用して第4の画像を生成するステップと、
第2の位置合せ結果を得るために、前記第3の画像と前記第4の画像を、第2の複数の基準画像と位置合せするステップと、
前記第2の位置合せ結果を使用して前記放射線処置源を配置するステップと、
前記第2の角度範囲から前記ターゲット組織に対する放射線処置を実施するステップと
をさらに含む請求項8に記載の方法。
【請求項10】
前記ターゲット組織をほぼ前記第3の画像化中心に配置するステップと、
前記第2の画像化ビームを使用して第1の画像を生成し、かつ、前記第3の画像化ビームを使用して第2の画像を生成するステップと、
位置合せ結果を得るために、前記第1の画像と前記第2の画像を複数の基準画像に位置合せするステップと、
前記位置合せ結果を使用して放射線処置源を配置するステップと、
前記第3の角度範囲から前記ターゲット組織に対する放射線処置を実施するステップと
をさらに含む請求項4に記載の方法。
【請求項11】
前記ターゲット組織をほぼ前記第1の画像化中心に配置するステップと、
前記第1の画像化ビームを使用して第1の画像を生成し、かつ、前記第2の画像化ビームを使用して第2の画像を生成するステップと、
第1の位置合せ結果を得るために、前記第1の画像と前記第2の画像を、第1の複数の基準画像と位置合せするステップと、
前記第1の位置合せ結果を使用して放射線処置源を配置するステップと、
前記第1の角度範囲から前記ターゲット組織に対する放射線処置を実施するステップと
をさらに含む請求項5に記載の方法。
【請求項12】
前記ターゲット組織をほぼ前記第2の画像化中心に配置するステップと、
前記第3の画像化ビームを使用して第3の画像を生成し、かつ、前記第4の画像化ビームを使用して第4の画像を生成するステップと、
第2の位置合せ結果を得るために、前記第3の画像と前記第4の画像を、第2の複数の基準画像と位置合せするステップと、
前記第2の位置合せ結果を使用して前記放射線処置源を配置するステップと、
前記第2の角度範囲から前記ターゲット組織に対する放射線処置を実施するステップと
をさらに含む請求項11に記載の方法。
【請求項13】
画像化システムであって、
第1の軸を有する第1のx線ビームと第2の軸を有する第2のx線ビームを生成するための第1の対のx線源であって、前記第1の軸と前記第2の軸が第1の画像化平面を決め、前記第1のx線ビームと前記第2のx線ビームが第1の画像化中心で第1の角度で交差するように配置された第1の対のx線源と、
第3の軸を有する第3のx線ビームと第4の軸を有する第4のx線ビームを生成するための第2の対のx線源であって、前記第3の軸と前記第4の軸が第2の画像化平面を決め、前記第3のx線ビームと前記第4のx線ビームが第2の画像化中心で第2の角度で交差するように配置された第2の対のx線源と、
前記第1の画像化平面内で、前記第1のx線ビームと前記第2のx線ビームを検出するための第1の対のx線検出器と、
前記第2の画像化平面内で、前記第3のx線ビームと前記第4のx線ビームを検出するための第2の対のx線検出器と
を備えた画像化システム。
【請求項14】
前記第1の対のx線源が前記第1の画像化中心と前記第2の画像化中心の上方に配置され、前記第2の対のx線源が前記第1の画像化中心と前記第2の画像化中心の下方に配置され、前記第2の画像化中心が前記第1の画像化中心の上方に配置された請求項13に記載の画像化システム。
【請求項15】
前記第1の角度と前記第2の角度が同じ角度である請求項14に記載の画像化システム。
【請求項16】
前記第1の角度と前記第2の角度が90度の角度である請求項15に記載の画像化システム。
【請求項17】
前記第1の画像化平面と前記第2の画像化平面が共面平面である請求項14に記載の画像化システム。
【請求項18】
前記第1の画像化平面が前記第2の画像化平面から一定の角度だけ回転している請求項14に記載の画像化システム。
【請求項19】
前記第1の画像化平面と前記第2の画像化平面が直交平面である請求項14に記載の画像化システム。
【請求項20】
前記第1の対のx線検出器が、前記第1の軸に対して第1の画像化角で配置された第1の画像化表面を有する第1のx線検出器、及び前記第2の軸に対して第2の画像化角で配置された第2の画像化表面を有する第2のx線検出器を備え、
前記第2の対のx線検出器が、前記第3の軸に対して第3の画像化角で配置された第3の画像化表面を有する第3のx線検出器、及び前記第4の軸に対して第4の画像化角で配置された第4の画像化表面を有する第4のx線検出器を備えた請求項13に記載の画像化システム。
【請求項21】
前記第1の画像化角、前記第2の画像化角、前記第3の画像化角、前記第4の画像化角の各々が直角である請求項20に記載の画像化システム。
【請求項22】
前記第1の画像化角、前記第2の画像化角、前記第3の画像化角、前記第4の画像化角の各々が鋭角である請求項17に記載の画像化システム。
【請求項23】
画像化システムであって、
第1の軸を有する第1のx線ビームを生成するための第1のx線源、及び画像化表面を有する、前記第1のx線ビームを検出するための第1のx線検出器と、
第2の軸を有する第2のx線ビームを生成するための第2のx線源、及び第2の画像化表面を有する、前記第2のx線ビームを検出するための第2のx線検出器であって、前記第1の軸と前記第2の軸が画像化平面を決め、前記第1のx線ビームと前記第2のx線ビームが前記画像化平面内の第1の画像化中心で第1の角度で交差するように配置された第2のx線検出器と、
第3の軸を有する第3のx線ビームを生成するための第3のx線源、及び第3の画像化表面を有する、前記第3のx線ビームを検出するための第3のx線検出器であって、前記第3のx線ビームが、前記画像化平面内の第2の画像化中心で第2の角度で前記第1のx線ビームと交差し、かつ、前記画像化平面内の第3の画像化中心で第3の角度で前記第2のx線ビームと交差するように配置された第3のx線検出器と
を備えた画像化システム。
【請求項24】
前記第1の画像化表面が前記第1の軸に対して第1の画像化角で配置され、前記第2の画像化表面が前記第2の軸に対して第2の画像化角で配置され、前記第3の画像化表面が前記第3の軸に対して第3の画像化角で配置された請求項23に記載の画像化システム。
【請求項25】
前記第1の画像化角、前記第2の画像化角、前記第3の画像化角の各々が直角である請求項24に記載の画像化システム。
【請求項26】
前記第1の画像化角、前記第2の画像化角、前記第3の画像化角のうちの1つ又は複数が、前記第1の画像化表面、前記第2の画像化表面、前記第3の画像化表面と水平平面内で整列するように選択される請求項24に記載の画像化システム。
【請求項27】
前記第1のx線源が可動x線源であり、前記第1のx線検出器が可動x線検出器であり、前記第1のx線源と前記第1のx線検出器が、前記画像化平面内における前記第1の画像化中心と前記第2の画像化中心の位置を調整するための可動x線源検出器対を備えた請求項24に記載の画像化システム。
【請求項28】
画像化システムであって、
第1のx線ビームと第2のx線ビームを画像化平面内に生成するための、第1の分離の第1の対のx線源であって、前記第1のx線ビームと前記第2のx線ビームが第1の画像化中心で第1の角度で交差するように配置された第1の対のx線源と、
第3のx線ビームと第4のx線ビームを前記画像化平面内に生成するための、第2の分離の第2の対のx線源であって、前記第3のx線ビームと前記第4のx線ビームが第2の画像化中心で第2の角度で交差するように配置された第2の対のx線源と、
前記第1のx線ビームと前記第3のx線ビームを検出するための第1のx線検出器、及び前記第2のx線ビームと前記第4のx線ビームを検出するための第2のx線検出器を備えた、第3の分離の1対のx線検出器と
を備えた画像化システム。
【請求項29】
前記第1の対のx線源と前記第2の対のx線源が、前記第1の画像化中心と前記第2の画像化中心の上方に配置され、前記1対のx線検出器が、前記第1の画像化中心と前記第2の画像化中心の下方に配置された請求項28に記載の画像化システム。
【請求項30】
前記第1の対のx線源と前記第2の対のx線源が、前記第1の画像化中心と前記第2の画像化中心の下方に配置され、前記1対のx線検出器が、前記第1の画像化中心と前記第2の画像化中心の上方に配置された請求項28に記載の画像化システム。
【請求項31】
画像化システムであって、
第1のx線ビームと第2のx線ビームを画像化平面内に第1の分離で生成するための1対の可動x線源であって、前記第1のx線ビームと前記第2のx線ビームが、第1の画像化中心で第1の角度で交差するように配置され、前記1対のx線源が、第3のx線ビームと第4のx線ビームを前記画像化平面内に第2の分離で生成し、前記第3のx線ビームと第4のx線ビームが第2の画像化中心で第2の角度で交差するように配置された1対の可動x線源と、
前記第1のx線ビームと前記第3のx線ビームを検出するための第1のx線検出器、及び前記第2のx線ビームと前記第4のx線ビームを検出するための第2のx線検出器を備えた、前記画像化平面内の第3の分離の1対のx線検出器と
を備えた画像化システム。
【請求項32】
前記1対の可動x線源が、前記第1の画像化中心と前記第2の画像化中心の上方に配置され、前記1対のx線検出器が、前記第1の画像化中心と前記第2の画像化中心の下方に配置された請求項31に記載の画像化システム。
【請求項33】
前記1対の可動x線源が、前記第1の画像化中心と前記第2の画像化中心の下方に配置され、前記1対のx線検出器が、前記第1の画像化中心と前記第2の画像化中心の上方に配置された請求項31に記載の画像化システム。
【請求項34】
画像化システムであって、
第1のx線ビームを生成するための第1のx線源、及び第2のx線ビームを画像化平面内に第1の分離で生成するための第2のx線源であって、前記第1のx線ビームと前記第2のx線ビームが第1の画像化中心で第1の角度で交差するように配置された第2のx線源を備えた1対の可動x線源であって、その1対の可動x線源が、第3のx線ビームと第4のx線ビームを前記画像化平面内に第2の分離で生成し、前記第3のx線ビームと前記第4のx線ビームが前記結合中心で第2の角度で交差するように配置された1対の可動x線源と、
前記画像化平面内における第3の分離で前記第1のx線ビームと前記第2のx線ビームを検出し、かつ、前記画像化平面内における第4の分離で前記第3のx線ビームと前記第4のx線ビームを検出するための第1のx線検出器と第2のx線検出器を備えた1対の可動x線検出器と
を備えた画像化システム。
【請求項35】
前記第1のx線源が、前記1対のx線検出器の前記第3の分離から前記1対のx線検出器の前記第4の分離まで前記第1のx線検出器の位置を追跡し、前記第2のx線源が、前記1対のx線検出器の前記第3の分離から前記1対のx線検出器の前記第4の分離まで前記第2のx線検出器の位置を追跡する請求項34に記載の画像化システム。
【請求項36】
データ処理システムによって実行されると、前記データ処理システムが、
基準処置フレーム内の第1の角度範囲からのターゲット組織の放射線処置を可能にするために、第1の位置に第1の画像化中心を確立するステップと、
前記基準処置フレーム内の第2の角度範囲からの前記ターゲット組織の放射線処置を可能にするために、第2の位置に第2の画像化中心を確立するステップと
を含む方法を実行することになる実行可能コンピュータ・プログラム命令を記憶した機械可読媒体。
【請求項37】
前記第1の画像化中心を確立するステップが、第1の軸を有する第1の画像化ビームと第2の軸を有する第2の画像化ビームを生成するステップであって、前記第1の軸と前記第2の軸が第1の画像化平面を決め、前記第2の画像化ビームが、前記第1の位置で前記第1の画像化ビームと交差するよう、前記第1の画像化ビームに対して第1の角度で配置されるステップを含む請求項36に記載の機械可読媒体。
【請求項38】
前記第2の画像化中心を確立するステップが、第3の軸を有する第3の画像化ビームを前記第1の画像化平面に生成するステップであって、前記第3の画像化ビームが、前記第2の位置で前記第1の画像化ビームと交差するよう、前記第1の画像化ビームに対して第2の角度で配置されるステップを含む請求項37に記載の機械可読媒体。
【請求項39】
前記第3の画像化ビームが前記第2の画像化ビームに対して第3の角度で配置され、前記第1の画像化平面内の前記第2の画像化ビームと前記第3の画像化ビームの交点からなる第3の位置に第3の画像化中心を確立するステップをさらに含む請求項38に記載の機械可読媒体。
【請求項40】
前記第2の画像化中心を確立するステップが、第3の軸を有する第3の画像化ビームと第4の軸を有する第4の画像化ビームを生成するステップであって、前記第3の軸と前記第4の軸が第2の画像化平面を決め、前記第4の画像化ビームが、前記第2の位置で前記第3の画像化ビームと交差するよう、前記第3の画像化ビームに対して第2の角度で配置されるステップを含む請求項37に記載の機械可読媒体。
【請求項41】
前記第1の画像化平面及び前記第2の画像化平面が共面平面である請求項40に記載の機械可読媒体。
【請求項42】
前記第1の画像化平面と前記第2の画像化平面が非共面平面である請求項40に記載の機械可読媒体。
【請求項43】
前記方法が、
前記ターゲット組織をほぼ前記第1の画像化中心に配置するステップと、
前記第1の画像化ビームを使用して第1の画像を生成し、かつ、前記第2の画像化ビームを使用して第2の画像を生成するステップと、
第1の位置合せ結果を得るために、前記第1の画像と前記第2の画像を、第1の複数の基準画像と位置合せするステップと、
前記第1の位置合せ結果を使用して放射線処置源を配置するステップと、
前記第1の角度範囲から前記ターゲット組織に対する放射線処置を実施するステップと
をさらに含む請求項38に記載の機械可読媒体。
【請求項44】
前記方法が、
前記ターゲット組織をほぼ前記第2の画像化中心に配置するステップと、
前記第3の画像化ビームを使用して第3の画像を生成し、かつ、前記第1の画像化ビームを使用して第4の画像を生成するステップと、
第2の位置合せ結果を得るために、前記第3の画像と前記第4の画像を、第2の複数の基準画像と位置合せするステップと、
前記第2の位置合せ結果を使用して前記放射線処置源を配置するステップと、
前記第2の角度範囲から前記ターゲット組織に対する放射線処置を実施するステップと
をさらに含む請求項43に記載の機械可読媒体。
【請求項45】
前記方法が、
前記ターゲット組織をほぼ前記第3の画像化中心に配置するステップと、
前記第2の画像化ビームを使用して第1の画像を生成し、かつ、前記第3の画像化ビームを使用して第2の画像を生成するステップと、
位置合せ結果を得るために、前記第1の画像と前記第2の画像を、複数の基準画像に位置合せするステップと、
前記位置合せ結果を使用して放射線処置源を配置するステップと、
前記第3の角度範囲から前記ターゲット組織に対する放射線処置を実施するステップと
をさらに含む請求項39に記載の機械可読媒体。
【請求項46】
前記方法が、
前記ターゲット組織をほぼ前記第1の画像化中心に配置するステップと、
前記第1の画像化ビームを使用して第1の画像を生成し、かつ、前記第2の画像化ビームを使用して第2の画像を生成するステップと、
第1の位置合せ結果を得るために、前記第1の画像と前記第2の画像を、第1の複数の基準画像と位置合せするステップと、
前記第1の位置合せ結果を使用して放射線処置源を配置するステップと、
前記第1の角度範囲から前記ターゲット組織に対する放射線処置を実施するステップと
をさらに含む請求項40に記載の機械可読媒体。
【請求項47】
前記方法が、
前記ターゲット組織をほぼ前記第2の画像化中心に配置するステップと、
前記第3の画像化ビームを使用して第3の画像を生成し、かつ、前記第4の画像化ビームを使用して第4の画像を生成するステップと、
第2の位置合せ結果を得るために、前記第3の画像と前記第4の画像を、第2の複数の基準画像と位置合せするステップと、
前記第2の位置合せ結果を使用して前記放射線処置源を配置するステップと、
前記第2の角度範囲から前記ターゲット組織に対する放射線処置を実施するステップと
をさらに含む請求項46に記載の機械可読媒体。
【請求項48】
放射線ターゲットへのアクセスを複数の処置角度から提供するために、複数の画像化位置で前記放射線ターゲットを画像化する手段と、
前記放射線ターゲットを前記複数の画像化位置に配置する手段と、
前記複数の処置角度から放射線処置を実施する手段と
を備えたシステム。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公表番号】特表2008−544833(P2008−544833A)
【公表日】平成20年12月11日(2008.12.11)
【国際特許分類】
【出願番号】特願2008−520316(P2008−520316)
【出願日】平成18年6月29日(2006.6.29)
【国際出願番号】PCT/US2006/025794
【国際公開番号】WO2007/002927
【国際公開日】平成19年1月4日(2007.1.4)
【出願人】(505005625)アキュレイ・インコーポレーテッド (11)
【Fターム(参考)】