説明

画像表示装置及び画像表示装置の駆動方法

【課題】本発明は、例えば有機EL素子を用いた画像表示装置に適用して、低輝度領域又は非発光領域を視認し難くし、異常画素による画質劣化を従来に比して一段と改善する。
【解決手段】本発明は、非発光領域又は低輝度領域の境界長が長くなればなる程、輝度を増大させてリペア画素等の異常画素の輝度を調整する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像表示装置及び画像表示装置の駆動方法に関し、例えば有機EL(Electro Luminescence)素子を用いた画像表示装置に適用することができる。本発明は、非発光領域又は低輝度領域の境界長を考慮してリペア画素等の異常画素の輝度を調整することにより、低輝度領域又は非発光領域を視認し難くし、異常画素による画質劣化を従来に比して一段と改善する。
【背景技術】
【0002】
近年、有機EL素子を用いた画像表示装置の開発が盛んになっている。ここで図28に示すように、この種の画像表示装置1は、マトリックス状に画素を配置して表示部2が形成される。画像表示装置1は、順次入力される画像データD1に応じて、駆動回路3により表示部2を駆動し、表示部2で所望の画像を表示する。
【0003】
有機EL素子の画像表示装置は、パッシブマトリックス型とアクティブマトリックス型とに大別される。ここで図29に示すように、パッシブマトリックス型の画像表示装置5は、有機EL素子OLED(1,1)、OLED(1,2)、……による画素をマトリックス状に配置して表示部2が形成される。画像表示装置5は、駆動回路3に設けられたスイッチ回路6により走査線SCAN(1)、SCAN(2)、……を順次循環的に選択する。画像表示装置5は、順次入力される画像データD1を電流駆動回路7(1)、7(2)、……に振り分け、電流駆動回路7(1)、7(2)、……でそれぞれ画像データD1に応じた駆動電流Isig(1)、Isig(2)、……を生成して対応する信号線SIG(1)、SIG(2)、……に出力する。これにより画像表示装置5は、ライン順次で有機EL素子OLED(1,1)、OLED(1,2)、……を順次発光させて所望の画像を表示する。これにより画像表示装置5は、信号線SIG(1)、SIG(2)、……を介した電流駆動により各画素の階調を設定する。
【0004】
アクティブマトリックス型の画像表示装置11は、図30に示すように、画素PIX(1,1)、PIX(1,2)、……を構成する有機EL素子OLEDと有機EL素子OLEDを駆動する駆動回路とによる画素回路16をマトリックス状に配置して表示部2が形成される。ここで画素回路16は、例えばPチャンネル型トランジスタTr2と有機EL素子OLEDとの直列回路の両端が電源Vdd及びVssに接続され、ゲートドレイン間電圧に応じた駆動電流で駆動トランジスタTr1により有機EL素子OLEDを駆動する。画素回路16は、駆動トランジスタTr1のゲートドレイン間に、駆動トランジスタTr1のゲートドレイン間電圧を保持する保持容量Csが設けられる。画素回路16は、走査線SCANを介した書込トランジスタTr2の制御により、保持容量Csの端子電圧が信号線SIG(1)、SIG(2)、……を介して順次設定される。これにより画素回路16は、信号線SIG(1)、SIG(2)、……を介して駆動トランジスタTr1のゲートドレイン間電圧を設定して各画素の階調を設定し、この駆動トランジスタTr1のゲートドレイン間電圧に応じた駆動電流で有機EL素子OLEDを電流駆動する。
【0005】
駆動回路3は、順次入力される画像データD1を各信号線SIG(1)、SIG(2)、……に振り分けてそれぞれディジタルアナログ変換処理し、各信号線SIG(1)、SIG(2)、……の駆動電圧Vsig(1)、Vsig(2)、……を設定する。また駆動回路3は、駆動電圧Vsig(1)、Vsig(2)、……の設定に対応して各走査線SCAN(1)、SCAN(2)、……に書込トランジスタTr2の制御信号を出力する。
【0006】
有機EL素子を用いた画像表示装置は、図29及び図30に示す有機EL素子の駆動電流を可変して階調を表現する方式の他、有機EL素子の発光時間を可変して階調を表現する方法(時間変調方式)、有機EL素子の発光面積を可変して階調を表現する方法(面積変調方式)等が提案されている。
【0007】
有機EL素子を用いたアクティブマトリックス型の画像表示装置に関して、特開2007−310311号公報には、2つのトランジスタを用いて画素回路を構成する方法が開示されている。従ってこの特開2007−310311号公報に開示の方法によれば、構成を簡略化することができる。またこの特開2007−310311号公報には、有機EL素子を駆動する駆動トランジスタのしきい値電圧のばらつき、移動度のばらつきを補正する構成が開示されている。従ってこの特開2007−310311号公報に開示の構成によれば、駆動トランジスタのしきい値電圧のばらつき、移動度のばらつきによる画質劣化を防止することができる。
【0008】
また特開2000−195677号公報、特開2003−178871号公報には、レーザービームの照射により、欠陥画素をリペアする方法が提案されている。また特開2001−117534号公報には、逆バイアスの印加により、欠陥画素をリペアする方法が提案されている。
【0009】
すなわち有機EL素子の画像表示装置では、種々の要因により、何ら発光しない非発光画素、発光輝度が著しく低い低輝度画素、輝点として観察される高輝度画素等の欠陥画素が発生する。
【0010】
具体的に、図31(A)に示すように、この種の画像表示装置に適用される有機EL素子OLEDは、微小間隔で対向するように保持された陰極及び陽極で有機EL層を挟持し、この微小間隔が数〔μm〕〜10〔μm〕に設定される。なお有機EL素子OLEDは、画像表示装置の構成に応じて、上部電極及び下部電極がそれぞれ陰極及び陽極に設定される場合と、これとは逆に下部電極及び上部電極がそれぞれ陰極及び陽極に設定される場合とがある。
【0011】
従って有機EL素子OLEDは 図31(B1)及び(C1)により示すように、微小な塵の混入により、この微小な塵が混入した画素で陰極及び陽極が短絡する場合がある。なお図31(B1)は、導電性を有する塵が電極間に混入して陰極及び陽極が短絡する場合である。また図31(C1)は、上部電極上に混入した塵により陰極及び陽極間の間隔が狭くなり、陰極及び陽極が短絡する場合である。この場合、当該画素は、非発光画素となる。また有機EL素子は、微小な塵により局所的にリーク電流が発生する場合もあり、この場合、当該画素は、低輝度画素となる。
【0012】
また有機EL素子は、陰極及び陽極間に数〔V〕〜10〔V〕程度の電圧が印加される。従って有機EL素子は、有機EL層の膜厚のばらつき、膜質のばらつきによる局所的な絶縁破壊により短絡し、この場合、当該画素は、非発光画素となる。また局所的に非導通状態となる場合もあり、この場合、当該画素は、局所的に非発光の部位を有する低輝度画素となる。
【0013】
また有機EL素子は、水分等の不純物の影響により、局所的に有機EL層の膜質、有機EL層物質の構造が変動し、その結果、局所的に有機EL素子の発光効率が変動する場合がある。この場合、当該画素は、この発光効率の変動により、低輝度画素、又は高輝度画素となる。
【0014】
これらの欠陥画素は、画像表示装置において、滅点、輝点等の欠陥として視認され、著しく画質を劣化させる。特に発光輝度の低い低輝度領域において、欠陥画素の割合が増大すると、滅点、輝点が目立ち易くなり、著しく画質が劣化する。
【0015】
特開2000−195677号公報等に開示の手法は、図31(B2)及び(C2)により示すように、欠陥画素内において、欠陥画素の発生原因となった部位の電極を局所的に除去し、残った部位を正常に機能させる。
【特許文献1】特開2007−310311号公報
【特許文献2】特開2000−195677号公報
【特許文献3】特開2003−178871号公報
【特許文献4】特開2001−117534号公報
【発明の開示】
【発明が解決しようとする課題】
【0016】
ところで特開2000−195677号公報等に開示の手法によるリペアでは、局所的に電極を除去した部位が非発光領域となる。その結果、これらのリペアでは、リペアしない場合に比して画質を向上し得るものの、依然として滅点による欠陥が視認される問題がある。
【0017】
特に、リペア画素では、リペアにより発生した非発光領域の位置によって、非発光領域の見え方が異なり、欠陥として視認される程度も異なる。
【0018】
本発明は以上の点を考慮してなされたもので、欠陥画素等の異常画素による画質劣化を従来に比して一段と改善することができる画像表示装置及び画像表示装置の駆動方法を提案しようとするものである。
【課題を解決するための手段】
【0019】
上記の課題を解決するため本発明は、マトリックス状に画素を配置した表示部と、画像データに応じて前記表示部に配置した画素を駆動し、前記表示部で所望の画像を表示する駆動部とを有する画像表示装置に適用する。前記駆動部は、輝度の低い低輝度領域又は非発光領域を部分的に有する異常画素の輝度を調整する輝度調整部を有し、前記輝度調整部は、前記異常画素における前記低輝度領域又は前記非発光領域と発光領域との境界長が長くなるに従って補正量が増大するように設定して、前記異常画素の面積による積分輝度、又は前記異常画素の面積及び時間による積分輝度を増大させ、前記輝度調整部により前記異常画素の輝度を調整しない場合に比して前記低輝度領域又は非発光領域を視認し難くする。
【0020】
また本発明は、マトリックス状に画素を配置した表示部と、画像データに応じて前記表示部に配置した画素を駆動し、前記表示部で所望の画像を表示する駆動部とを有する画像表示装置の駆動方法に適用する。輝度の低い低輝度領域又は非発光領域を部分的に有する異常画素の輝度を調整する輝度調整ステップを有し、前記輝度調整ステップは、前記異常画素における前記低輝度領域又は前記非発光領域と発光領域との境界長が長くなるに従って補正量が増大するように設定して、前記異常画素の面積による積分輝度、又は前記異常画素の面積及び時間による積分輝度を増大させ、前記異常画素の輝度を調整しない場合に比して前記低輝度領域又は非発光領域を視認し難くする。
【0021】
人間の視覚は、二次元のローパスフィルタの特性を有している。従って異常画素における低輝度領域又は非発光領域と発光領域との境界長が長い場合には、境界長が短い場合に比して、低輝度領域又は非発光領域の面積が小さくなって視認され、低輝度領域又は非発光領域は滅点として視認され難くなる。従って境界長が長くなるに従って補正量が増大するように設定して、面積による積分輝度又は面積及び時間による積分輝度を増大させれば、滅点を認識させないようにして異常画素の発光輝度を正常画素の発光輝度に近づけることができ、一段と画質を向上することができる。
【発明の効果】
【0022】
本発明によれば、欠陥画素等の異常画素による画質劣化を従来に比して一段と改善することができる。
【発明を実施するための最良の形態】
【0023】
以下、適宜図面を参照しながら本発明の実施の形態を詳述する。なお説明は、以下の順序で行う。
1.第1の実施の形態
2.第2の実施の形態
3.第3の実施の形態
4.第4の実施の形態
5.第5の実施の形態
6.第6の実施の形態
7.第7の実施の形態
8.変形例
<第1の実施の形態>
〔実施の形態の構成〕
図1は、図28との対比により本発明の第1の実施の形態に係る画像表示装置を示すブロック図である。この画像表示装置21は、製造工程において、表示部2の欠陥画素が検出され、この欠陥画素がレーザービームの照射、逆バイアスの印加等によりリペアされる。なお以下において、リペアにより局所的に非発光領域が発生した異常画素をリペア画素と呼ぶ。
【0024】
画像表示装置21は、メモリにより構成される画素輝度調整情報部22に、リペア画素の位置情報であるアドレス、輝度調整量の情報を格納して保持する。画像表示装置21は、この画素輝度調整情報部22に格納した情報により駆動回路24に設けられた輝度調整演算回路23でリペア画素の発光輝度を補正する。
【0025】
より具体的に、画像表示装置21は、画素輝度調整情報部22に格納したアドレスに対応する画像データD1を補正してリペア画素の発光輝度を補正する。なお表示部2には、図30の構成が適用される。従って画像表示装置11は、画像データD1に応じて保持容量Csの端子間電圧を設定し(図30)、この端子間電圧に応じた駆動電流で有機EL素子OLEDを定電流駆動する。
【0026】
〔定電流駆動におけるリペアによる発光輝度の変化〕
ここで図2に示すように、正常画素の発光領域の面積を1とした場合の、リペア画素における非発光領域の面積である面積比率をαとする。またリペア画素の非発光領域は、電極間が非導通であって、完全に非発光の状態であり、リペア画素の残りの領域は、正常画素と同一に正常に発光しているものとする。
【0027】
この場合、有機EL素子OLEDの発光輝度Loledは、次式で表すことができる。なおここでIoledは、有機EL素子OLEDの駆動電流である。またβは、駆動トランジスタTr1の増幅率であり、Vthは、駆動トランジスタTr1のしきい値電圧である。またVdsは、駆動トランジスタのドレインソース間電圧である。
【0028】
【数1】

【0029】
なおここでλは、定数である。駆動トランジスタTr1の特性が、飽和領域においてドレインソース間電圧によって変化しない場合、λ=0である。しかしながら実際のトランジスタは、飽和領域においてドレインソース間電圧によって特性が変化することから、λ>0である。
【0030】
リペア画素は、非発光領域により正常画素に比して発光領域の面積が低下する。その結果、発光領域における単位面積当たりの電流が一定であるとすると、リペア画素では、正常画素に比して駆動電流が(1−α)倍に減少することになる。従って図30の画素回路による駆動において、リペア画素の有機EL素子OLEDを正常画素と同一の駆動電流で駆動する場合には、図3に示すように、有機EL素子OLEDの端子間電圧Vが電圧ΔVoledだけ増大することになる。なおここで図3において、横軸はドレインソース間電圧である。
【0031】
ここで正常画素の駆動電流Ioled1を、次式で表す。
【0032】
【数2】

【0033】
リペア画素では、図3との対比により図4に示すように、ドレインソース電圧Vdsが所定電圧ΔVdsだけ減少し、駆動電流Ioled2は、次式で表される。
【0034】
【数3】

【0035】
その結果、リペア画素では、発光領域における単位面積当たりの発光輝度が増大するものの、面積により積分した発光輝度は減少することになる。なお以下において、面積により積分した輝度を、面積による積分輝度と呼ぶ。ここでIoled1=Ioled2とおいて(2)式及び(3)式を整理して次式の関係式を得ることができる。
【0036】
【数4】

【0037】
従ってこの(4)式の関係式を満足するように設定すれば、面積による積分輝度をリペア画素と正常画素とで等しくすることができる。
【0038】
これにより図5に示すように、駆動トランジスタTr1の特性を考慮して、非発光領域の面積比率αの分だけ駆動電圧Vsigを補正すれば、正常画素とリペア画素とで面積による積分輝度を同一に設定できることが判る。
【0039】
なお図29に示すように定電流駆動で有機EL素子を駆動する場合にあって、電流駆動回路が十分に定電流特性を有している場合には、何ら補正することなく、リペア画素と正常画素とで面積による積分輝度を同一に設定することができる。
【0040】
〔非発光領域の位置を考慮しない最適な輝度調整量〕
ところで単に積分輝度を正常画素と同一に設定しただけでは、リペア画素により画質の劣化が知覚される場合がある。
【0041】
ここで図6に示すように、リペア画素における非発光領域の面積比率αが値0.5であるものとする。なお以下においては、発光領域における単位面積の発光輝度を最大値100とした数字で示す。ここで正常画素の単位面積当たりの発光輝度が50である場合、リペア画素の単位面積当たりの発光輝度を1/(1−α)倍すれば、正常画素とリペア画素とで面積による積分輝度を同一に設定することができる。従って図6(A)の例では、リペア画素の単位面積当たりの発光輝度を100に設定すれば、面積による積分輝度を正常画素とリペア画素とで同一に設定することができる。
【0042】
この図6(A)の例において、リペア画素における非発光領域と発光領域とを人間の視覚が空間的に分解して認識可能である場合、人間の目には、欠陥画素の場合と同様に、このリペア画素における非発光領域と発光領域とがそれぞれ滅点及び輝点として認識されることになる。
【0043】
従って単純に、リペア画素の積分輝度を正常画素と同一に設定しただけでは、画質の劣化が知覚される恐れがある。またこれにより図29に示すように電流駆動回路で有機EL素子を駆動する場合にあって、電流駆動回路が十分に定電流特性を有していて何ら補正することなくリペア画素と正常画素とで面積による積分輝度を同一に設定することができる場合でも、リペア画素による画質の劣化が知覚される恐れがある。
【0044】
この場合、図6(A)との対比により図6(B)に示すように、面積による積分輝度を正常画素と同一とする場合に比してリペア画素の発光輝度を低減し、滅点として認識される非発光領域と輝点として認識される発光領域との輝度差を低減することにより、リペア画素による画質劣化を知覚し難くすることができる。
【0045】
すなわちこの場合、正常画素における面積による積分輝度以下の範囲で、リペア画素の面積による積分輝度を増大させて画質劣化を知覚し難くすることができる。より具体的に、図7に示すように、リペア画素の単位面積当たりの発光輝度を、リペア画素の面積による積分輝度と正常画素の面積による積分輝度とを同一に設定する発光輝度(図7(A))と、正常画素の単位面積当たりの発光輝度(図7(B))との間の発光輝度に設定して、最も画質劣化を知覚し難くすることができる。
【0046】
すなわちこの場合、次式の関係式を満たすように設定して、最も画質劣化を知覚し難くすることができる。なおここでL(単位面積、正常画素)及びL(積分、正常画素)は、それぞれ正常画素における単位面積当たりの発光輝度及び面積による積分輝度である。またL(単位面積、リペア画素)及びL(積分、リペア画素)は、それぞれリペア画素の発光領域における単位面積当たりの発光輝度及び面積による積分輝度である。
【0047】
【数5】

【0048】
なお(5)式には、等号が含まれている。これは人間の視覚特性に対して、画素ピッチが十分に高精細の場合には、正常画素とリペア画素とで面積による積分輝度を同一に設定することにより、最も画質劣化を知覚し難くすることができるからである。また人間の視覚特性に対して、画素ピッチが格段的に大きい場合には、単位面積当たりの発光輝度を同一に設定することにより、最も画質劣化を知覚し難くすることができるからである。
【0049】
ここで正常画素の単位面積当たりの発光輝度と面積による積分輝度とはL(単位面積、正常画素)×1=L(積分、正常画素)と表すことができる。また、リペア画素における単位面積当たりの発光輝度と面積による積分輝度とはL(単位面積、リペア画素)×α=L(積分、リペア画素)と表すことができる。従って(5)式は、次式に変形することができる。
【0050】
【数6】

【0051】
従って(6)式の関係式を満足するように、リペア画素の発光輝度を設定すれば、欠陥画素をリペアして画質劣化を最も知覚し難くすることができる。なお表示部の解像度、精細度以外にも、表示輝度、表示画像によっても最適な補正量が変化する。従って表示する画像に応じて、さらには階調によって、輝度調整量を変化させてもよい。
【0052】
なお面積による積分輝度を正常画素とリペア画素とで同一に設定する場合には、発光輝度L(単位面積、正常画素)/(1−α)=発光輝度L(単位面積、リペア画素)の関係式を満足するように設定すればよい。従って(5)式は、次式により表すこともできる。
【0053】
【数7】

【0054】
〔非発光領域の位置及び形状を考慮した最適な輝度調整量〕
ここでリペアにより発生した非発光領域の位置による最適な輝度調整量を検討する。図8に示すように、非発光領域の面積比率αが値0.5であるものとする。図8(A)は、有効発光領域の下半分が非発光領域に設定され、有効発光領域の上半分が発光領域に設定された場合である。また図8(B)は、有効発光領域の上下方向のほぼ中央が非発光領域に設定され、有効発光の上下、それぞれ1/4の領域が発光領域に設定された場合である。
【0055】
この場合、人間の視覚特性が二次元のローパスフィルタの特性を有していることから、図8(A)及び(B)との対比により、発光時の見え方を図9(A)及び(B)に示すように、非発光領域は面積が小さくなって見える。その結果、非発光領域が画素中央から遠ざかり、この遠ざかった側の非発光領域の幅が狭くなればなる程、この幅の狭くなった非発光領域は、実際の大きさに比して見た目の大きさが小さくなり、視認することが困難になる。従ってリペア画素の発光輝度を補正する場合、非発光領域が画素中央部に存在する場合程、発光領域の発光輝度を低くすることが必要になる。
【0056】
従って(7)式より求められる最適光量を、さらに図10に示すように、非発光領域の位置が画素中央に近づくに従って値が小さくなる重み付け係数n1により重み付けして輝度調整すれば、一段と画質を向上することができる。但し、図11に示すように、有効画素領域の中央Oから非発光領域の中央Pまでの水平方向及び垂直方向の距離をそれぞれw及びlとする。また有効画素領域の水平方向及び垂直方向の長さをそれぞれ2W及び2Lとする。
【0057】
ここでリペアにより発生した非発光領域の形状による最適な輝度調整量を検討する。図12に示すように、非発光領域の面積比率αが値0.5であるものとする。図12(A)は、図9(A)について上述したと同様に、有効発光領域の下半分及び上半分がそれぞれ非発光領域及び発光領域に設定された場合である。また図12(B)は、有効発光領域の右半分及び左半分がそれぞれ非発光領域及び発光領域に設定された場合である。
【0058】
この場合、有効発光領域が縦長の矩形形状であることから、有効発光領域の右半分及び左半分をそれぞれ非発光領域及び発光領域に設定した場合の方が、有効発光領域の下半分及び上半分をそれぞれ非発光領域及び発光領域に設定した場合に比して、発光領域と非発光領域との境界長が長くなる。従ってこの場合、図12(A)の場合に比して、図12(B)の場合の方が発光領域と非発光領域との境界長が長くなる。
【0059】
ここで人間の視覚特性が二次元のローパスフィルタの特性を有していることから、図12との対比により発光した状態を図13に示すように、図12(A)の場合に比して、図12(B)の場合の方が、発光領域と非発光領域との境界長が長い分だけ、非発光領域の見た目の大きさが小さくなり、非発光領域を識別することが困難になる。従ってリペア画素の発光輝度を補正する場合、発光領域と非発光領域との境界長が短い場合程、発光領域の発光輝度を低くすることが必要になる。
【0060】
すなわちこの場合、図14に示すように、発光領域と非発光領域との境界長L1が長い場合程、値が増大する重み付け係数n2により、(7)式より求められる最適光量を重み付けして輝度調整すれば、一段と画質を向上することができる。
【0061】
従ってこの実施例では、リペア画素毎に、重み付け係数n1及びn2を算出して乗算し、総合の重み付け係数を計算する。また(7)式の関係式を満足する範囲内で、(7)式より求められる最適光量をこの総合の重み付け係数で重み付けし、輝度調整量の情報を設定する。
【0062】
具体的に、この実施の形態において、図15(A)及び図16(A)に示すように、画像表示装置21の製造工程は、例えば中間階調で各画素を発光させて各画素の発光輝度を測定し、非発光画素、低輝度画素、高輝度画素等の欠陥画素を検出する。この図15(A)及び図16(A)の例では、欠陥画素が非発光画素であり、単位面積当たりの発光輝度は0である。
【0063】
製造工程は、検出した欠陥画素の詳細な観察により、欠陥画素中の欠陥の部位を検出し、この部位へのレーザービームの照射により、リペアの処理を実行する。又は欠陥画素への逆バイアスの印加により、リペアの処理を実行する。これにより図15(B)及び図16(B)に示すように、欠陥画素は、欠陥の部位の電極が破壊される。これにより欠陥画素は、欠陥の部位が非発光領域に設定され、欠陥画素の残りの領域が発光領域に設定される。
【0064】
ここで図15(B)及び図16(B)に示すように、このリペアの処理により、面積比率αが0.3の非発光領域が発生したとする。また発光領域における単位面積当たりの発光輝度が63に上昇したとする。このように単位面積当たりの発光輝度が上昇しても、未だ画像表示装置21では、このリペア画素が滅点として視認される。ここで図15(B)は、有効発光領域のほぼ中央に非発光領域が作成された場合であり、図16(B)は、有効発光領域の周辺部分に非発光領域が作成された場合である。
【0065】
ここでα=0.3であることから、(7)式から50≦L(単位面積、リペア画素)≦50/(1−0.3)が求められ、これを解いてリペア画素における単位面積当たりの発光輝度の最適値が50〜71の範囲に存在することが判る。
【0066】
この製造工程は、リペア後の計測により、又はリペア時のレーザービームの照射位置及び光量により、図10及び図11の重み付け係数n1及びn2の計算に必要な非発光領域の中心位置及び発光領域との境界長を検出する。またこの中心位置及び境界長とから重み付け係数n1及びn2を計算した後、重み付け係数n1及びn2を乗算して総合の重み付け係数を計算する。
【0067】
また(7)式の関係式から求められる最適値50〜71の範囲で設定基準値を設定し、この設定基準値を総合の重み付け係数で重み付けして各リペア画素の輝度調整量を計算する。
【0068】
ここでこの図15及び図16の例では、リペア画素の単位面積当たりの発光輝度をそれぞれ値69(図15(C))及び値67(図16(C))に設定する。この製造工程は、この計算した単位面積当たりの発光輝度からリペアした場合の発光領域の発光輝度(値63)を減算して輝度上昇分を計算し、この輝度上昇分をリペアした場合の発光領域の発光輝度で割り算する。この製造工程は、この割り算による値を画素輝度調整量の情報としてリペア画素のアドレスと共に画素輝度調整情報部22に格納する。
【0069】
輝度調整演算回路23は、順次入力される画像データD1のうち、画素輝度調整情報部24に格納されたアドレスに対応する画像データD1について、対応する輝度調整量により乗算して補正量を計算し、この計算した補正量を加算して画像データD1を出力する。またそれ以外の画像データD1については、何ら補正することなく出力する。
【0070】
〔第1の実施の形態の動作〕
以上の構成において、この画像表示装置21では(図1及び図30)、順次入力される画像データD1が駆動回路24に入力され、ここで各信号線に振り分けられた後、ディジタルアナログ変換処理されて駆動電圧Vsigが設定される。画像表示装置21では、走査線による制御により、この駆動電圧Vsigがライン順次で表示部2の各画素回路16に設定される。より具体的に、各画素回路16に設けられた保持容量Csの端子間電圧がこの駆動電圧Vsigにより設定される。画像表示装置21では、この保持容量Csの端子間電圧による駆動電流により有機EL素子OLEDが駆動される。これにより画像表示装置21では、画像データD1による画像を表示部2で表示することができる。
【0071】
しかしながら画像表示装置21では、各種の要因により、有機EL素子OLEDによる画素が欠陥画素となる場合がある(図30参照)。そこで画像表示装置21では、製造工程において、欠陥画素が検出され、レーザービームの照射、逆バイアスの印加等により、欠陥画素の発生原因となった部位の電極が局所的に除去されてリペアの処理が実行される。これにより画像表示装置21では、欠陥画素において、電極を除去した部位以外の部位が正常に発光するようにし、欠陥画素による滅点、輝点等が目立たないように設定される。その結果、画像表示装置21では、何らリペアしない場合に比して画質を向上することができる。
【0072】
しかしながらリペアの処理により局所的に電極を除去した場合、リペア画素では正常画素に比して発光領域の面積が低下することになる。ここで駆動トランジスタTr1による有機EL素子の定電流駆動が、十分な定電流特性を有している場合には、発光領域の面積が低下しても正常画素と同一の駆動電流で有機EL素子を電流駆動することができる。従ってこの場合、面積による積分輝度が正常画素と同一になるように、リペア画素を駆動することになる。
【0073】
しかしながら画像表示装置21では、発光領域の面積の低下により、リペア画素において面積による積分輝度が低下する(図3〜図5)。その結果、画像表示装置21では、リペア画素が滅点として視認され、低輝度画素による欠陥画素が発生した場合と同様に、画質の劣化が知覚されることになる。
【0074】
このためリペア画素における単位面積当たりの発光輝度を増大させて滅点を目立たなくすることが考えられる。しかしながら単純に、面積による積分輝度が正常画素と同一になるように、リペア画素の発光輝度を増大させたのでは、今度は、リペア画素における発光領域と非発光領域とが知覚されるようになり、画質の劣化が知覚される(図6)。そこで面積による積分輝度が正常画素と同一になる補正量より、補正量を低減してリペア画素の発光輝度を補正することが必要になる。
【0075】
しかしながらリペアにより発生した非発光領域は、その位置、形状に応じて、滅点として認識し易くなったり、これとは逆に滅点として認識し難くなる場合がある(図8及び図15)。具体的に、非発光領域は、画素中央より遠ざかるに従って滅点として認識し難くなり、また発光領域との境界長が長くなるに従って滅点として認識し難くなる。
【0076】
そこで画像表示装置21では(図7)、非発光領域の位置、非発光領域と発光領域との境界長に応じて値の変化する重み付け係数n1及びn2が求められ、この重み付け係数n1及びn2を乗算して総合の重み付け係数が求められる。またこの総合の重み付け係数を用いて、正常画素における面積による積分輝度以下の範囲内で、リペア画素の面積による積分輝度を増大させてリペア画素の発光輝度を調整し、リペア画素における非発光領域が視認し難く設定される。これにより画像表示装置21では、非発光領域が画素中央から遠ざかるに従って補正量が増大するように、また非発光領域と発光領域との境界長が長くなるに従って補正量が増大するように、輝度調整され、一段とリペア画素における非発光領域と発光領域とを視認し難くすることができ、一段と画質を向上することができる。
【0077】
〔第1の実施の形態の効果〕
以上の構成によれば、非発光領域の位置及び発光領域との境界長が長くなるに従って補正量が増大するように設定し、リペア画素の発光輝度を調整することにより、リペア画素の非発光領域が滅点として視認されないようにし、リペア画素による画質劣化を低減することができる。
【0078】
またさらに非発光領域が画素中央から遠ざかるに従って補正量が増大するように設定し、リペア画素の発光輝度を調整することにより、リペア画素の非発光領域が滅点として視認されないようにし、リペア画素による画質劣化を低減することができる。
【0079】
またこの輝度調整を、正常画素における面積による積分輝度以下の範囲で実行することにより、リペア画素における発光領域及び非発光領域を視認し難くして、画質を向上することができる。
【0080】
<第2の実施の形態>
この実施の形態の画像表示装置は、有機EL素子を定電圧で駆動し、時間変調方式により有機EL素子の発光時間を可変して階調を表現する。従ってこの実施の形態の画像表示装置の画素回路は、信号線に設定される駆動電圧を保持する保持容量、この保持容量に設定された端子電圧に応じて有機EL素子の発光時間を制御する制御回路等により構成される。またこの制御回路は、保持容量に設定された端子電圧を一定の速度で低下させる積分回路、保持容量の端子電圧を判定して有機EL素子の駆動を制御する比較回路等により構成される。なおこの実施の形態では、この駆動回路に係る構成が異なる点を除いて、第1の実施の形態と同一に構成されることにより、以下においては、適宜、図1等の構成を流用して説明する。
【0081】
〔定電圧駆動におけるリペアによる発光輝度の変化〕
ここでは、有機EL素子OLEDを定電圧(Vdd−Vss)で発光させるものとする。またこの場合も正常画素の発光領域の面積を1とした場合の、リペア画素における非発光領域の面積である面積比率はαであるとする。またリペア画素の非発光領域は、電極間が非導通であって、完全に非発光の状態であり、リペア画素の残りの領域は、正常画素と同一に正常に発光しているものとする。
【0082】
この場合、図17に示すように、リペア画素の駆動電流は、正常画素に比して非発光面積の分だけ減少し、正常画素及びリペア画素の面積による積分輝度は、単純に発光領域の比率で表すことができる。すなわち正常画素及びリペア画素の面積による積分輝度Lは、次式により表すことができる。
【0083】
【数8】

【0084】
従ってこの場合、単純に、リペア画素では非発光領域の分だけ発光輝度が低下して視認される。従ってこの場合には、単純に、リペア画素における発光領域の発光時間を1/(1ーα)倍すれば、面積及び時間により積分した発光輝度(以下面積及び時間による積分輝度と呼ぶ)を正常画素と同一に設定することができる。
【0085】
しかしながらこの実施の形態でも、単に積分輝度を正常画素と同一に設定しただけでは、リペア画素により画質の劣化が知覚される場合がある。そこでこの画像表示装置では、画素輝度調整情報部22への情報の格納により、(6)式の関係式を満足するように、リペア画素の発光時間を補正する。なおこの場合(6)式における面積による積分輝度を、時間及び面積による積分輝度に置き換えて適用する。
【0086】
またさらにこの場合も、非発光領域の位置及び境界長による非発光領域の見え方については、第1の実施の形態と同一のことが言える。従って第1の実施の形態と同様に、それぞれ重み付け係数を計算して総合の重み付け係数を計算し、この総合の重み付け係数により各リペア画素の輝度調整量の情報を設定する。
【0087】
この実施の形態によれば、定電圧で有機EL素子を駆動する場合でも、第1の実施の形態と同一の効果を得ることができる。
【0088】
<第3の実施の形態>
図18は、本発明の第3の実施の形態に係る画像表示装置に適用される画素回路を示す接続図である。この実施の形態の画像表示装置は、この画素回路36及び関連する構成が異なる点を除いて、第1の実施の形態の画像表示装置と同一に構成される。
【0089】
ここで画素回路36は、有機EL素子OLEDのカソードが所定電圧Vss1に保持され、有機EL素子OLEDのアノードが駆動トランジスタTr1のソースに接続される。またこの駆動トランジスタTr1は、走査線を介して供給される制御信号VSCAN2(i)によりオンオフ動作するトランジスタTr2を介して、ドレインが電源Vdd1に接続される。なおトランジスタTr1及びTr2は、それぞれNチャンネル型及びPチャンネル型のトランジスタである。Coledは、有機EL素子OLEDの容量であり、Csubは、有機EL素子OLEDの容量Coleと並列な付加容量である。これにより画素回路36は、トランジスタTr2のオン状態に設定して、駆動トランジスタTr1のゲートソース間電圧に応じた駆動電流で有機EL素子OLEDを電流駆動する。
【0090】
また画素回路36は、この駆動トランジスタTr1のゲート及びソースに、駆動トランジスタTr1のゲートソース間電圧を保持する保持容量Csが接続される。これにより画素回路36は、図19に示すように、有機EL素子OLEDを発光される発光期間の間(図19においては、「発光」により示す)、トランジスタTr2を介して駆動トランジスタTr1に電源Vdd1を供給し(図19(B))、駆動トランジスタTr1により保持容量Csの端子間電圧に応じた駆動電流で有機EL素子OLEDを電流駆動する(図19(E)〜(G))。
【0091】
画素回路36は、走査線を介して供給される書込信号VSCAN1(i)によりオンオフ動作する書込トランジスタTr3を介して、保持容量Csのゲート側端が信号線に接続される。また走査線を介して供給される制御信号VSCAN4(i)によりオンオフ動作するトランジスタTr4を介して、保持容量Csのゲート側端が所定電圧Vofsに設定される。また走査線を介して供給される制御信号VSCAN3(i)によりオンオフ動作するトランジスタTr5を介して、保持容量Csのソース側端が所定電圧Viniに設定される。なおこれらトランジスタTr3〜Tr5は、Nチャンネル型のトランジスタである。
【0092】
画素回路36は、発光期間においては、これらトランジスタTr3〜Tr5がオフ状態に保持される(図19(A)、(C)、(D)及び(G))。画素回路36は、発光期間が終了して非発光期間が開始すると、トランジスタTr2がオフ状態に設定され、これにより駆動トランジスタTr1への電源Vdd1の供給が停止し、駆動トランジスタTr1のゲート電圧Vg及びソース電圧Vsが立ち下がり、有機EL素子OLEDの発光が停止する(図19(B)、(E)及び(F))。
【0093】
画素回路36は、非発光期間が開始して一定時間経過すると、トランジスタTr4及びTr5がオン状態に設定され(図19(C)及び(D))、保持容量Csの端子電圧がそれぞれVofs及びViniに設定される(図19(E)及び(F))。ここで電圧Vofs及びViniは、保持容量Csの端子間電圧Vofs−Viniを駆動トランジスタTr1のしきい値電圧Vthより大きな電圧に設定する電圧である。これにより図19において「準備」により示すように、駆動トランジスタTr1のしきい値電圧のばらつきによる画質劣化を防止する処理の準備処理が実行される。なお以下において、この駆動トランジスタTr1のしきい値電圧のばらつきによる画質劣化を防止する処理を、しきい値電圧の補正処理と呼ぶ。
【0094】
続いて画素回路36は、トランジスタTr5がオフ状態に設定された後、トランジスタTr2がオン状態に設定されて駆動トランジスタTr1に電源Vdd1が供給される(図19(B)及び(C))。これにより画素回路36は、保持容量Csのゲート側端を電圧Vofsに保持した状態で、駆動トランジスタTr1を介してこの保持容量Csの端子間電圧に応じた電流が有機EL素子OLEDに流入する。その結果、画素回路36は、この電流により保持容量Csの端子間電圧が徐々に減少し、保持容量Csの端子間電圧が駆動トランジスタTr1のしきい値電圧Vthになると、駆動トランジスタTr1からの電流の流入が停止して保持容量Csの端子間電圧の減少が停止する(図19(E)及び(F))。これにより画素回路36は、保持容量Csの端子間電圧が駆動トランジスタTr1を介して放電し、保持容量Csの端子間電圧が駆動トランジスタTr1のしきい値電圧Vthに設定される。これにより画素回路36は、しきい値電圧の補正処理(図19において「Vt補」により示す)が実行される。
【0095】
続いて画素回路36は、トランジスタTr2及びTr5がオフ状態に設定された後(図19(B)及び(D))、書込トランジスタTr3がオン状態に設定され、信号線に出力される駆動電圧Vsigが保持容量Csのゲート側端に設定される。なおここで駆動電圧Vsigは対応する画像データD1をディジタルアナログ変換処理して得られる電圧Vdataに電圧Vofsを加算した電圧である。これにより画素回路36は、図19において「書込」により示すように、有機EL素子OLEDの発光輝度が設定される。
【0096】
画素回路36は、続いてトランジスタTr2がオン状態に設定され(図19(B))、一定時間経過すると、書込トランジスタTr3がオフ状態に設定される(図19(A))。これにより画素回路36は、保持容量Csのゲート側端の電圧を駆動電圧Vsigに保持した状態で、一定時間の間、駆動トランジスタTr1の電流により保持容量Csの端子間電圧を放電する。ここでこの保持容量Csの端子間電圧の放電速度は、駆動トランジスタTr1の移動度が大きい場合程、速くなる。これにより画素回路36は、図19において「μ補」により示すように、駆動トランジスタTr1の移動度のばらつきを補正する。
【0097】
画素回路36は、この移動度の補正に係る書込トランジスタTr3のオフ状態の設定により発光期間が開始し、いわゆるブートストラップ回路により機能して駆動トランジスタTr1のゲート電圧Vg及びソース電圧Vsが上昇する(図19(E)及び(F))。
【0098】
ここで発光期間における駆動電流Idsは、次式により表される。なおここでμは駆動トランジスタTr1の移動度、W及びLは、駆動トランジスタTr1のゲート幅及びゲート長である。gは、書込時のゲインであり、t補正は、移動度のばらつきを補正する時間である。
【0099】
【数9】

【0100】
ここでこの種の画像表示装置に適用されるトランジスタは、しきい値電圧のばらつき、移動度のばらつきが大きい特徴がある。従って何ら対応策を講じない場合には、これらのばらつきにより画質が劣化する。しかしながらこの画素回路36では、しきい値電圧のばらつき、移動度のばらつきによる画質劣化を防止することができる。
【0101】
しかしながらこの画素回路36では、信号線を介して保持容量Csに設定する端子間電圧と、移動度のばらつき補正処理における帰還量とが、有機EL素子OLEDの容量の影響を受ける。その結果、リペア処理した場合には、リペアによる有機EL素子OLEDの容量の低下によりリペア画素で発光輝度が変化する。従ってこれらの影響を考慮して駆動電圧Vsigを設定することが必要になる。
【0102】
〔書き込みゲインの変動による発光輝度の変化〕
ここで説明を簡略化するために、画素回路36は、図19との対比により図20に示すタイムチャートにより動作するものとする。なおここでこの図20のタイムチャートは、移動度のばらつきを補正する処理を省略したものである。この図20の例では、トランジスタTr2をオン動作させて駆動トランジスタTr3に電源Vdd1の供給を開始する前に、書込トランジスタTr2をオフ動作させる。
【0103】
この図20の例では、駆動トランジスタTr1による駆動電流Idsは、次式により表すことができる。
【0104】
【数10】

【0105】
ここでリペアにより面積比率αの非発光領域が発生すると、有機EL素子OLEDでは対向電極の面積が(1−α)倍に低減することになる。従って有機EL素子OLEDの容量Coledは、(1−α)・Coledに低下することになる。従って(10)式中の合成容量Cは、α・Coledだけ低下し、利得gは、(C−α・Coled−Cs)/(C−α・Coled)に低下する。
【0106】
すなわち画素回路36では、書込トランジスタTr3をオン状態に設定して保持容量Csのゲート側端電圧を駆動電圧Vsigに設定すると、保持容量Csのゲート側端の電圧上昇に連動して保持容量Csのソース側端も電圧が上昇する。このソース側端の電圧上昇分は、ゲート側端電圧の電圧上昇分を容量分圧した電圧である。これにより画素回路36では、保持容量Csに設定される実効的な電圧Vdataが、有機EL素子OLEDの容量Coledに依存することになる。
【0107】
従ってリペアにより有機EL素子OLEDの容量Coledが低下すると、保持容量Csに設定される端子間電圧も変化することになる。この場合、リペア画素では、正常画素に比して保持容量Csの端子間電圧が小さくなり、発光輝度が低下することになる。
【0108】
従って単純に、有機EL素子OLEDの駆動電流Idsを、正常画素とリペア画素とで等しく設定して面積による積分輝度を等しくする場合には、画像データD1をディジタルアナログ変換処理して得られる電圧Vdataを、次式により示すように補正することが必要になる。
【0109】
【数11】

【0110】
〔負帰還補正量の変動による発光輝度の変化〕
ここで説明を簡略化するために、表示部は、図21に示す画素回路46により構成され、図22に示すタイムチャートにより動作するものとする。ここでこの画素回路46は、画素回路36の構成からトランジスタTr4を除去し、トランジスタTr5により設定する電圧をViniとし、画像データD1をディジタルアナログ変換処理して得られる電圧Vdataが直接駆動電圧Vsigとして信号線に入力される。なおここで電圧Viniは、有機EL素子OLEDのカソード電圧Vss1に、有機EL素子OLEDのしきい値電圧を加算した電圧である。
【0111】
画素回路46は、非発光期間が開始して一定時間が経過すると、トランジスタTr3及びTr5がオン状態に設定され、保持容量Csの端子電圧がそれぞれVdata及びViniに設定される。その後、画素回路46は、トランジスタTr5がオフ状態に設定される。画素回路46は、続いて保持容量Csのゲート側端を信号線に接続した状態で、一定時間の間、駆動トランジスタTr1に電源Vdd1が供給され、駆動トランジスタTr1の移動度のばらつきを補正する処理が実行される。
【0112】
これにより画素回路46では、駆動トランジスタTr1の駆動電流Idsは次式により表される。
【0113】
【数12】

【0114】
ここでリペアにより面積比率αの非発光領域が発生すると、有機EL素子OLEDでは対向電極の面積が(1−α)倍に低減することになる。従って有機EL素子OLEDの容量Coledは、(1−α)・Coledに低下することになる。従って(10)式中の合成容量Cは、α・Coledだけ低下し、利得gは、C−α・Coled−Cs)/(C−α・Coled)に低下する。また同時に、移動度を補正する期間に係るβ/2・C/t補正の項も変化することになる。
【0115】
すなわち画素回路46において、移動度の補正に係る保持容量Csの端子間電圧の補正は、駆動トランジスタTr1の移動度に応じた駆動電流で一定時間の間、保持容量Csのソース側端を駆動トランジスタTr1を介して充電することにより実行される。従って画素回路46では、この移動度の補正に係る負帰還の補正量であるβ/2・C/t補正が有機EL素子OLEDの容量Coledに依存することになる。
【0116】
従ってリペアにより有機EL素子OLEDの容量が低下すると、保持容量Csに設定される端子間電圧も変化することになる。この場合、リペア画素では、正常画素に比して保持容量Csの端子間電圧が小さくなり、発光輝度が低下することになる。
【0117】
従って単純に、有機EL素子OLEDの駆動電流Idsを、正常画素とリペア画素とで等しく設定して面積による積分輝度を等しくする場合には、画像データD1をディジタルアナログ変換処理して得られる電圧Vdataを、次式により示すように補正することが必要になる。
【0118】
【数13】

【0119】
〔書込みゲイン及び負帰還補正量の変動による発光輝度の変化〕
従って画素回路36(図18)では、書込みゲイン及び負帰還補正量の変動によりリペア画素で発光輝度が変化する。従って単純に、有機EL素子OLEDの駆動電流Idsを、正常画素とリペア画素とで等しく設定して面積による積分輝度を等しくする場合には、(11)式及び(13)式をまとめて、次式により示すように補正することが必要になる。
【0120】
【数14】

【0121】
なおここでt補正は、電圧Vdataが中間階調等の特定電圧Vdata0の場合に、移動度のばらつきを最も小さく設定できる期間である。従って次式の関係式を満足する。
【0122】
【数15】

【0123】
t補正は、この(15)式の関係を利用して(9)式を解いて得られる次式により表される。
【0124】
【数16】

【0125】
またさらに画素回路36は、第1の実施の形態について上述したと同様に、駆動トランジスタTr1による定電流駆動で有機EL素子OLEDを駆動する。従って(13)式の関係式を満足するように、駆動トランジスタTr1の特性を考慮して、非発光領域の面積比率αの分だけ駆動電圧Vsigを補正することにより、正常画素とリペア画素とで面積による積分輝度を同一に設定することができる。
【0126】
しかしながらこの画素回路36を適用した画像表示装置においても、第1の実施の形態について上述したと同様に、単純に、リペア画素における単位面積当たりの発光輝度を増大させて、面積による積分輝度が正常画素と同一に設定したのでは、リペア画素における発光領域と非発光領域とが知覚されるようになり、画質の劣化が知覚されることになる。また非発光領域の位置及び形状によって、非発光領域の見え方が異なることになる。
【0127】
そこでこの画像表示装置においても、第1の実施の形態と同様に、重み付け係数n1及びn2を計算して総合の重み付け係数が計算される。またこの総合の重み付け係数を用いて、正常画素における単位面積当たりの発光輝度から、正常画素の面積による積分輝度とリペア画素の面積による積分輝度とを同一に設定する発光輝度までの範囲で、リペア画素における発光領域の単位面積当たりの発光輝度が最適な発光輝度に設定される。
【0128】
この第3の実施の形態のように、駆動トランジスタのしきい値電圧のばらつきを補正する処理、移動度のばらつきを補正する場合にあっても、第1の実施の形態と同様の効果を得ることができる。
【0129】
<第4の実施の形態>
図23は、本発明の第4の実施の形態に係る画像表示装置に適用される画素回路を示す接続図である。この実施の形態の画像表示装置は、この画素回路56及び関連する構成が異なる点を除いて、第3の実施の形態の画像表示装置と同一に構成される。
【0130】
ここで画素回路56は、有機EL素子OLEDのカソードが所定電圧Vss1に保持され、有機EL素子OLEDのアノードが駆動トランジスタTr1のソースに接続される。画素回路56は、この駆動トランジスタTr1のドレインに走査線を介して駆動信号VSCAN2(i)が供給される。また画素回路56は、この駆動トランジスタTr1のゲート及びソースに、駆動トランジスタTr1のゲートソース間電圧を保持する保持容量Csが接続される。
【0131】
画素回路56は、発光期間の間、駆動信号VSCAN2(i)が電源電圧Vddv2に設定される(図24(B))。これにより画素回路56は、発光期間の間、保持容量Csの端子間電圧によるゲートソース間電圧による駆動電流により駆動トランジスタTr1で有機EL素子OLEDを電流駆動する。
【0132】
また画素回路56は、走査線を介して供給される書込信号VSCAN1(i)によりオンオフ動作する書込トランジスタTr3を介して、保持容量Csのゲート側端が信号線に接続される。また所定の固定電圧Vofsを間に挟んで駆動電圧Vsig(=Vofs+Vdata)が順次信号線に出力される(図24(C))。
【0133】
画素回路56は、非発光期間が開始すると、駆動信号VSCAN2(i)が所定電圧Vssv2に設定される。ここで電圧Vssv2は、駆動トランジスタTr1のソースをドレインとして機能させるのに十分に低い電圧である(図24(A)及び(F))。これにより画素回路56は、非発光期間が開始すると、駆動トランジスタTr1を介して有機EL素子OLEDの蓄積電荷が放電し、有機EL素子OLEDのアノード電圧が立ち下がって有機EL素子OLEDが発光を停止する(図24(D)及び(E))。また保持容量Csのソース側端の電圧がほぼ電圧Vssv2に設定され、十分に低い電圧に設定される。
【0134】
また続いて画素回路56は、信号線が電圧Vofsに設定されている期間で、書込トランジスタTr3がオン状態に設定され、保持容量Csのゲート側端の電圧が電圧Vofsに設定される(図24(A))。これにより画素回路56は、保持容量Csの端子間電圧が電圧Vofs−Vssv2に設定される。ここで画素回路56は、この電圧Vofs−Vssv2が駆動トランジスタTr1のしきい値電圧Vthより十分に大きな電圧となるように、電圧Vofs、Vssv2が設定される(図24(D)及び(E))。またこれにより非発光期間が開始した後、保持容量Csのゲート側端の電圧を電圧Vofsに設定するまでの期間が、駆動トランジスタTr1のしきい値電圧のばらつき補正処理の準備処理の期間に設定される(図24(F))。
【0135】
画素回路56は、続いて駆動信号VSCAN2(i)が電源電圧Vddv2に設定される(図24(B))。これにより画素回路56は、駆動トランジスタTr1を介して保持容量Csの端子間電圧を放電させ、保持容量Csの端子間電圧が駆動トランジスタTr1のしきい値電圧Vthに設定される。
【0136】
続いて画素回路56は、書込トランジスタTr3がオフ状態に設定された後、信号線が駆動電圧Vsigに設定されている期間において、所定期間の間、書込トランジスタTr3がオン状態に設定される。これにより画素回路56は、駆動トランジスタTr1の移動度のばらつきを補正する処理を実行すると共に、保持容量Csのゲート側端の電圧を階調電圧Vsigに設定して有機EL素子OLEDの階調を設定する。
【0137】
〔発光輝度の変化〕
この画素回路56において、駆動トランジスタTr1の駆動電流は(9)式により表される。従って第3の実施の形態の画素回路36と同一に、リペアにより有機EL素子OLEDの容量Coledが低下すると、保持容量Csに設定される端子間電圧も変化することになる。この場合、リペア画素では、正常画素に比して保持容量の端子間電圧が小さくなり、発光輝度が低下することになる。
【0138】
従って有機EL素子OLEDの駆動電流Idsを設定し、正常画素とリペア画素とで面積による積分輝度を等しくする場合には、(14)式を満足するように電圧Vdataを補正することが必要になる。またさらに単純に、リペア画素における単位面積当たりの発光輝度を増大させて、面積による積分輝度が正常画素と同一に設定したのでは、リペア画素における発光領域と非発光領域とが知覚されるようになり、画質の劣化が知覚されることになる。また非発光領域の位置及び形状によって、非発光領域の見え方が異なることになる。
【0139】
そこでこの画像表示装置においても、第1の実施の形態と同様に、重み付け係数n1及びn2を計算して総合の重み付け係数が計算される。またこの総合の重み付け係数を用いて、正常画素における単位面積当たりの発光輝度から、正常画素の面積による積分輝度とリペア画素の面積による積分輝度とを同一に設定する発光輝度までの範囲で、リペア画素における発光領域の単位面積当たりの発光輝度を最適な発光輝度に設定される。
【0140】
この第4の実施の形態のように、画素回路を2つのトランジスタにより構成し、駆動トランジスタのドレイン電圧及び書込トランジスタの制御により保持容量の端子間電圧を駆動トランジスタのしきい値電圧以上の電圧に設定して駆動トランジスタのしきい値電圧のばらつきを補正する場合にあっても、第1の実施の形態と同様の効果を得ることができる。
【0141】
<第5の実施の形態>
図25は、本発明の第5の実施の形態に係る画像表示装置を示すブロック図である。この画像表示装置61は、画素輝度調整情報部22及び輝度調整演算回路23に代えて、画素輝度調整情報部62及び輝度調整演算回路63が設けられる点を除いて第1〜第4の実施の形態の画像表示装置と同一に構成される。
【0142】
画素輝度調整情報部62は、位置情報、非発光領域の面積比率、若しくは非発光領域の面積比率及び輝度調整量の情報がリペア画素毎に記録される。輝度調整演算回路63は、この画素輝度調整情報部62に記録された情報を用いた演算処理により、第1〜第4の実施の形態と同様に、リペア画素に対応する画像データD1を補正して駆動電圧を設定する。
【0143】
この実施の形態によれば、非発光領域の面積比率、若しくは非発光領域の面積比率及び輝度調整量の情報を用いた演算処理によりリペア画素の発光輝度を補正することにより、より適切にリペア画素の発光輝度を補正し、一段と画質劣化を防止することができる。
【0144】
<第6の実施の形態>
図26は、本発明の第6の実施の形態に係る画像表示装置を示すブロック図である。この画像表示装置71は、画素輝度調整情報部22及び輝度調整演算回路23に代えて、画素輝度調整情報部72及び輝度調整演算回路73が設けられる点を除いて第1〜第4の実施の形態の画像表示装置と同一に構成される。
【0145】
画素輝度調整情報部72は、第1〜第4の実施の形態と同様にして輝度レベル100〔%〕及び10〔%〕でそれぞれ最適な輝度調整量が検出され、リペア画素毎に、この輝度調整量が記録される。輝度調整演算回路63は、この画素輝度調整情報部72に記録された輝度調整量の情報を用いた直線補間により、リペア画素に設定する階調に対応する輝度調整量が求められる。またこの求めた輝度調整量で対応する画像データD1を乗算して駆動電圧を生成し、これによりリペア画素の発光輝度を補正する。なお直線補間演算処理に代えて、二次関数を用いた補間演算処理により、さらには種々の関数を用いた演算処理により輝度調整量を計算する場合等、種々の演算手法を適用することができる。
【0146】
この実施の形態によれば、輝度調整量を用いた演算処理によりリペア画素の発光輝度を補正することにより、より適切にリペア画素の発光輝度を補正し、一段と画質劣化を改善することができる。
【0147】
<第7の実施の形態>
ところでリペア画素では、単位面積当たりの発光輝度が通常画素に比して増大することにより、図27に示すように、正常画素に比して経時変化による発光輝度の低下が著しくなる。従って当初、リペア画素の発光輝度を最適に設定していても、時間の経過により滅点として視認される恐れがある。そこでこの実施の形態の画像表示装置は、内蔵のタイマにより使用開始時からの経過時間を計測する。さらにこの経過時間により、当初設定したリペア画素の輝度調整量を補正してリペア画素の発光輝度を設定する。これにより時間が経過した場合にあっても、リペア画素の発光輝度を最適に設定する。
【0148】
すなわち単位面積当たりの発光輝度を1/(1−α)倍に設定した場合に、時間Tだけ経過した時点の発光輝度L(輝度調整1/(1−α)倍、T)は、L(通常画素、(((1−α)/1)β)・T)により表される。なおここでβは、加速係数である。従って輝度調整量をさらに{L(通常画素、(((1−α)/1)β)・T)}/{L(通常画素、(T)}倍に設定することにより、時間が経過した場合にあっても、リペア画素の発光輝度を最適に設定することができる。
【0149】
以上の構成によれば、リペア画素の発光輝度の補正量を時間の経過により増大させ、リペア画素における正常画素に対する経時変化による発光輝度の低下を防止することにより、一段と画質を改善することができる。
<変形例>
なお上述の実施の形態においては、リペア画素についてのみ輝度調整量の情報を保持する場合について述べた。しかしながら本発明はこれに限らず、表示画面の全ての画素について、又は表示画面の所定領域の全ての画素について、輝度調整量の情報を保持するようにしてもよい。なおこの場合、シェーディング補正用の輝度調整量の情報を併せて記録するようにして、一段と画質を向上することができる。
【0150】
また上述の実施の形態においては、滅点、輝点として観察される欠陥画素をリペアする場合について述べた。しかしながら本発明はこれに限らず、経時変化による特性劣化が局所的に異なる部位をリペアにより非発光部に設定する場合にも広く適用することができる。
【0151】
また上述の実施の形態においては、滅点、輝点として観察される欠陥画素をリペアすることを前提に、リペア画素の発光輝度を補正する場合について述べた。しかしながら本発明はこれに限らず、リペアの処理しない場合にも広く適用することができる。すなわち部分的に発光輝度が低い低輝度領域を有する異常画素に本発明を適用して画質を向上することができる。
【0152】
また上述の実施の形態においては、有機EL素子を用いたアクティブマトリックス型の画像表示装置に本発明を適用する場合について述べた。しかしながら本発明はこれに限らず有機EL素子を用いたパッシブマトリックス型の画像表示装置、有機EL素子以外の発光素子を用いた画像表示装置等にも広く適用することができる。
【産業上の利用可能性】
【0153】
本発明は、有機EL素子を用いた画像表示装置に適用することができる。
【図面の簡単な説明】
【0154】
【図1】本発明の第1の実施の形態に係る画像表示装置を示すブロック図である。
【図2】リペア画素の説明に供する平面図である。
【図3】有機EL素子の定電流駆動の説明に供する特性曲線図である。
【図4】リペア画素の有機EL素子特性を示す特性曲線図である。
【図5】リペア画素における発光輝度の説明に供する特性曲線図である。
【図6】リペア画素における発光輝度の説明に供する平面図である。
【図7】最適な発光輝度の説明に供する平面図である。
【図8】非発光領域の位置による輝度調整の説明に供する平面図である。
【図9】図8の発光時の見え方の説明に供する平面図である。
【図10】非発光領域の位置の説明に供する平面図である。
【図11】非発光領域の位置による重み付け係数を示す特性曲線図である。
【図12】非発光領域の形状による輝度調整の説明に供する平面図である。
【図13】図12の発光時の見え方の説明に供する平面図である。
【図14】非発光領域の境界長による重み付け係数を示す特性曲線図である。
【図15】具体的な発光輝度の説明に供する平面図である。
【図16】図15とは異なる例による具体的な発光輝度の説明に供する平面図である。
【図17】有機EL素子の定電圧駆動の説明に供する特性曲線図である。
【図18】本発明の第3の実施の形態に係る画像表示装置の画素回路を示す接続図である。
【図19】図18の画素回路の動作の説明に供する信号波形図である。
【図20】書き込みゲインの変動による発光輝度の変化の説明に供する信号波形図である。
【図21】定電流駆動におけるリペアによる発光輝度の変化の説明に供する接続図である。
【図22】負帰還補正量の変動による発光輝度の変化の説明に供する信号波形図である。
【図23】本発明の第4の実施の形態に係る画像表示装置に適用される画素回路を示す接続図である。
【図24】図23の画素回路の動作の説明に供する信号波形図である。
【図25】本発明の第5の実施の形態に係る画像表示装置を示すブロック図である。
【図26】本発明の第6の実施の形態に係る画像表示装置を示すブロック図である。
【図27】本発明の第6の実施の形態に係る画像表示装置の動作の説明に供する特性曲線図である。
【図28】従来の画像表示装置を示すブロック図である。
【図29】パッシブマトリックス型の画像表示装置の説明に供する接続図である。
【図30】アクティブマトリックス型の画像表示装置の説明に供する接続図である。
【図31】リペア処理の説明に供する断面図である。
【符号の説明】
【0155】
1、21、61、71……画像表示装置、2……表示部、3、24……駆動回路、22、62、72……画素輝度調整情報部、23、63、73……輝度調整演算回路、36、46……画素回路、Cs……保持容量、OLED……有機EL素子、Tr1〜Tr5……トランジスタ


【特許請求の範囲】
【請求項1】
マトリックス状に画素を配置した表示部と、
画像データに応じて前記表示部に配置した画素を駆動し、前記表示部で所望の画像を表示する駆動部とを有し、
前記駆動部は、
輝度の低い低輝度領域又は非発光領域を部分的に有する異常画素の輝度を調整する輝度調整部を有し、
前記輝度調整部は、
前記異常画素における前記低輝度領域又は前記非発光領域と発光領域との境界長が長くなるに従って補正量が増大するように設定して、前記異常画素の面積による積分輝度、又は前記異常画素の面積及び時間による積分輝度を増大させ、前記輝度調整部により前記異常画素の輝度を調整しない場合に比して前記低輝度領域又は前記非発光領域を視認し難くする
画像表示装置。
【請求項2】
前記輝度調整部は、
さらに前記低輝度領域又は前記非発光領域が画素の中央より遠ざかるに従って補正量が増大するように設定して、前記異常画素の面積による積分輝度、又は前記異常画素の面積及び時間による積分輝度を増大させる
請求項1に記載の画像表示装置。
【請求項3】
前記輝度調整部は、
正常画素における面積による積分輝度、又は前記正常画素における面積及び時間による積分輝度以下の範囲で、前記異常画素の発光領域における単位面積当たりの発光輝度を対応する正常画素における単位面積当たりの発光輝度に比して増大させて、前記異常画素の発光輝度を調整する
請求項1に記載の画像表示装置。
【請求項4】
前記輝度調整部は、
正常画素における面積による積分輝度、又は前記正常画素における面積及び時間による積分輝度以下の範囲で、前記異常画素の発光領域における単位面積当たりの発光輝度を対応する正常画素における単位面積当たりの発光輝度に比して増大させて、前記異常画素の発光輝度を調整する
請求項2に記載の画像表示装置。
【請求項5】
前記異常画素が、リペア画素である
請求項1に記載の画像表示装置。
【請求項6】
前記表示部が、有機EL素子を用いたパッシブマトリックス型の表示部である
請求項1に記載の画像表示装置。
【請求項7】
前記表示部が、有機EL素子を用いたアクティブマトリックス型の表示部である
請求項1に記載の画像表示装置。
【請求項8】
マトリックス状に画素を配置した表示部と、
画像データに応じて前記表示部に配置した画素を駆動し、前記表示部で所望の画像を表示する駆動部とを有する画像表示装置の駆動方法において、
輝度の低い低輝度領域又は非発光領域を部分的に有する異常画素の輝度を調整する輝度調整ステップを有し、
前記輝度調整ステップは、
前記異常画素における前記低輝度領域又は前記非発光領域と発光領域との境界長が長くなるに従って補正量が増大するように設定して、前記異常画素の面積による積分輝度、又は前記異常画素の面積及び時間による積分輝度を増大させ、前記異常画素の輝度を調整しない場合に比して前記低輝度領域又は前記非発光領域を視認し難くする
画像表示装置の駆動方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate


【公開番号】特開2010−101925(P2010−101925A)
【公開日】平成22年5月6日(2010.5.6)
【国際特許分類】
【出願番号】特願2008−270515(P2008−270515)
【出願日】平成20年10月21日(2008.10.21)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】