説明

膜電極接合体および燃料電池

【課題】安定した高い出力を得ることができる燃料電池用の膜電極接合体(MEA)を提供する。
【解決手段】このMEA1は、アノード触媒層2とアノードガス拡散層3を有するアノード4と、カソード触媒層5とカソードガス拡散層6を有するカソード7、およびアノード触媒層2とカソード触媒層5との間に挟持されたプロトン伝導性の電解質膜8を備えている。そして、アノード4とカソード7の少なくとも一方において、ガス拡散層3,6(アノードガス拡散層3および/またはカソードガス拡散層6)と触媒層2,5(アノード触媒層2および/またはカソード触媒層5)との間に、粒子状カーボンを含み繊維状カーボンを含まない第1の層9a,10aと、粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層9b,10bから成る微細多孔層9,10を有している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池用の膜電極接合体と燃料電池に係り、特に液体燃料直接供給型の燃料電池用の膜電極接合体と燃料電池に関する。
【背景技術】
【0002】
近年、電子技術の進歩により、電子機器の小型化、高性能化、ポータブル化が進んでおり、携帯用電子機器においては、使用される電池の高エネルギー密度化への要求が高まっている。そのため、軽量で小型でありながら高容量の二次電池が要求されている。
【0003】
このような状況のもと、リチウムイオン二次電池に代わって小型の燃料電池が注目を集めている。特に、メタノールを燃料として用いた直接メタノール型燃料電池(DMFC:Direct Methanol Fuel Cell)は、エネルギー密度の高いメタノールを燃料として使用し、メタノールから電極触媒上で直接電流を取り出すことができる。そのため、水素ガスを使用する燃料電池に比べて、水素ガス取り扱いの困難さがないうえに、有機燃料を改質して水素を作り出すための改質器が不要で小型化が可能であり、かつ出力密度が高いので、携帯機器用の電源として有望視されている。
【0004】
DMFCの主発電部は、膜電極接合体(MEA:Membrane Electrode Assembly)と呼ばれ、アノード(燃料極)ガス拡散層、アノード触媒層、プロトン伝導性の高分子電解質膜、カソード(空気極)触媒層、およびカソードガス拡散層がこの順で積層された構造を有する。電池反応は、貴金属触媒とこの触媒を担持するカーボンなどの導電性担体、およびプロトン伝導性の電解質からなる触媒層において進行する。具体的には、アノード触媒層で燃料ガスの酸化分解反応が進行し、プロトンおよび電子が生成される。このプロトンは高分子電解質膜を経てカソード触媒層に達し、一方電子は外部回路を通ってカソード触媒層に達する。そして、カソード触媒層において、供給される空気中の酸素が前記プロトンおよび電子と反応し、酸素が還元されて水が生成される。
【0005】
このように構成されるMEAにおいては、触媒の使用量の低減やガス透過性の向上などの観点から、各層の厚さを極力薄くするとともに、適度の水分を保持し内部が加湿された状態を維持することが望まれている。
【0006】
従来から、MEA内で生成した水を保持するために、アノード側とカソード側の少なくとも一方において、ガス拡散層の触媒層側の面にカーボン粉末を含む微細多孔層を形成した構造のMEAが提案されている。ここで微細多孔層は、少なくとも導電性を有しており、隣接するガス拡散層よりも空隙が微細で高い強度を有する層をいう。
【0007】
このような構造のMEAでは、ガス拡散層の導電性を向上させるとともに、水の保持性を向上させて水の散逸を防ぐことできる。また、アノード側に微細多孔層を設けることで、過剰な燃料供給を抑制することができる。
【0008】
しかしながら、このような従来のMEAでは、カーボン粉末を含む微細多孔層の表面にクラック(割れ)が発生しやすいため、前記した水分保持などの効果が十分には得られず、発電性能や耐久性が悪化するおそれがあった。また、クラックのないカーボン粉末の層を形成するために、スプレー塗布などにより形成することが考えられるが、スプレー塗布による方法は、噴霧時のスラリーの飛散により作業環境を悪化させやすいという問題があった。さらに、スプレー塗布によるカーボン粉末を含む層の形成だけでは、MEAに必要かつ十分な水分保持性を付与することは難しかった。
【0009】
さらに、MEAのアノードとカソードの少なくとも一方において、触媒層とガス拡散層との間に繊維状カーボン材料を含む導電性補強層(微細多孔層)を介在させた構造が提案されている(例えば、特許文献1参照)。
【0010】
しかしながら、この燃料電池では、微細多孔層の表面にクラックが発生することはないが、微細多孔層の水分保持性が不足するため、十分な出力特性(発電性能)や出力の耐久性が得られないという問題があった。
【特許文献1】特開2006−339124公報
【発明の開示】
【発明が解決しようとする課題】
【0011】
本発明は、このような問題を解決するためになされたもので、安定した高い出力を得ることができる燃料電池用の膜電極接合体を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記目的を達成するために、本発明の膜電極接合体は、それぞれがガス拡散層と触媒層を備えるアノードおよびカソードと、前記アノードの触媒層と前記カソードの触媒層との間に挟持されたプロトン伝導性の電解質膜を具備する膜電極接合体であり、前記アノードと前記カソードの少なくとも一方は、前記ガス拡散層と前記触媒層との間に、粒子状カーボンを含み繊維状カーボンを含まない第1の層と、粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層が、前記第2の層が前記触媒層側になるように積層された微細多孔層を有することを特徴とする。
【0013】
また、本発明の燃料電池は、アノードとカソードと前記アノードと前記カソードとに挟持されたプロトン伝導性の電解質膜とを有する膜電極接合体と、前記膜電極接合体の前記アノードに燃料を供給する燃料供給機構とを具備する燃料電池であり、前記膜電極接合体は、前記した本発明の膜電極接合体であることを特徴とする。
【発明の効果】
【0014】
本発明の膜電極接合体によれば、アノードとカソードの少なくとも一方において、ガス拡散層と触媒層との間に、粒子状カーボンを含み繊維状カーボンを含まない第1の層(下層)と、粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層(上層)から構成される微細多孔層が、第2の層が触媒層側になるように設けられているので、この微細多孔層が十分な水分保持性を有し、微細多孔層が設けられた電極に必要かつ十分な水分保持性を付与する。したがって、高い出力特性(発電性能)と優れた出力の耐久性を得ることができる。また、微細多孔層の塗布・形成の作業性を改善することできる。
【0015】
また本発明によれば、このような膜電極接合体を備えているので、小型で性能が高く、安定した高い出力を供給可能な燃料電池を実現することができる。
【発明を実施するための最良の形態】
【0016】
以下、本発明の実施の形態について図面を参照して説明する。
【0017】
図1は、本発明に係る第1の実施形態であるDMFC用膜電極接合体(MEA)の構成を模式的に示す断面図である。
【0018】
第1の実施形態のMEA1は、図1に示すように、アノード(燃料極)触媒層2とアノードガス拡散層3を有するアノード4と、カソード触媒層5とカソードガス拡散層6を有するカソード7、およびアノード触媒層2とカソード触媒層5との間に挟持されたプロトン(水素イオン)伝導性の電解質膜8を備えている。そして、アノード4とカソード7の少なくとも一方において、ガス拡散層3,6(アノードガス拡散層3および/またはカソードガス拡散層6を示す。以下同じ。)と触媒層2,5(アノード触媒層2および/またはカソード触媒層5を示す。以下同じ。)との間に、粒子状カーボンを含み繊維状カーボンを含まない第1の層9a,10aと、粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層9b,10bから成る微細多孔層9,10を有している。ここで、アノード4側に設けられた第1の層を9a、第2の層を9b、微細多孔層を9でそれぞれ示し、カソード7側に設けられた第1の層を10a、第2の層を10b、微細多孔層を10でそれぞれ示す。なお、微細多孔層9,10は、アノード4とカソード7の少なくとも一方に設けられていればよいが、図1に示すように、アノード4とカソード7の両方に設けた場合には、より出力特性の良好なMEA1が得られる。
【0019】
微細多孔層9,10を構成する下層である第1の層9a,10aは、ガス拡散層3,6であるカーボンペーパなどの内部に浸透し空隙内に充填された層である。この第1の層9a,10aの上に第2の層9b,10bが積層して形成されており、第2の層9b,10bが触媒層側に、すなわち触媒層2,5と接するように配置されている。第1の層9a,10aと第2の層9b,10bから成る微細多孔層9,10は、発電システムまたはセル構成によるが、後述するように、フッ素を含む撥水性の高分子または親水性高分子を含有していてもよい。なお、このような微細多孔層9,10が触媒層2,5とガス拡散層3,6との間に介在しても、これらの層の間のガス拡散性や電子移動パスは十分に確保される。また、粒子状カーボンと繊維状カーボンを含む第2の層9b,10bが触媒層2,5と接するように配置されているので、所望の導電性および強度が確保される。
【0020】
以下、第1の実施形態のMEA1の構成を構成要素ごとに説明する。まず、微細多孔層9,10について説明する。
【0021】
アノード4とカソード7の少なくとも一方に設けられた微細多孔層9,10は、粒子状カーボンを含み繊維状カーボンを含まない第1の層9a,10aと、この第1の層9a,10aの上に積層して形成された粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層9b,10bをそれぞれ有する。第1の層9a,10aはガス拡散層3,6に浸透するように含浸・形成されている。
【0022】
第1の層9a,10aと第2の層9b,10bに含有される粒子状カーボンは、球状、楕円球状、円筒体状などの粒子形状を有し、長径/短径の比が1に近い値(例えば、1〜5)を有するカーボン材料である。粒子状カーボンの直径(長径)については特に限定されないが、10〜1000nmの範囲が好ましく、より好ましい範囲は20〜800nmである。10nmよりも直径が小さい粒子状カーボンは現実的に入手が困難である。一方、直径が1000nmを超えると、ガス拡散層3,6に浸透させて一体化させることが難しく、ガス拡散層3,6との接触面の電気抵抗が増大するおそれがある。
【0023】
粒子状カーボンとしては、粒子状の黒鉛(例えば、天然黒鉛や人工黒鉛)、カーボンブラックが挙げられる。より具体的には、オイルファーネスブラック、チャネルブラック、ランプブラック、サーマルブラック、アセチレンブラックなどが例示される。これらの粒子状カーボンは、1種のみを単独で使用してもよいが、2種以上を併用してもよい。
【0024】
このようにガス拡散層3,6との密着性が高く界面の接触抵抗が低い第1の層9a,10aの上に、粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層9b,10bを形成することで、MEA1の出力特性を向上させることができる。
【0025】
第2の層9b,10bにのみ含有される繊維状カーボンは、繊維形状を有するカーボン材料である。繊維状カーボンの直径(外径)については特に制限はないが、5〜500nmの範囲が好ましく、より好ましい範囲は20〜200nmである。5nmよりも直径が小さい繊維状カーボンは現実的に入手が困難である。一方、直径が500nmを超えると、層内に収まりきらず表面が凸凹になるため、触媒層2,5との接触面に不要な抵抗が生じるおそれがある。また、繊維状カーボンの長さは、アスペクト比(長さ/外径の比)が5〜200の範囲にあるようにすることが好ましい。
【0026】
繊維状カーボンの具体例としては、カーボンナノファイバ、カーボンナノチューブ、カーボンナノホーン、カーボンナノコイル、カーボンシルク、気相成長炭素繊維(例えば、VGCF(商品名;昭和電工社製))などが例示される。これらの繊維状カーボンは、1種のみを単独で使用してもよいが、2種以上を併用してもよい。
【0027】
第2の層9b,10bにおける繊維状カーボンの含有割合については特に限定されないが、十分な強度と水分保持性を付与するという観点から、繊維状カーボンの含有割合は、第2の層全体の5〜60重量%とすることが好ましい。より好ましい含有割合は20〜40重量%である。繊維状カーボンの含有割合が5重量%未満の場合には、第2の層9b,10bの表面にクラックが発生しやすくなり、水の保持性が低下する。繊維状カーボンの含有割合が60重量%を超えると、第2の層9b,10bの密度が低くなり、水が層内に滞留しすぎるため、拡散性が低下して好ましくない。
【0028】
また、第2の層9b,10bに良好な導電性と水分保持性を持たせるために、粒子状カーボンの含有割合は、第2の層9b,10b全体の5〜60重量%(但し、繊維状カーボンの含有割合との合計が100重量%を超えない。)とすることが好ましい。より好ましい含有割合は5〜15重量%である。
【0029】
さらに、第2の層9b,10bの厚さは20〜50μmであることが好ましく、この第2の層9b,10bと前記した第1の層9a,10aから成る微細多孔層9,10全体の厚さは20〜40μmであることが好ましい。第2の層9b,10bの厚さが薄すぎると、良好な導電性および水分保持性が得られないおそれがある。一方、第2の層9b,10bの厚さが厚すぎると、ガス拡散性能や導電性が低下するおそれがある。
【0030】
第1の層9a,10aは、前記した粒子状カーボンの他に、撥水性を有するフッ素系高分子またはプロトン伝導性を有する電解質を含有していてもよい。第2の層9b,10bも、粒子状カーボンと繊維状カーボンの他に、フッ素系の親水性高分子または撥水性高分子を含有していてもよい。より具体的には、アノード4側に設けられる微細多孔層9では、第1の層9aおよび第2の層9bがプロトン伝導性の電解質を含有することが好ましいが、特に限定されるものではない。また、カソード7側に設けられる微細多孔層10においては、第1の層10aおよび第2の層10bが撥水性のフッ素系高分子を含有することが好ましい。
【0031】
ここで、フッ素系の親水性高分子としては、例えば、パーフルオロスルホン酸重合体のようなスルホン酸基を有するフッ素系樹脂(商品名ナフィオン(デュポン社製)、商品名フレミオン(旭硝子社製)など)が好ましく、フッ素系以外の材料としては、スルホン酸基を有する炭化水素系樹脂、タングステン酸やリンタングステン酸、硝酸リチウムなどの無機物などが挙げられる。また、撥水性を有するフッ素系高分子材料としては、ポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂が挙げられる。
【0032】
第1の層9a,10aおよび第2の層9b,10bにおけるプロトン伝導性の電解質またはフッ素系高分子の含有割合は、成形性を十分に確保するという観点から、層全体の10重量%以上とすることが好ましく、より好ましくは30重量%以上とする。一方、プロトン伝導性の電解質またはフッ素系高分子の配合量が多すぎると、導電性が十分に確保されないので、70重量%以下にすることが好ましい。
【0033】
次に、第1の実施形態のMEA1における微細多孔層9,10以外の構成要素について説明する。
【0034】
プロトン伝導性の電解質膜8は、アノード触媒層2とカソード触媒層5との間に配置されるプロトン伝導性の膜である。プロトン伝導性の電解質膜8としては、例えば、パーフルオロスルホン酸重合体のようなスルホン酸基を有するフッ素系樹脂(商品名ナフィオン(デュポン社製)、商品名フレミオン(旭硝子社製)など)、スルホン酸基を有する炭化水素系樹脂などが挙げられるが、これらに限定されるものではない。
【0035】
アノード触媒層2とカソード触媒層5は、電極反応を媒介する触媒が配置される部位であり、プロトン伝導性の電解質膜8を挟持するように配置される。これらの触媒層2,5は触媒成分を含有する。触媒成分は、下記の式(1)で示されるメタノールの内部改質反応
CHOH+HO → CO+6H+6e ………(1)
および式(2)で示される酸素の還元反応
(3/2)O+6H+6e → 3HO ………(2)
の少なくとも一方の反応を促進し得る材料から構成される。
【0036】
例えば、白金族元素であるPt、Ru、Rh、Ir、Os、Pdなどの単体金属、これらの白金族元素を含有する合金などを挙げることができる。アノード触媒層2とカソード触媒層5とで、含まれる触媒成分は同一であってもよいし異なっていてもよく、組成は特に制限されない。アノード触媒層2は、触媒活性の観点からは白金、白金合金、パラジウム合金などを多く含有することが好ましく、製造コストの観点からはパラジウム合金(例えば、パラジウム−コバルト合金)を多く含有することが好ましい。カソード触媒層5は、触媒活性の観点から、白金または白金合金(例えば、白金−イリジウム合金や白金−ロジウム合金)を多く含むことが好ましい。また、これらの触媒の微粒子を導電性担体に担持した担持触媒を使用してもよい。導電性担体としては、活性炭や黒鉛などの粒子状のカーボンまたは繊維状のカーボンが使用される。
【0037】
アノード触媒層2およびカソード触媒層5には、これらの触媒成分とともに、プロトン伝導性を有する電解質を含有することができる。プロトン伝導性の電解質は、発電の進行に伴って、アノード触媒層→プロトン伝導性の電解質膜→カソード触媒層と移動するプロトンの移動度を向上させる役割を果たす。触媒層に含有されるプロトン伝導性電解質としては、上述したプロトン伝導性の電解質膜8を構成する高分子電解質と同種のものを使用することができる。
【0038】
アノード触媒層2およびカソード触媒層5における前記触媒成分、導電性担体であるカーボン材料、およびプロトン伝導性の電解質の配合割合については、特に限定されない。また、アノード触媒層2およびカソード触媒層5は、必ずしも1層である必要はなく、2層以上が積層された多層構造であってもよい。このとき、多層構造を構成する各層の間で、例えば触媒含有量やカーボン材料の種類を変化させてもよい。
【0039】
アノード4およびカソード7のガス拡散層は、MEA1に供給されたガス(アノード4では水素含有ガス、カソード7では酸素含有ガス)を分散させて、触媒層へと供給する機能を有する。すなわち、アノードガス拡散層3は、アノード触媒層2に燃料ガスを均一に供給するとともに、アノード触媒層2の集電体としての機能を兼ね備えている。また、カソードガス拡散層6は、カソード触媒層5に酸化剤である空気を均一に供給するとともに、カソード触媒層5の集電体としての機能を兼ね備えている。
【0040】
アノードガス拡散層3およびカソードガス拡散層6は、いずれも導電性材料から構成されている。導電性材料としては公知の材料を用いることができるが、原料ガスを触媒へ効率的に輸送するために、多孔質のカーボン織布またはカーボンペーパの使用が好ましい。アノードガス拡散層3およびカソードガス拡散層6の具体的な形態としては、カーボンペーパ、カーボンクロス、カーボン不織布、炭素製の織物、紙状抄紙体、フェルトなどが挙げられる。
【0041】
アノードガス拡散層3およびカソードガス拡散層6は、電子伝導性、撥水性などの機能を有することが好ましい。これらのガス拡散層が優れた電子伝導性を有していることで、発電反応により生じた電子の効率的な運搬が達成され、燃料電池の性能が向上する。また、カソードガス拡散層6が高い撥水性を有していると、カソードで生成した水が効率的に排出されるという利点がある。
【0042】
アノードガス拡散層3およびカソードガス拡散層6に撥水性を付与するには、例えば、カーボンペーパなどの導電性材料をポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂を含む溶液中に含浸させ、大気中または窒素などの不活性ガス中で乾燥させることにより、前記多孔質の導電性材料を撥水化処理する。場合によっては、アノードガス拡散層3およびカソードガス拡散層6を構成する材料に親水化処理を施こしてもよい。
【0043】
本発明の第1の実施形態においては、このように構成されるアノードガス拡散層3とカソードガス拡散層6の少なくとも1方において、触媒層側の面に、粒子状カーボンのみを含む第1の層9a,10aと粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層9b,10bとを積層して成る微細多孔層9,10が、第2の層9b,10bが触媒層側になるように設けられている。
【0044】
こうして、アノードガス拡散層3/アノード側の微細多孔層9(第1の層9a)/アノード側の微細多孔層9(第2の層9b)/アノード触媒層2/プロトン伝導性の電解質膜8/カソード触媒層5/カソード側の微細多孔層10(第2の層10b)/カソード側の微細多孔層10(第1の層10a)/カソードガス拡散層6の順に積層されたMEA1が得られる。
【0045】
本発明の第1の実施形態においては、アノードガス拡散層3とカソードガス拡散層6の少なくとも1方において、触媒層2,5とガス拡散層3,6との間に、粒子状カーボンのみを含む第1の層9a,10aと粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層9b,10bとを積層して成る微細多孔層9,10が設けられているので、導電性を向上させることができるうえに、微細多孔層9,10に必要かつ十分な(適度な)水分保持性を持たせることができる。
【0046】
すなわち、粒子状カーボンのみを含む第1の層9a,10aは、カーボンペーパなどのガス拡散層3,6に含浸・浸透させて一体化することができるので、ガス拡散層との密着性が良好で界面の接触抵抗が低い第1の層9a,10aが得られる。そして、その上に粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層9b,10bを形成することで、この第2の層9b,10b自体が必要かつ十分な(適度な)水分保持性を有するうえに、表面にクラック(割れ)が発生することがないので、MEA1の出力特性および出力の耐久性を向上させることができる。
【0047】
次に、このように構成される第1の実施形態のMEA1を製造する方法について説明する。なお、実施形態のMEA1を製造する方法は以下の方法に限定されず、その他の方法を用いることもできる。
【0048】
実施形態のMEA1は、粒子状カーボンを含み繊維状カーボンを含まないスラリー(以下、粒子状カーボンスラリーと示す。)と、粒子状カーボンと繊維状カーボンをそれぞれ含むスラリー(繊維状カーボン含有スラリーと示す。)を調製し、アノードガス拡散層3とカソードガス拡散層6の少なくとも一方の上に塗布し乾燥させて、第1の層9a,10aと第2の層9b,10bが積層された微細多孔層9,10を形成する工程(微細多孔層形成工程)と、この微細多孔層9,10の上に触媒を含むスラリーを塗布し乾燥させて触媒層2,5を形成し、ガス拡散層−微細多孔層−触媒層の積層体(電極集合体)を得る工程(電極形成工程)と、アノード4側とカソード7側の電極集合体とプロトン伝導性の電解質膜8とを、それぞれの電極集合体の触媒層がプロトン伝導性の電解質膜8に接するように積層し、積層方向にホットプレスする工程(ホットプレス工程)、を順に行うことにより製造される。以下、工程順に詳細に説明する。
【0049】
[微細多孔層形成工程]
まず、粒子状カーボンスラリーと繊維状カーボン含有スラリーを調製する。粒子状カーボンスラリーは、溶媒としてイオン交換水、アルコールなどを使用し、粒子状カーボンとフッ素系高分子またはプロトン伝導性の電解質をそれぞれ添加し、混合・分散させることにより調製される。また、繊維状カーボン含有スラリーは、溶媒(イオン交換水、アルコールなど)に粒子状カーボンと繊維状カーボンおよびフッ素系の親水性高分子あるいは撥水性高分子を添加し、混合・分散させることにより調製される。
【0050】
ここで、粒子状カーボンと繊維状カーボンおよびフッ素系フッ素系の親水性高分子あるいは撥水性高分子の具体例については、第1の実施形態のMEA1の構成で説明したので説明を省略する。また、粒子状カーボンスラリーおよび繊維状カーボン含有スラリー中の各成分の配合割合は特に限定されず、形成すべき第1の層9a,10aおよび第2の層9b,10b中の各成分の好ましい含有割合を考慮して適宜調節すればよい。
【0051】
次いで、こうして調製された粒子状カーボンスラリーを、ガス拡散層3,6であるカーボンペーパの片面にアプリケータなどを使用しキャスト方式で塗布し乾燥させ、粒子状カーボンを含み繊維状カーボンを含まない第1の層9a,10aを形成する。このとき、カーボンペーパの両面に粒子状カーボンスラリーを塗工し、カーボンペーパの両面においてその内部に粒子状カーボンを浸透・充填することもできる。
【0052】
次に、こうしてカーボンペーパの片面に形成された第1の層9a,10a(カーボンペーパの両面に第1の層が形成された場合は、片面側の層)の上に、繊維状カーボン含有スラリーを同様にキャスト方式で塗布し乾燥させ、粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層9b,10bを形成する。こうしてガス拡散層の上に微細多孔層が形成された積層体を得る。
【0053】
粒子状カーボンスラリーおよび繊維状カーボン含有スラリーの塗布量は特に限定されず、適宜設定されうる。一般的には、MEA1完成後の粒子状カーボン、および粒子状カーボンと繊維状カーボンの混合物の塗布量が、MEA1の積層面の単位面積当り5〜20mg/cm程度となるように塗布すればよい。また、塗布後の乾燥手段や乾燥条件などは特に限定されない。一例を挙げると、真空乾燥機などを使用し、30〜200℃の温度で1〜12時間程度乾燥させればよい。
【0054】
[電極形成工程]
本工程においては、ガス拡散層の上に微細多孔層が形成された積層体の第2の層の上に、触媒成分を含むスラリー(触媒スラリー)を塗布し乾燥させて触媒層を形成し、ガス拡散層−微細多孔層−触媒層の積層体を得る。
【0055】
まず触媒スラリーを調製する。触媒スラリーは、触媒成分が担持されたカーボン材料(触媒担持カーボン)と、プロトン伝導性の電解質と、必要に応じて添加する添加剤とを溶媒に添加し混合することにより調製される。ここで、触媒担持カーボンを構成する触媒と導電性担体であるカーボン、並びにプロトン伝導性の電解質の具体的な構成は、第1の実施形態のMEAの構成で説明したので、説明を省略する。
【0056】
触媒スラリーを調製するための溶媒としては、水の他、イソプロピルアルコールなどのアルコール系溶媒などが挙げられる。また、触媒スラリーの特性を改善する目的で、エチレングリコール、プロピレングリコールなどの添加剤をさらに添加してもよい。触媒スラリー中の各成分の配合割合は特に限定されず、得られる触媒層中の各成分の好ましい含有割合を考慮して適宜調節すればよい。
【0057】
次いで、こうして調製された触媒スラリーを、前記工程で得られたガス拡散層−微細多孔層の積層体の微細多孔層(第2の層)の上に塗布する。触媒スラリーを塗布する方法は特に限定されず、粒子状カーボンスラリーおよび繊維状カーボン含有スラリーの塗布に使用される方法を用いることができる。触媒スラリーの塗布量も特に限定されず、得られる触媒層の厚さを考慮して適宜設定することができる。一般的には、MEA1完成後の触媒成分の塗布量が、MEA1の積層面の単位面積当り30〜50mg/cm程度となるように塗布すればよい。触媒スラリーを塗布後、塗膜を乾燥させる。塗膜の乾燥手段や乾燥条件なども特に限定されない。こうして、微細多孔層の第2の層の上に触媒層が形成され、ガス拡散層−微細多孔層−触媒層の積層体が得られる。なお、この積層体を電極集合体と呼ぶことができる。
【0058】
[ホットプレス工程]
前記工程で得られたアノード側とカソード側の電極集合体(アノード電極集合体、カソード電極集合体)と、別途用意したプロトン伝導性の電解質膜とを、電極集合体の触媒層とプロトン伝導性電解質膜とが対向し接するように配置する。すなわち、アノード電極集合体とカソード電極集合体との間にプロトン伝導性の電解質膜を挟持させ、積層方向にホットプレスする。こうして、MEA1が完成する。ホットプレス処理により、各層間の接合性に優れたMEA1が得られる。ホットプレスの具体的な手段や条件は特に限定されない。ホットプレス条件の一例を挙げると、ホットプレス温度は100〜200℃程度であり、好ましくは110〜170℃である。また、プレス圧力は、積層体の積層面に対して30〜50kg/cm程度とすればよい。
【0059】
このように製造される実施形態のMEA1は、アノード4とカソード7の少なくとも一方において、ガス拡散層3,6と触媒層2,5との間に、粒子状カーボンを含み繊維状カーボンを含まない第1の層9a,10aと粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層9b,10bとが積層・形成された微細多孔層9,10が設けられているので、アノード4およびカソード7が適度な水分保持性を有し、出力特性(発電性能)が高く耐久性も良好である。また、微細多孔層9,10の表面におけるクラックの発生がないので、十分な水分保持性を有し、かつ微細多孔層9,10の塗布・形成の作業性も良好である。
【0060】
次に、第1の実施形態のMEA1を備えたパッシブ型の燃料電池について説明する。図2は、本発明に係る第2の実施形態の直接メタノール型燃料電池(DMFC)20の断面を模式的に示す図である。
【0061】
図2に示すように、本発明の第2の実施形態の燃料電池20は、起電部として前記したMEA1を備えている。MEA1のアノードガス拡散層3には、アノード導電層11が積層され、カソードガス拡散層6には、カソード導電層12が積層されている。アノード導電層11およびカソード導電層12は、例えば、金、ニッケルなどの導電性金属材料のメッシュまたは箔体、あるいはステンレス鋼(SUS)などの導電性金属材料に金などの良導電性金属を被覆した複合材などをそれぞれ使用することができる。なお、アノード導電層11およびカソード導電層12は、周縁から燃料や酸化剤が漏れないように構成されている。
【0062】
第2の実施形態の燃料電池20においては、プロトン伝導性の電解質膜8とアノード導電層11との間であってアノード触媒層2とアノードガス拡散層3の周囲には、例えば断面がO字状で平面形状が矩形枠状のシール材13が設けられている。また、プロトン伝導性の電解質膜8とカソード導電層12との間であってカソード触媒層5とカソードガス拡散層6の周囲にも、同じ形状のシール材13が設けられている。これらのシール材13は、MEA1からの燃料漏れおよび酸化剤漏れを防止するものであり、例えばゴムなどの弾性体で構成されている。
【0063】
MEA1のアノード側には、液体燃料Fが収容された燃料収容室14が配置されている。液体燃料Fとしては、メタノール水溶液または純メタノールが好適なものとして挙げられる。また、濃度が50mol%以上となるようなものが好適に用いられるが、必ずしも限定されない。燃料収容室14の開口端には、例えば液体燃料Fの気化成分のみを透過させて液体成分は透過させにくい気液分離膜15が配置されている。ここで、液体燃料Fの気化成分とは、液体燃料Fとして純メタノールを使用した場合には、メタノールの気化成分を意味し、液体燃料としてメタノール水溶液を使用した場合には、メタノールの気化成分と水の気化成分とからなる混合ガスを意味する。
【0064】
MEA1と気液分離膜15との間には、樹脂製のフレーム16が配置されている。フレーム16で囲まれた空間は、任意に設けられた気液分離膜15を拡散してきた気化燃料を一時的に収容しておく気化燃料収容室(いわゆる蒸気だまり)として機能する。この気液分離膜15および気化燃料収容室の透過燃料量抑制効果により、MEA1への急激な気化燃料の流入が抑制され、燃料クロスオーバーの発生が抑制される。なお、フレーム16は、平面形状が格子状となるもので、MEA1を押えることで変形を抑え接触抵抗を低減させる役割も担っているので、例えばポリエーテルエーテルケトン(PEEK:ヴィクトレックス社商標)のような耐薬性や強度に優れたエンジニアリング・プラスチックから構成されている。
【0065】
一方、MEA1のカソード導電層12の上には任意に保湿層17が積層・配置されている。保湿層17は、カソード触媒層5で生成した水の蒸散を抑制する機能を有するとともに、カソードガス拡散層6に酸化剤である空気を均一に導入し、カソード触媒層5への酸化剤の均一な拡散を促進する補助拡散層としての機能も有している。保湿層17上には、酸化剤である空気を取り入れるための空気導入口18aが複数個形成されたカバープレート18が積層されている。カバープレート18は、MEA1や保湿層17を加圧し、それらの密着性を高める役割も果たしており、例えばSUS304のような金属から構成されている。
【0066】
このような燃料電池20では、以下のようにして発電が行われる。まず、燃料収容室14内の液体燃料Fであるメタノール水溶液あるいは純メタノールの気化成分が気液分離膜15を拡散し、フレーム16で囲まれた気化燃料収容室に収容される。気化燃料収容室に収容された液体燃料Fの気化成分は、徐々にアノード導電層11、アノードガス拡散層3を拡散し、アノード側の微細多孔層9(粒子状カーボンを含み繊維状カーボンを含まない第1の層および粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層)を経て、アノード触媒層2に供給される。そして、アノード触媒層2に供給された液体燃料Fの気化成分は、以下の反応式(1)に示されるメタノールの内部改質反応を生じさせる。
CHOH + HO → CO + 6H + 6e ………(1)
【0067】
ここで、液体燃料Fとして純メタノールを使用した場合、液体燃料Fからの水の供給がなくなるが、この場合には、プロトン伝導性の電解質膜8やアノード触媒層2に含まれている水、あるいはカソード触媒層5で発生する水を利用して内部改質反応が行われる。
【0068】
内部改質反応によって生成したプロトン(H)は、プロトン伝導性の電解質膜8を経てカソード触媒層5に到達する。一方、カバープレート18の空気導入口18aから取り入れられた空気は、保湿層17、カソード導電層12およびカソードガス拡散層6を順に拡散し、微細多孔層10(粒子状カーボンを含み繊維状カーボンを含まない第1の層および粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層)を経て、カソード触媒層5に供給される。カソード触媒層5では、下記反応式(2)に示される反応によって水が生成する。すなわち発電反応が生じる。
3/2O + 6H + 6e → 3HO ………(2)
【0069】
発電反応が進行すると、上記反応式(2)で示される反応によってカソード触媒層5で生成した水が保湿層17に到達する。この保湿層17により到達した水の蒸散が阻害されることから、結果としてカソード触媒層5の水分保持量が増加する。そして、カソード触媒層5の水分保持量がアノード触媒層2の水分保持量よりも多くなる結果、浸透圧現象によって、カソード触媒層5からアノード触媒層2への水の移動が促進される。そのような水の移動により内部改質反応が促進され、出力特性が向上するとともに、その高い出力特性が長期間にわたり維持される。
【0070】
また、アノード4とカソード7の少なくとも一方において、ガス拡散層3,6と触媒層2,5との間に、粒子状カーボンを含み繊維状カーボンを含まない第1の層9a,10aと粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層9b,10bとが積層・形成された微細多孔層9,10が設けられているので、アノード4およびカソード7が適度な水分保持性を有する。したがって、高い出力特性(出力密度)が得られ、出力の耐久性も良好である。
【0071】
なお、上記した実施の形態では、液体燃料Fとして、メタノール水溶液または純メタノールを使用した直接メタノール型の燃料電池について説明したが、液体燃料Fは、これらに限られるものではない。例えば、エタノール水溶液や純エタノール等のエタノール燃料、プロパノール水溶液や純プロパノール等のプロパノール燃料、グリコール水溶液や純グリコール等のグリコール燃料、ジメチルエーテル、ギ酸、もしくはその他の液体燃料であってもよい。
【0072】
また、上記実施形態ではパッシブ型DMFCを例に説明を行ったが、パッシブ型に限らず、アクティブ型の燃料電池、さらには燃料供給など一部にポンプ等を用いたセミパッシブ型の燃料電池に対しても本発明を適用することができ、パッシブ型の燃料電池を用いた場合と同様の作用効果を得ることができる。
【0073】
セミパッシブ型の燃料電池は、燃料収容部からMEAに供給された燃料は発電反応に使用され、その後に循環して燃料収容部に戻されることはない。セミパッシブ型の燃料電池は、燃料を循環しないことから、従来のアクティブ方式とは異なるものであり、装置の小型化等を損なうものではない。また、燃料電池は、燃料の供給にポンプを使用しており、従来の内部気化型のような純パッシブ方式とも異なる。このため、燃料電池は上述したようにセミパッシブ方式と呼称される。
【0074】
図3は、このようなセミパッシブ型の燃料電池の構成を示す模式図である。
【0075】
燃料電池30は、発電部としてのMEA1、集電体としてのカソード導電層(図示せず。)およびアノード導電層(図示せず。)を備えている。
【0076】
MEA1は、プロトン伝導性の電解質膜8を間に挟んでその両側にカソード7およびアノード4が熱プレスで一体化されており、カソード7は電解質膜8側にカソード触媒層5、その外側にカソードガス拡散層6を有しており、アノード4は電解質膜8側にアノード触媒層2、その外側にアノードガス拡散層3を有している。
【0077】
また、アノード4とカソード7の少なくとも一方において、ガス拡散層3,6と触媒層2,5との間に、粒子状カーボンを含み繊維状カーボンを含まない第1の層と粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層とが積層・形成された微細多孔層9,10が設けられている
【0078】
さらに、MEA1のカソードガス拡散層6にはカソード導電層(図示せず。)が接触し、アノードガス拡散層3にはアノード導電層(図示せず。)が接触している。これらカソード導電層およびアノード導電層を介して、発電部で発電された電力が図示しない負荷に出力されるようになっている。
【0079】
電解質膜8と後述する燃料供給手段(燃料分配機構)40およびカバープレート18との間には、それぞれゴム製のOリング13が介在されており、これらによって燃料電池発電部からの燃料漏れや酸化剤漏れを防止している。
【0080】
カバープレート18は酸化剤である空気を取入れるための開口(図示せず。)を有している。カバープレート18とカソード7との間には、必要に応じて保湿層や表面層が配置される。保湿層はカソード触媒層5で生成された水の一部が含浸されて、水の蒸散を抑制するととともに、カソード触媒層5への酸化剤(空気)の均一拡散を促進するものである。表面層は空気の取入れ量を調整するものであり、空気の取入れ量に応じて個数や大きさ等が調整された複数の空気導入口を有している。
【0081】
MEA1のアノード4側には、燃料供給手段としての燃料分配機構40が配置されている。燃料分配機構40には配管のような燃料の流路42を介して燃料貯蔵手段としての燃料収容部41が接続されている。
【0082】
燃料収容部41には、燃料電池に対応した本発明の液体燃料が収容されている。燃料分配機構40には燃料収容部41から流路42を介して燃料が導入される。流路42は燃料分配機構40や燃料収容部41と独立した配管に限られるものではない。例えば、燃料分配機構40と燃料収容部41とを積層して一体化する場合、これらを繋ぐ液体燃料の流路であってもよい。燃料分配機構40は流路42を介して燃料収容部41と接続されていればよい。
【0083】
ここで、燃料分配機構40は、例えば図4に示すように、燃料が流路42を介して流入する少なくとも1個の燃料注入口40dと、液体燃料やその気化成分を排出する複数個の燃料排出口40cとを有する燃料分配板40aを備えている。燃料分配板40aの内部には、図4に示すように、燃料注入口40dから導かれた燃料の通路となる空隙部40bが設けられている。複数の燃料排出口40cは燃料通路として機能する空隙部40bにそれぞれ直接接続されている。
【0084】
燃料注入口40dから燃料分配機構40に導入された燃料は空隙部40bに入り、この燃料通路として機能する空隙部40bを介して、複数の燃料排出口40cにそれぞれ導かれる。複数の燃料排出口40cには、例えば燃料の気化成分のみを透過し、液体成分は透過させない気液分離膜(図示せず。)を配置してもよい。これによって、燃料電池発電部のアノード4には燃料の気化成分が供給される。なお、気液分離膜は、燃料分配機構40とアノード4との間に気液分離膜等として設置してもよい。液体燃料の気化成分は、複数の燃料排出口40cからアノード4の複数個所に向けて排出される。
【0085】
燃料排出口40cはMEA1の全体に燃料を供給することが可能なように、燃料分配機構40のアノード4と接する面に複数設けられている。燃料排出口40cの個数は2個以上であればよいが、燃料電池発電部の面内における燃料供給量を均一化する上で、0.1〜10個/cm2の燃料排出口が存在するように形成することが好ましい。
【0086】
燃料分配機構40と燃料収容部41の間を接続する流路42には、ポンプ43が挿入されている。このポンプ43は燃料を循環される循環ポンプではなく、あくまでも燃料収容部41から燃料分配機構40に燃料を移送する燃料供給ポンプである。このようなポンプ43で必要時に燃料を送液することによって、燃料供給量の制御性を高めるものである。この場合、ポンプ43としては、少量の燃料を制御性よく送液することができ、さらに小型軽量化が可能という観点から、ロータリーベーンポンプ、電気浸透流ポンプ、ダイアフラムポンプ、しごきポンプ等を使用することが好ましい。ロータリーベーンポンプはモータで羽を回転させて送液するものである。電気浸透流ポンプは電気浸透流現象を起こすシリカ等の焼結多孔体を用いたものである。ダイアフラムポンプは電磁石や圧電セラミックスによりダイアフラムを駆動して送液するものである。しごきポンプは柔軟性を有する燃料流路の一部を圧迫し、燃料をしごき送るものである。これらのうち、駆動電力や大きさ等の観点から、電気浸透流ポンプや圧電セラミックスを有するダイアフラムポンプを使用することがより好ましい。
【0087】
このような構成において、燃料収容部41に収容された液体燃料は、ポンプ43により流路42を移送され、燃料分配機構40に供給される。そして、燃料分配機構40から放出された燃料は、燃料電池発電部のアノード4に供給される。燃料電池発電部内において、燃料はアノードガス拡散層3を拡散してアノード触媒層2に供給される。
【0088】
なお、燃料分配機構40からMEA1への燃料供給が行われる構成であればポンプ43に代えて燃料遮断バルブを配置する構成とすることも可能である。この場合には、燃料遮断バルブは、流路による液体燃料の供給を制御するために設けられるものである。
【0089】
これら構成であっても、上記した説明と同様の作用効果が得られる。MEAへ供給される液体燃料の蒸気においても、全て液体燃料の蒸気を供給してもよいが、一部が液体状態で供給される場合であっても本発明を適用することができる。
【0090】
以下、本発明について実施例を用いて説明するが、本発明の技術的範囲は、以下の実施
例に限定されない。
【0091】
実施例1
<カソード側の電極集合体の作製>
粒子状カーボンであるアセチレンブラック、60重量%のポリテトラフルオロエチレン(PTFE)分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.31:0.34:1の重量比で配合し、ホモジナイザーを用いて撹拌・混合して、粒子状カーボンスラリーを調製した。次いで、この粒子状カーボンスラリーを、ガス拡散層となるカーボンペーパH090(商品名;東レ(株)製)の片面にダイコーターを用いて塗布した後、80℃で1時間乾燥させることにより、カーボンペーパ上に粒子状カーボンを含む第1の層を形成した。なお、単位面積当りの第1の層の塗布量は、4.0mg/cmとした。
【0092】
次に、アセチレンブラック、繊維状カーボンであるカーボンナノチューブ、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)、およびイオン交換水を、0.03:0.27:0.2:1の重量比で配合し、ホモジナイザーを用いて撹拌・混合して、繊維状カーボン含有スラリーを調製した。次いで、この繊維状カーボン含有スラリーを、粒子状カーボンを含む第1の層の上にダイコーターを用いて塗布した後、80℃で1時間乾燥させることにより、粒子状カーボンと繊維状カーボンを含む第2の層を形成した。なお、単位面積当りの塗布量は、6.5mg/cmとし、厚さ25μmの第2の層を形成した。こうしてカソード側のガス拡散層と微細多孔層との積層体を形成した。
【0093】
次に、ケッチェンブラックをカーボン担体とするPt担持カーボン(田中貴金属工業株式会社製、Pt含有量50重量%)、20重量%ナフィオン溶液(デュポン社製)、純水およびイソプロピルアルコールを、1:8:2:1の重量比で配合し、ボールミルを用いて粉砕および撹拌・混合してカソード触媒スラリーを調製した。
【0094】
次いで、このカソード触媒スラリーを、ガス拡散層−微細多孔層の積層体の上にダイコーターを用いて塗布した後、20℃で1時間乾燥させることにより、カソード触媒層を形成した。なお、単位面積当りのカソード触媒層の塗布量は、41.1mg/cmとした。こうして、カソード側のガス拡散層−微細多孔層−触媒層の積層体(電極集合体)を作製した。
【0095】
<アノード側の電極集合体の作製>
アセチレンブラック、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.24:0.03:0.3:1の重量比で配合し、ホモジナイザーを用いて撹拌・混合して、粒子状カーボンスラリーを調製した。次いで、この粒子状カーボンスラリーを、ガス拡散層となるカーボンペーパH090(東レ(株)製)の片面にダイコーターを用いて塗布した後、80℃で1時間乾燥させることにより、カーボンペーパ上に粒子状カーボンを含む第1の層を形成した。なお、単位面積当りの第1の層の塗布量は、4.0mg/cmとした。
【0096】
次に、アセチレンブラック、カーボンナノチューブ、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.03:0.27:0.2:1の重量比で配合し、ホモジナイザーを用いて撹拌・混合して繊維状カーボン含有スラリーを調製した。次いで、この繊維状カーボン含有スラリーを、前記で形成された粒子状カーボンを含む第1の層の上にダイコーターを用いて塗布した後、80℃で1時間乾燥させることにより、粒子状カーボンと繊維状カーボンを含む厚さ25μmの第2の層を形成した。なお、単位面積当りの第2の層の塗布量は、6.5mg/cmとした。こうしてアノード側のガス拡散層と微細多孔層との積層体を形成した。
【0097】
次に、ケッチェンブラックをカーボン担体とするPt−Ru担持カーボン(田中貴金属工業株式会社製、Pt−Ru含有量50重量%)、20重量%ナフィオン溶液、純水およびイソプロピルアルコールを、1:8:2:1の重量比で配合し、ボールミルを用いて粉砕および撹拌・混合してアノード触媒スラリーを調製した。
【0098】
次いで、このアノード触媒スラリーを、ガス拡散層−微細多孔層の積層体の上にダイコーターを用いて塗布した後、20℃で1時間乾燥させることにより、アノード触媒層を形成した。なお、単位面積当りのアノード触媒層の塗布量は、41.1mg/cmとした。こうして、アノード側のガス拡散層−微細多孔層−触媒層の積層体(電極集合体)を作製した。
【0099】
<ホットプレス工程>
前記工程で得られたアノード側とカソード側の電極集合体とプロトン伝導性の電解質膜であるナフィオン117(商品名、デュポン社製)とを、アノード触媒層とカソード触媒層がそれぞれ電解質膜側になるように重ね合わせた後、加熱温度125℃、圧力30kgf/cmの条件でホットプレスを行い、MEAを作製した。なお、電極面積は、アノード、カソードともに12cmとした。
【0100】
実施例2
粒子状カーボンであるアセチレンブラック、繊維状カーボンであるカーボンナノチューブ、60重量%PTFE分散液およびイオン交換水を、0.06:0.24:0.2:1の重量比で配合して得られる繊維状カーボン含有スラリーを用いる他は、実施例1と同様にして、カソード側の電極集合体を作製した。また、アセチレンブラック、カーボンナノチューブ、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.06:0.24:0.2:1の重量比で配合して得られる繊維状カーボン含有スラリーを用いる他は、実施例1と同様にして、アノード側の電極集合体を作製した。なお、粒子状カーボンと繊維状カーボンを含む第2の層の厚さは、カソード側で30μmとし、アノード側で40μmとした。
【0101】
次いで、こうして得られたアノード側とカソード側の電極集合体と、プロトン伝導性の電解質膜であるナフィオン117とを使用し、実施例1と同様にホットプレスを行い、MEAを作製した。
【0102】
実施例3
アセチレンブラック、カーボンナノチューブ、60重量%PTFE分散液およびイオン交換水を、0.09:0.21:0.2:1の重量比で配合して得られる繊維状カーボン含有スラリーを用いる他は、実施例1と同様にして、カソード側の電極集合体を作製した。また、アセチレンブラック、カーボンナノチューブ、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.09:0.21:0.2:1の重量比で配合して得られる繊維状カーボン含有スラリーを用いる他は、実施例1と同様にして、アノード側の電極集合体を作製した。なお、粒子状カーボンと繊維状カーボンを含む第2の層の厚さは、カソード側で30μmとし、アノード側で40μmとした。
【0103】
次いで、こうして得られたアノード側とカソード側の電極集合体と、プロトン伝導性の電解質膜であるナフィオン117とを使用し、実施例1と同様にホットプレスを行い、MEAを作製した。
【0104】
実施例4
アセチレンブラック、カーボンナノチューブ、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.15:0.15:0.2:1の重量比で配合して得られる繊維状カーボン含有スラリーを用いる他は、実施例1と同様にして、カソード側の電極集合体を作製した。また、アセチレンブラック、カーボンナノチューブ、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.15:0.15:0.2:1の重量比で配合して得られる繊維状カーボン含有スラリーを用いる他は、実施例1と同様にして、アノード側の電極集合体を作製した。なお、粒子状カーボンと繊維状カーボンを含む第2の層の厚さは、カソード側で40μmとし、アノード側で50μmとした。
【0105】
次いで、こうして得られたアノード側とカソード側の電極集合体と、プロトン伝導性の電解質膜であるナフィオン117とを使用し、実施例1と同様にホットプレスを行い、MEAを作製した。
【0106】
実施例5
アセチレンブラック、カーボンナノチューブ、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.18:0.12:0.2:1の重量比で配合して得られる繊維状カーボン含有スラリーを用いる他は、実施例1と同様にして、カソード側の電極集合体を作製した。また、アセチレンブラック、カーボンナノチューブ、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.18:0.12:0.2:1の重量比で配合して得られる繊維状カーボン含有スラリーを用いる他は、実施例1と同様にして、アノード側の電極集合体を作製した。なお、粒子状カーボンと繊維状カーボンを含む第2の層の厚さは、カソード側で80μmとし、アノード側で90μmとした。
【0107】
次いで、こうして得られたアノード側とカソード側の電極集合体と、プロトン伝導性の電解質膜であるナフィオン117とを使用し、実施例1と同様にホットプレスを行い、MEAを作製した。
【0108】
実施例6
アセチレンブラック、カーボンナノチューブ、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.015:0.285:0.2:1の重量比で配合して得られる繊維状カーボン含有スラリーを用いる他は、実施例1と同様にして、カソード側の電極集合体を作製した。また、アセチレンブラック、カーボンナノチューブ、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.015:0.285:0.2:1の重量比で配合して得られる繊維状カーボン含有スラリーを用いる他は、実施例1と同様にして、アノード側の電極集合体を作製した。なお、粒子状カーボンと繊維状カーボンを含む第2の層の厚さは、カソード側で10μmとし、アノード側で20μmとした。
【0109】
次いで、こうして得られたアノード側とカソード側の電極集合体と、プロトン伝導性の電解質膜であるナフィオン117とを使用し、実施例1と同様にホットプレスを行い、MEAを作製した。
【0110】
こうして実施例1〜6で製造されたMEAを使用し、図2に示される燃料電池をそれぞれ製造し、燃料収容室内に液体燃料として純メタノールを入れて実際に発電を行わせた。そして、初期(10時間運転後)出力(出力密度)と長期(200時間運転後)出力をそれぞれ測定した。また、長期出力を測定した後のMEAを解体し、アノード側とカソード側の電極集合体において、微細多孔層(第2の層)の表面にクラック(割れ)が発生しているかどうかを調べた。これらの結果を、カソード側の微細多孔層(第2の層)における粒子状カーボン(C)および繊維状カーボン(C)の層全体に対する含有割合(重量%)とともに、表1に示す。
【0111】
【表1】

【0112】
表1の結果から、以下に示すことが確かめられた。すなわち、実施例1〜6で製造されたMEAを備えた燃料電池は、アノードとカソードの両方において、ガス拡散層と触媒層との間に、粒子状カーボンを含み繊維状カーボンを含まない第1の層と、その上に積層・形成された粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層から成る微細多孔層が設けられているので、高い出力特性を有する。特に、実施例1〜4で得られたMEAを有する燃料電池は、繊維状カーボンを第2の層全体の10〜50重量%の割合で含有し、かつこの第2の層の厚さが20〜50μmとなっているので、クラックの発生がないうえに、出力の変動が小さく長期出力も高くなっている。これは、第2の層が適度な割合で繊維状カーボンを含むことで、表面におけるクラックの発生が防止されるとともに、必要かつ十分な水分保持性を有する微細多孔層が得られることによる。
【0113】
実施例7
アセチレンブラック、カーボンナノチューブ、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.0625:0.25:0.34:1の重量比で配合して得られる繊維状カーボン含有スラリーを用いる他は、実施例1と同様にして、カソード側の電極集合体を作製した。また、アセチレンブラック、カーボンナノチューブ、60重量%PTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.0625:0.25:0.34:1の重量比で配合して得られる繊維状カーボン含有スラリーを用いる他は、実施例1と同様にして、アノード側の電極集合体を作製した。なお、粒子状カーボンと繊維状カーボンを含む第2の層の単位面積当りの塗布量は、カソード側、アノード側ともに4.0mg/cmとした。また、第2の層の厚さはカソード側で30μmとし、アノード側で40μmとした。
【0114】
次いで、こうして得られたアノード側とカソード側の電極集合体と、プロトン伝導性の電解質膜であるナフィオン117とを使用し、実施例1と同様にホットプレスを行い、MEAを作製した。
【0115】
比較例1
アセチレンブラック、60重量%のPTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.31:0.34:1の重量比で撹拌・混合して得られた粒子状カーボンスラリーを、カーボンペーパH090の片面にダイコーターを用いて塗布した後、80℃で1時間乾燥させることにより、カソード側の微細多孔層を形成した。なお、この層の単位面積当りの塗布量は、4.0mg/cmとした。
【0116】
次に、実施例1と同様に調製したカソード触媒スラリーを、前記カソード側の微細多孔層の上に実施例1と同様に塗布・乾燥させてカソード触媒層を形成した。こうして、カソード側のガス拡散層−微細多孔層(粒子状カーボンを含む層)−触媒層の積層体(電極集合体)を作製した。
【0117】
また、アセチレンブラック、60重量%のPTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.31:0.34:1の重量比で撹拌・混合して得られた粒子状カーボンスラリーを、カーボンペーパH090の片面にダイコーターを用いて塗布した後、80℃で1時間乾燥させることにより、アノード側の微細多孔層を形成した。なお、この層の単位面積当りの塗布量は、4.0mg/cmとした。
【0118】
次に、実施例1と同様に調製したアノード触媒スラリーを、前記アノード側の微細多孔層の上に実施例1と同様に塗布・乾燥させてアノード触媒層を形成した。こうして、アノード側のガス拡散層−微細多孔層(粒子状カーボンを含む層)−触媒層の積層体(電極集合体)を作製した。
【0119】
次いで、こうして得られたアノード側とカソード側の電極集合体と、プロトン伝導性の電解質膜であるナフィオン117とを使用し、実施例1と同様にホットプレスを行い、MEAを作製した。
【0120】
比較例2
比較例1で製造されたカソード側の粒子状カーボンを含む層(下層)の上に、アセチレンブラック、60重量%のPTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.31:0.34:1の重量比で撹拌・混合して得られた粒子状カーボンスラリーを、ダイコーターを用いてさらに塗布し、80℃で1時間乾燥させることにより、粒子状カーボンを含む上層を形成した。なお、この上層の単位面積当りの塗布量も、4.0mg/cmとした。
【0121】
次に、実施例1と同様に調製したカソード触媒スラリーを、前記カソード側の上層の上に実施例1と同様に塗布・乾燥させてカソード触媒層を形成した。こうして、カソード側のガス拡散層−微細多孔層(いずれも粒子状カーボンを含む下層と上層の積層構造)−触媒層の積層体(電極集合体)を作製した。
【0122】
また、比較例1で製造されたアノード側の粒子状カーボンを含む層(下層)の上に、アセチレンブラック、60重量%のPTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.31:0.34:1の重量比で撹拌・混合して得られた粒子状カーボンスラリーをダイコーターを用いてさらに塗布し、80℃で1時間乾燥させることにより、粒子状カーボンを含む上層を形成した。なお、この上層の単位面積当りの塗布量も、4.0mg/cmとした。
【0123】
次に、実施例1と同様に調製したアノード触媒スラリーを、前記アノード側の上層の上に実施例1と同様に塗布・乾燥させてアノード触媒層を形成した。こうして、アノード側のガス拡散層−微細多孔層(いずれも粒子状カーボンを含む下層と上層の積層構造)−触媒層の積層体(電極集合体)を作製した。
【0124】
次いで、こうして得られたアノード側とカソード側の電極集合体と、プロトン伝導性の電解質膜であるナフィオン117とを使用し、実施例1と同様にホットプレスを行い、MEAを作製した。
【0125】
比較例3
アセチレンブラック、カーボンナノチューブ、60重量%のPTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.06:0.25:0.34:1の重量比で配合して得られる繊維状カーボン含有スラリーを、カーボンペーパH090の片面にダイコーターを用いて塗布した後、80℃で1時間乾燥させることにより、カソード側の粒子状カーボンと繊維状カーボンを含む微細多孔層を形成した。なお、この層の単位面積当りの塗布量は、4.0mg/cmとした。
【0126】
次に、実施例1と同様に調製したカソード触媒スラリーを、前記カソード側の微細多孔層の上に実施例1と同様に塗布・乾燥させてカソード触媒層を形成した。こうして、カソード側のガス拡散層−微細多孔層(粒子状カーボンと繊維状カーボンを含む層)−触媒層の積層体(電極集合体)を作製した。
【0127】
また、アセチレンブラック、カーボンナノチューブ、60重量%のPTFE分散液(シグマアルドリッチジャパン株式会社製)およびイオン交換水を、0.06:0.25:0.34:1の重量比で配合して得られる繊維状カーボン含有スラリーを、カーボンペーパH090の片面にダイコーターを用いて塗布した後、80℃で1時間乾燥させることにより、アノード側の粒子状カーボンと繊維状カーボンを含む微細多孔層を形成した。なお、この層の単位面積当りの塗布量は、4.0mg/cmとした。
【0128】
次に、実施例1と同様に調製したアノード触媒スラリーを、前記アノード側の微細多孔層の上に実施例1と同様に塗布・乾燥させてアノード触媒層を形成した。こうして、アノード側のガス拡散層−微細多孔層(粒子状カーボンと繊維状カーボンを含む層)−触媒層の積層体(電極集合体)を作製した。
【0129】
次いで、こうして得られたアノード側とカソード側の電極集合体と、プロトン伝導性の電解質膜であるナフィオン117とを使用し、実施例1と同様にホットプレスを行い、MEAを作製した。
【0130】
次に、実施例7および比較例1〜3でそれぞれ製造されたMEAを使用し、図2に示される燃料電池をそれぞれ製造し、燃料収容室内に液体燃料として純メタノールを入れて実際に発電を行わせた。そして、初期(10時間運転後)出力(出力密度)および長期(200時間運転後)出力をそれぞれ測定した。また、長期出力測定後のMEAを解体し、アノード側とカソード側の電極集合体において、微細多孔層の表面にクラックが発生しているかどうかを調べた。これらの結果を表2に示す。
【0131】
【表2】

【0132】
表2の結果から、以下に示すことが確かめられた。すなわち、実施例7で得られたMEAを備えた燃料電池は、アノードとカソードの両方において、ガス拡散層と触媒層との間に、粒子状カーボンを含み繊維状カーボンを含まない第1の層と粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層から成る微細多孔層が設けられているので、クラックの発生がなく、高い出力特性を有するうえに、長期に亘る出力の変動が小さく耐久性が良好である。
【0133】
これに対して、比較例1で得られたMEAを備えた燃料電池は、ガス拡散層と触媒層との間に設けられた微細多孔層が、粒子状カーボンを含み繊維状カーボンを含まない層のみから構成されているので、表面にクラックが発生し、水の保持性が不十分となっている。したがって、初期および長期の出力が低くなっている。また、比較例2で得られたMEAを備えた燃料電池は、粒子状カーボンを含み繊維状カーボンを含まない下層と上層が積層された微細多孔層を有しているので、強度が不十分で上層の表面にクラックが発生し、水の保持性が不十分であり、初期および長期の出力が低くなっている。さらに、比較例3で得られたMEAを備えた燃料電池は、微細多孔層が、粒子状カーボンと繊維状カーボンをそれぞれ含む層の1層のみから構成されているので、表面にクラックが発生することはないが、水の保持性という点では実施例7に比べて不十分である。したがって、実施例7に比べて初期および長期の出力が低くなっている。
【0134】
なお、これらの実施例はアノードとカソードとの両方の電極において、ガス拡散層と触媒層との間に、第1の層と第2の層を積層して成る微細多孔層を設けているが、アノード側とカソード側の一方にのみこのような積層構造の微細多孔層を設けたMEAを作製した。そして、そのようなMEAを使用して製造された燃料電池において、実際に発電を行わせたところ、実施例と同程度の初期出力(出力密度)および長期出力が得らることが確かめられた。
【図面の簡単な説明】
【0135】
【図1】本発明に係る第1の実施形態のDMFC用膜電極接合体(MEA)の構成を模式的に示す断面図である。
【図2】本発明に係る第2の実施形態のDMFCの構成を模式的に示す断面図である。
【図3】本発明に係る燃料電池の他の実施形態の構成を示す縦断面図である。
【図4】本発明の実施形態における燃料分配機構を示す斜視図である。
【符号の説明】
【0136】
1…MEA、2…アノード触媒層、3…アノードガス拡散層、4…アノード、5…カソード触媒層、6…カソードガス拡散層、7…カソード、8…プロトン伝導性の電解質膜、9…アノード側の微細多孔層、9a…アノード側の第1の層、9b…アノード側の第2の層、10…カソード側の微細多孔層、10a…カソード側の第1の層、10b…カソード側の第2の層、11…アノード導電層、12…カソード導電層、13…シール材、14…燃料収容室、15…気液分離膜、17…保湿層、18…カバープレート。

【特許請求の範囲】
【請求項1】
それぞれがガス拡散層と触媒層を備えるアノードおよびカソードと、前記アノードの触媒層と前記カソードの触媒層との間に挟持されたプロトン伝導性の電解質膜を具備する膜電極接合体であり、
前記アノードと前記カソードの少なくとも一方は、前記ガス拡散層と前記触媒層との間に、粒子状カーボンを含み繊維状カーボンを含まない第1の層と、粒子状カーボンと繊維状カーボンをそれぞれ含む第2の層が、前記第2の層が前記触媒層側になるように積層された微細多孔層を有することを特徴とする膜電極接合体。
【請求項2】
前記第1の層は、前記粒子状カーボンが前記ガス拡散層に浸透した層であることを特徴とする請求項1記載の膜電極接合体。
【請求項3】
前記第2の層は、該層全体の5〜60重量%の割合で前記繊維状カーボンを含むことを特徴とする請求項1または2記載の膜電極接合体。
【請求項4】
前記第2の層の厚さは20〜50μmであることを特徴とする請求項1乃至3のいずれか1項記載の膜電極接合体。
【請求項5】
アノードとカソードと前記アノードと前記カソードとに挟持されたプロトン伝導性の電解質膜とを有する膜電極接合体と、前記膜電極接合体の前記アノードに燃料を供給する燃料供給機構とを具備する燃料電池であり、前記膜電極接合体は、請求項1乃至4のいずれか1項記載の膜電極接合体であることを特徴とする燃料電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2009−170204(P2009−170204A)
【公開日】平成21年7月30日(2009.7.30)
【国際特許分類】
【出願番号】特願2008−5551(P2008−5551)
【出願日】平成20年1月15日(2008.1.15)
【出願人】(000003078)株式会社東芝 (54,554)
【出願人】(000221339)東芝電子エンジニアリング株式会社 (238)
【Fターム(参考)】