説明

色素、これを用いた光電変換素子及び光電気化学電池

【課題】高い光電変換効率を実現し、その上で耐久性をも高めることができる色素、これを用いた光電変換素子及び光電気化学電池の提供。
【解決手段】一般式(1)で表される金属錯体化合物からなる色素。M(LLm1(LLm2(X)m3・CI・・・一般式(1)[式中、Mは金属原子を表す。LLは一般式(2)により表される特定の置換基を有する配位子で、LLは置換基を有していても良い2座または3座の配位子で、Xは特定の1座または2座の配位子を表す。m1は1〜3の整数を表し、m1が2以上のときLL1は同じでも異なっていてもよく、m2は1〜2の整数を表し、m2が2のときLL2は同じでも異なっていてもよく、m3は0〜3の整数を表し、m3が2のときXは同じでも異なっていてもよく、またX同士が連結していてもよい。CIは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。



【発明の詳細な説明】
【技術分野】
【0001】
本発明は、色素、これを用いた光電変換素子及び光電気化学電池に関する。
【背景技術】
【0002】
光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いたもの、半導体を用いたもの、有機顔料や色素を用いたもの、あるいはこれらを組み合わせたものなどの様々な方式が実用化されている。中でも、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵なクリーンエネルギーを利用したものとして、その本格的な実用化が大いに期待されている。この中でも、シリコン系太陽電池は古くから研究開発が進められてきた。各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループット及び分子修飾には自ずと限界がある。
【0003】
そこで色素増感型太陽電池の研究が精力的に行われている。とくに、スイスのローザンヌ工科大学のGraetzel等がポーラス酸化チタン薄膜の表面にルテニウム錯体からなる色素を固定した色素増感型太陽電池を開発し、アモルファスシリコン並の変換効率を実現した。これにより、色素増感型太陽電池が一躍世界の研究者から注目を集めるようになった。
【0004】
特に我が国を始めとしたエネルギー資源に乏しい地域での対応、あるいは化石燃料から二酸化炭素の排出のないグリーンエネルギーへの代替の加速の観点から、太陽電池の研究開発については各方面で一層積極的に取り組まれてきている。現在の主流はシリコン(Si)系のものであるが、上述したスループット等の観点からこれに代替する技術に大きな注目が集まっている。特に、有機系の太陽電池は軽量かつ低コストを実現し、かつ環境適合性に優れることが期待される。
【0005】
特許文献1及び2は、ルテニウム金属錯体系の色素を用いた色素増感型太陽電池を開示する。そこで開示されている色素は好適な波長領域で光吸収能を有し、良好な光電変換効率を実現するとされる。しかし耐久性の点に関しては具体的な開示がなく不明である。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】国際公開2009/053108号パンフレット
【特許文献2】国際公開2007/091525号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0007】
そこで本発明は、金属錯体系色素を増感色素として用いたときに、高い光電変換効率を実現し、その上でさらに耐久性をも高めることができる色素、これを用いた光電変換素子及び光電気化学電池の提供を目的とする。
【課題を解決するための手段】
【0008】
本発明の課題は、以下の手段によって達成された。
【0009】
<1>下記一般式(1)で表される金属錯体化合物からなる色素。
M(LLm1(LLm2(X)m3・CI・・・一般式(1)
[式中、Mは金属原子を表す。LLは下記一般式(2)により表される2座または3座の配位子である。
【化1】

(ただし、RおよびRはそれぞれ独立にカルボキシル基、スルホン酸基、ヒドロキシル基、ヒドロキサム酸基、ホスホリル基、またはホスホニル基を表す。RおよびRはそれぞれ独立に置換基を表す。RおよびRはそれぞれ独立にアルキル基、アリール基および/またはヘテロ環基を表す。LおよびLはそれぞれ独立にヘテロアリーレン基、エテニレン基および/またはエチニレン基からなる共役鎖を表す。a1およびa2はそれぞれ独立に0〜3の整数を表す。a1が2以上のときRは同じでも異なっていてもよく、a2が2以上のときRは同じでも異なっていてもよい。b1およびb2はそれぞれ独立に0〜3の整数を表す。b1が2以上のときRは同じでも異なっていてもよく互いに連結して環を形成してもよく、b2が2以上のときRは同じでも異なっていてもよく互いに連結して環を形成してもよい。b1およびb2が共に1以上のときRとRが連結して環を形成してもよい。n1およびn2はそれぞれ独立に1〜5の整数を表し、n3は0または1を表す。)
LLは下記一般式(3)により表される置換基を有していても良い2座または3座の配位子である。
【化2】

(式中、Za、ZbおよびZcはそれぞれ独立に5または6員環を形成しうる非金属原子群を表す。cは0または1を表す。Za、ZbおよびZc上に少なくとも、1つの一般式(4)で表される置換基を有する。
【化3】

〔式中、AはCOOH、SOH、PO、BO、SH、OH、及びNHから選ばれる基を表す。Lは単結合または下記一般式(5)〜(12)で表される共役基を表す。GはH、CN、NO、COOR、COSR、COR、CSR、NCS、CF、CONR、OCFまたはC6H5−mFm(Rはアルキル基、アリール基またはヘテロ環基を表す。mは1〜5の整数を表す。)を表す。〕
【化4】

〔式中、n1〜n6は1〜10を表す。m7、m8、m9、m11、m12、m14、及びm15はそれぞれ0〜20を表す。R〜R15は置換基を表す。*は結合部位を表す。X1〜4はそれぞれ独立にCH、OまたはNを表す。)
Xはアシルオキシ基、アシルチオ基、チオアシルオキシ基、チオアシルチオ基、アシルアミノオキシ基、チオカルバメート基、ジチオカルバメート基、チオカルボネート基、ジチオカルボネート基、トリチオカルボネート基、アシル基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基、アリールチオ基、アルコキシ基およびアリールオキシ基からなる群から選ばれた基で配位する1座または2座の配位子、あるいはハロゲン原子、カルボニル、ジアルキルケトン、1,3−ジケトン、カルボンアミド、チオカルボンアミドまたはチオ尿素からなる1座または2座の配位子を表す。
m1は1〜3の整数を表し、m1が2以上のときLLは同じでも異なっていてもよく、
m2は1〜2の整数を表し、m2が2のときLLは同じでも異なっていてもよく、
m3は0〜3の整数を表し、m3が2のときXは同じでも異なっていてもよく、またX同士が連結していてもよく、
CIは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。]
<2>前記L及びLがエチニレン基、または、チオフェンから任意の水素原子2個か除かれた基であることを特徴とする<1>に記載の色素。
<3>前記R及びRがそれぞれ独立にアルキル基又は置換もしくは無置換のアリール基であることを特徴とする<1>又は<2>に記載の色素。
<4>前記一般式(4)のAがCOOHであり、GがCNである<1>〜<3>のいずれかに記載の色素。
<5><1>〜<4>のいずれかに記載の金属錯体色素と半導体微粒子とを有する感光体層を具備することを特徴とする光電変換素子。
<6><5>に記載の光電変換素子を備えてなることを特徴とする光電気化学電池。
【発明の効果】
【0010】
本発明の金属錯体化合物からなる色素は、これを用いた光電変換素子及び光電気化学電池としたときに、高い光電変換効率を実現し、その上でさらに耐久性をも高めるという優れた作用効果を奏する。
【図面の簡単な説明】
【0011】
【図1】本発明によって製造される光電変換素子の一実施態様について模式的に示した断面図である。
【発明を実施するための形態】
【0012】
本発明の色素は、これを光電変換素子に組み込んで用いたときに、増感色素として機能する一般式(1)で表される金属錯体系色素において、その配位子LLとLLとが特有の相互作用を示し、光電変換効率と耐久性との両立を実現する。その詳細な原理は未解明の点を含むが、以下のように推定される。まず上記配位子LLはジピリジンリガンドがさらにエチニレン基等の不飽和結合をもち長く延びた共役系を形成している。これにより高い長波吸収高効率(分子吸光係数ε)を示すものと考えられる。一方、配位子LLは特有の吸着基(結合基)を有し半導体微粒子との強固な配向吸着状態を実現している。さらに、この吸着基側の配位子LLば、他方の配位子LLとの組合せによって初めて奏する効果的な電子注入効率の向上を実現しているものと考えられる。逆に配位子LLは配位子LLの吸着状態を保護し、つまりこれが剥離する原因となる水や色素を分解する求核種などの攻撃を受けにくくする効果があり、単なる吸着力の向上だけでは実現困難な程度にまで耐久性が高まることにつながったと推定される。すなわち、両配位子が相互補完的に機能して本発明の効果が達成されたものと考えられる。以下、本発明の好ましい実施形態について詳細に説明する。
【0013】
本発明の光電変換素子の好ましい実施態様を、図面を参照して説明する。図1に示すように、光電変換素子10は、導電性支持体1、導電性支持体1上にその順序で配された、感光体層2、電荷移動体層3、及び対極4からなる。前記導電性支持体1と感光体層2とにより受光電極5を構成している。その感光体層2は導電性微粒子22と増感色素21とを有しており、色素21はその少なくとも一部において導電性微粒子22に吸着している(色素は吸着平衡状態になっており、一部電荷移動体層に存在していてもよい。)。感光体2が形成された導電性支持体1は光電変換素子10において作用電極として機能する。この光電変換素子10を外部回路6で仕事をさせるようにして、光電気化学電池100として作動させることができる。
【0014】
受光電極5は、導電性支持体1および導電性支持体上に塗設される色素21の吸着した半導体微粒子22の感光層(半導体膜)2よりなる電極である。感光体(半導体膜)2に入射した光は色素を励起する。励起色素はエネルギーの高い電子を有している。そこでこの電子が色素21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき色素21の分子は酸化体となっている。電極上の電子が外部回路で仕事をしながら色素酸化体に戻ることにより、光電気化学電池として作用する。この際、受光電極5はこの電池の負極として働く。
【0015】
本実施形態の光電変換素子は、導電性支持体上に後述の複合増感色素が吸着された多孔質半導体微粒子の層を有する感光体を有する。このとき色素において一部電解質中に解離したもの等があってもよいことは上述のとおりである。感光体は目的に応じて設計され、単層構成でも多層構成でもよい。本実施形態の光電変換素子の感光体には、特定の複合増感色素が吸着した半導体微粒子を含み、感度が高く、光電気化学電池として使用する場合に、高い変換効率を得ることができ、さらに高い耐久性を有する。
【0016】
[色素]
本発明の色素は下記一般式(1)で表される。この色素において、各置換基等の意味及びその好ましい範囲は以下のとおりである。
M(LLm1(LLm2(X)m3・CI・・・一般式(1)
【0017】
一般式(1)の構造を有する色素は、金属原子Mに、配位子LL及び/又は配位子LLと、場合により特定の官能基Xが配位しており、必要な場合はCIにより電気的に中性に保たれている。
一般式(1)であらわされる化合物は分子内に少なくとも1つの酸性吸着基を有し、LL、LLの少なくとも1方が当該酸性吸着基を有することが好ましく、LLが当該酸性吸着基を有することがより好ましい。
【0018】
・金属原子M
Mは金属原子を表す。Mは好ましくは4配位または6配位が可能な金属であり、より好ましくはRu、Fe、Os、Cu、W、Cr、Mo、Ni、Pd、Pt、Co、Ir、Rh、Re、Mn又はZnである。特に好ましくは、Ru、Os、Zn又はCuであり、最も好ましくはRuである。
【0019】
・配位子LL
配位子LLは、下記一般式(2)により表される2座または3座の配位子であり、好ましくは2座配位子である。配位子LLの数を表すm1は1〜3の整数であるのが好ましく、1であるのがより好ましい。m1が2以上のとき、LLは同じでも異なっていてもよい。ただし、m1と、後述の配位子LLの数を表すm2のうち少なくとも一方は1以上の整数である。したがって金属原子に、配位子LL及び/又は配位子LLが配位している。
【0020】
【化5】

【0021】
一般式(2)中のR及びRはそれぞれ独立に酸性基を表し、例えばカルボキシル基、スルホン酸基、ヒドロキシル基、ヒドロキサム酸基(好ましくは炭素原子数1〜20のヒドロキサム酸基、例えば、―CONHOH、―CONCHOH等)、ホスホリル基(例えば―OP(O)(OH)等)及びホスホニル基(例えば―P(O)(OH)等)が挙げられ、好ましくはカルボキシル基、ホスホニル基であり、より好ましくはカルボキシル基が挙げられる。RおよびRはピリジン環上のどの炭素原子に置換してもよい。
【0022】
式中、R、Rはそれぞれ独立に置換基を表し、好ましくはアルキル基(好ましくは炭素原子数1〜20のアルキル基、例えばメチル、エチル、イソプロピル、t−ブチル、ペンチル、ヘプチル、1−エチルペンチル、ベンジル、2−エトキシエチル、1−カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2〜20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2〜20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3〜20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4−メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6〜26のアリール基、例えば、フェニル、1−ナフチル、4−メトキシフェニル、2−クロロフェニル、3−メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2〜20のヘテロ環基、例えば、2−ピリジル、4−ピリジル、2−イミダゾリル、2−ベンゾイミダゾリル、2−チアゾリル、2−オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1〜20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6〜26のアリールオキシ基、例えば、フェノキシ、1−ナフチルオキシ、3−メチルフェノキシ、4−メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2〜20のアルコキシカルボニル基、例えば、エトキシカルボニル、2−エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0〜20のアミノ基、例えば、アミノ、N,N−ジメチルアミノ、N,N−ジエチルアミノ、N−エチルアミノ、アニリノ等)、スルホンアミド基(好ましくは炭素原子数0〜20のスルホンアミド基、例えば、N,N−ジメチルスルホンアミド、N−フェニルスルホンアミド等)、アシルオキシ基(好ましくは炭素原子数1〜20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1〜20のカルバモイル基、例えば、N,N−ジメチルカルバモイル、N−フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1〜20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、シアノ基、又はハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、シアノ基又はハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基又はシアノ基である。
【0023】
配位子LLがアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。また配位子LLがアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
【0024】
一般式(2)中、R及びRはそれぞれ独立に、アルキル基、1つ以上の置換もしくは無置換のアリール基(好ましくは炭素原子数6〜30のアリール基、例えば、フェニル、置換フェニル、ナフチル、置換ナフチル等)及び/又は1つ以上の置換もしくは無置換のヘテロ環基(好ましくは炭素原子数1〜30のヘテロ環基、例えば、2−チエニル、3−チエニル、2−ピロリル、3−ピロリル、2−イミダゾリル、1−イミダゾリル、4−ピリジル、3−インドリル)であり、好ましくは1〜3個の電子供与基を有するヘテロ環基であり、より好ましくは2−チエニルが挙げられる。該電子供与基はアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、アリールオキシ基、アミノ基、アシルアミノ基またはヒドロキシル基であるのが好ましく、アルキル基、アルコキシ基、アミノ基またはヒドロキシル基であるのがより好ましく、アルキル基であるのが特に好ましい。RとRは同じであっても異なっていてもよいが、同じであるのが好ましい。
【0025】
とRは、L及び/又はLを介してジピリジン環に結合する。
ここでL及びLはそれぞれ独立に、置換若しくは無置換のヘテロアリーレン基、エテニレン基及び/又はエチニレン基からなる共役鎖を表す。ヘテロアリーレン基としては、例えばチオフェン、フラン、ピロール、イミダゾール、ピリジン、ピラジン、チアゾール、オキサゾール、等の複素芳香族化合物から任意の水素原子2個を除いた2価の基が挙げられる。エテニレン基が置換基を有する場合、該置換基はアルキル基であるのが好ましく、メチルであるのがより好ましい。L及びLはそれぞれ独立に、炭素原子数2〜6個の共役鎖であるのが好ましく、エテニレン、ブタジエニレン、エチニレン、ブタジイニレン、メチルエテニレン又はジメチルエテニレンがより好ましく、エテニレン又はブタジエニレンが特に好ましく、エテニレンが最も好ましい。L及びLはそれぞれが結合しているピリジン環と共役している。LとLは同じであっても異なっていてもよいが、同じであるのが好ましい。なお、共役鎖が炭素―炭素二重結合を含む場合、各二重結合はトランス体であってもシス体であってもよく、これらの混合物であってもよい。エテニレン(CC二重結合)とエチニレン(CC三重結合)とが連続するときには、エテニレンとエチニレンとが直接連続しても、CC単結合を介して連続していてもよい。n1およびn2はそれぞれ独立に1〜5の整数を表し、好ましくは1〜3の整数を表す。n1が2以上のときは、Lは同一でも異なっていてもよい。n2が2以上のときは、Lは同一でも異なっていてもよい。
【0026】
n3は0または1である。a1及びa2はそれぞれ独立に0〜3の整数を表し、好ましくは1〜3の整数を表し、より好ましくは1である。a1が2以上のときRは同じでも異なっていてもよく、a2が2以上のときRは同じでも異なっていてもよい。a1は0又は1であるのが好ましく、a2は0〜2の整数であるのが好ましい。特に、n3が0のときa2は1又は2であるのが好ましく、n3が1のときa2は0又は1であるのが好ましい。a1とa2の和は0〜2の整数であるのが好ましい。
【0027】
b1及びb2はそれぞれ独立に0〜3の整数を表し、0〜2の整数であるのが好ましい。b1が2以上のとき、Rは同じでも異なっていてもよく、互いに連結して環を形成していてもよい。b2が2以上のとき、Rは同じでも異なっていてもよく、互いに連結して環を形成していてもよい。またb1及びb2がともに1以上のとき、RとRが連結して環を形成していてもよい。形成する環の好ましい例としては、ベンゼン環、ピリジン環、チオフェン環、ピロール環、シクロヘキサン環、シクロペンタン環等が挙げられる。
a1とa2の和が1以上であって、配位子LLが酸性基を少なくとも1個有するときは、一般式(1)中のm1は2または3であるのが好ましく、2であるのがより好ましい。
【0028】
一般式(1)における配位子LLは、下記一般式(16−1)、(16−2)又は(16−3)で表されるものが好ましい。
【0029】
【化6】

【0030】
上記一般式(16−1)〜(16−3)中、a1、a2、b1、b2及びn3は前記と同義である。R101〜R104は、それぞれ、一般式(2)におけるR〜Rと同義である。
【0031】
一般式(16−2)中、R107は酸性基を表し、好ましくはカルボキシル基、スルホン酸基、ヒドロキシル基、ヒドロキサム酸基、ホスホリル基およびホスホニル基であり、より好ましくはカルボキシル基またはホスホリル基であり、特に好ましくはカルボキシル基である。
【0032】
一般式(16−2)中、R108は置換基を表し、好ましくはアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、アリールオキシ基、アミノ基又はアシルアミノ基(であり、より好ましくはアルキル基、アルコキシ基、アミノ基またはアシルアミノ基である。
【0033】
一般式(16−1)及び(16−2)中、R121〜R124はそれぞれ独立に、水素、アルキル基、アルケニル基又はアリール基を表す。R121〜R124の好ましい例は、一般式(2)における上記R及びRの好ましい例と同様である。R121〜R124はさらに好ましくは、アルキル基又はアリール基であり、より好ましくはアルキル基である。R121〜R124がアルキル基である場合はさらに置換基を有していてもよく、該置換基としてはアルコキシ基、シアノ基、アルコキシカルボニル基またはカルボンアミド基が好ましく、アルコキシ基が特に好ましい。R121とR122並びにR123とR124はそれぞれ互いに連結して環を形成していてもよい。形成する環としてはピロリジン環、ピペリジン環、ピペラジン環、又はモルホリン環等が好ましい。
【0034】
一般式(16−1)及び(16−2)中、R125及びR126はそれぞれ独立に置換基を表し、好ましくはアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アルコキシ基、アリールオキシ基、アミノ基、アシルアミノ基又はヒドロキシル基であり、より好ましくはアルキル基、アルコキシ基、アミノ基またはアシルアミノ基であり、特に好ましくはアルキル基である。
一般式(16−3)中、R127及びR128は、好ましくはアルキル基、アルコキシ基、アミノ基またはアシルアミノ基であり、より好ましくはアルキル基、アルケニル、アルキニル基、アルコキシ基、であり、特に好ましくはアルキル基、アルキニル基である。
【0035】
一般式(16−2)中、a3は0〜3の整数を表し、好ましくは0〜2の整数を表す。n3が0のときa3は1又は2であるのが好ましく、n3が1のときa3は0または1であるのが好ましい。a3が2以上のときR107は同じでも異なっていてもよい。
【0036】
一般式(16−1)及び(16−2)中、d1及びd2はそれぞれ独立に0〜4の整数を表す。d1が1以上のときR125は、R121及び/又はR122と連結して環を形成していてもよい。形成される環はピペリジン環又はピロリジン環であるのが好ましい。d1が2以上のときR125は同じでも異なっていてもよく、互いに連結して環を形成していてもよい。d2が1以上のときR126は、R123及び/又はR124と連結して環を形成していてもよい
形成される環はピペリジン環又はピロリジン環であるのが好ましい。d2が2以上のときR126は同じでも異なっていてもよく、互いに連結して環を形成していてもよい。
【0037】
・配位子LL
一般式(1)中、LLは2座又は3座の配位子を表す。配位子LLの数を表すm2は1又は2であり、1であるのが好ましい。m2が2のときLLは同じでも異なっていてもよい。ただし、m2と、前述の配位子LLの数を表すm1のうち少なくとも一方は1以上の整数である。
【0038】
配位子LLは、下記一般式(3)で表される2座又は3座の配位子である。
【化7】

一般式(3)中、Za、Zb及びZcはそれぞれ独立に、5員環又は6員環を形成しうる非金属原子群を表す。形成される5員環又は6員環はZa、ZbおよびZc上に少なくとも1つの下記一般式(4)で表される置換基を有する。Za、Zb及びZcは炭素原子、水素原子、窒素原子、酸素原子、硫黄原子、リン原子及び/又はハロゲン原子で構成されることが好ましく、芳香族環を形成するのが好ましい。5員環の場合は置換されたイミダゾール環、オキサゾール環、チアゾール環又はトリアゾール環を形成するのが好ましく、6員環の場合は置換されたピリジン環、ピリミジン環、ピリダジン環又はピラジン環を形成するのが好ましい。なかでも置換されたイミダゾール環又はピリジン環がより好ましい。形成される5員環又は6員環は単環でも縮環していてもよい。
一般式(3)中、cは0または1を表す。cは0であるのが好ましく、LLは2座配位子であるのが好ましい。
【0039】
【化8】

【0040】
一般式(4)中、AはCOOH,SOH,PO,BO,SH,OH,NHから選ばれる基を表し、好ましくはCOOH、POである。Lは単結合または、下記一般式(5)〜(12)で表される共役基を表す。GはH、CN、NO、COOR、COSR、COR、CSR、NCS、CF、CONR、OCF、C6H5−mFm(Rは置換または無置換のアルキル基、アリール基、ヘテロ環基、を表し、好ましくは置換または無置換のアルキル基、置換または無置換のアリール基である。mは1〜5の整数を表し、好ましくは3または5である。)を表す。
【0041】
【化9】

【0042】
式中、n1〜n6は1〜10の整数を表し、好ましくは1〜10の整数を表し、より好ましくは1〜5の整数である。m7、m8、m9、m11、m12、m14、及びm15は0〜20の整数を表し、好ましくは1〜4の整数を表し、より好ましくは1〜2の整数である。R〜R15は置換基を表し、好ましくはアルキル基、アルコキシ基、または、ジアルキルアミノ基を表す。X1〜4はそれぞれ独立にCH、O、Nを表し、好ましくはCH、Nである。
【0043】
・配位子X
配位子Xは1座又は2座の配位子を表す。配位子Xの数を表すm3は0〜3の整数を表し、m3は好ましくは1又は2である。Xが1座配位子のとき、m3は2であるのが好ましく、Xが2座配位子のとき、m3は1であるのが好ましい。m3が2のとき、Xは同じでも異なっていてもよく、X同士が連結していてもよい。
【0044】
配位子Xは、アシルオキシ基(好ましくは炭素原子数1〜20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ、サリチル酸、グリシルオキシ、N,N−ジメチルグリシルオキシ、オキザリレン(―OC(O)C(O)O―)等)、アシルチオ基(好ましくは炭素原子数1〜20のアシルチオ基、例えば、アセチルチオ、ベンゾイルチオ等)、チオアシルオキシ基(好ましくは炭素原子数1〜20のチオアシルオキシ基、例えば、チオアセチルオキシ基(CHC(S)O―)等))、チオアシルチオ基(好ましくは炭素原子数1〜20のチオアシルチオ基、例えば、チオアセチルチオ(CHC(S)S―)、チオベンゾイルチオ(PhC(S)S―)等))、アシルアミノオキシ基(好ましくは炭素原子数1〜20のアシルアミノオキシ基、例えば、N−メチルベンゾイルアミノオキシ(PhC(O)N(CH)O―)、アセチルアミノオキシ(CHC(O)NHO―)等))、チオカルバメート基(好ましくは炭素原子数1〜20のチオカルバメート基、例えば、N,N−ジエチルチオカルバメート等)、ジチオカルバメート基(好ましくは炭素原子数1〜20のジチオカルバメート基、例えば、N−フェニルジチオカルバメート、N,N−ジメチルジチオカルバメート、N,N−ジエチルジチオカルバメート、N,N−ジベンジルジチオカルバメート等)、チオカルボネート基(好ましくは炭素原子数1〜20のチオカルボネート基、例えば、エチルチオカルボネート等)、ジチオカルボネート(好ましくは炭素原子数1〜20のジチオカルボネート、例えば、エチルジチオカルボネート(COC(S)S―)等)、トリチオカルボネート基(好ましくは炭素原子数1〜20のトリチオカルボネート基、例えば、エチルトリチオカルボネート(CSC(S)S−)等)、アシル基(好ましくは炭素原子数1〜20のアシル基、例えば、アセチル、ベンゾイル等)、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基(好ましくは炭素原子数1〜20のアルキルチオ基、例えばメタンチオ、エチレンジチオ等)、アリールチオ基(好ましくは炭素原子数6〜20のアリールチオ基、例えば、ベンゼンチオ、1,2−フェニレンジチオ等)、アルコキシ基(好ましくは炭素原子数1〜20のアルコキシ基、例えばメトキシ等)及びアリールオキシ基(好ましくは炭素原子数6〜20のアリールオキシ基、例えばフェノキシ、キノリン−8−ヒドロキシル等)からなる群から選ばれた基で配位された1座又は2座の配位子、若しくはハロゲン原子(好ましくは塩素原子、臭素原子、ヨウ素原子等)、カルボニル(…CO)、ジアルキルケトン(好ましくは炭素原子数3〜20のジアルキルケトン、例えばアセトン((CHCO…)等)、1,3−ジケトン(好ましくは炭素原子数3〜20の1,3−ジケトン、例えば、アセチルアセトン(CHC(O…)CH=C(O―)CH)、トリフルオロアセチルアセトン(CFC(O…)CH=C(O―)CH)、ジピバロイルメタン(tCC(O…)CH=C(O―)t−C)、ジベンゾイルメタン(PhC(O…)CH=C(O―)Ph)、3−クロロアセチルアセトン(CHC(O…)CCl=C(O―)CH)等)、カルボンアミド(好ましくは炭素原子数1〜20のカルボンアミド、例えば、CHN=C(CH)O―、―OC(=NH)―C(=NH)O―等)、チオカルボンアミド(好ましくは炭素原子数1〜20のチオカルボンアミド、例えば、CHN=C(CH)S―等)、またはチオ尿素(好ましくは炭素原子数1〜20のチオ尿素、例えば、NH(…)=C(S―)NH、CHN(…)=C(S―)NHCH、(CHN―C(S…)N(CH等)からなる配位子を表す。なお、「…」は配位結合を示す。
【0045】
配位子Xは、好ましくはアシルオキシ基、チオアシルチオ基、アシルアミノオキシ基、ジチオカルバメート基、ジチオカルボネート基、トリチオカルボネート基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基、アリールチオ基、アルコキシ基およびアリールオキシ基からなる群から選ばれた基で配位する配位子、あるいはハロゲン原子、カルボニル、1,3−ジケトンまたはチオ尿素からなる配位子であり、より好ましくはアシルオキシ基、アシルアミノオキシ基、ジチオカルバメート基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基またはアリールチオ基からなる群から選ばれた基で配位する配位子、あるいはハロゲン原子、1,3−ジケトンまたはチオ尿素からなる配位子であり、特に好ましくはジチオカルバメート基、チオシアネート基、イソチオシアネート基、シアネート基およびイソシアネート基からなる群から選ばれた基で配位する配位子、あるいはハロゲン原子または1,3−ジケトンからなる配位子であり、最も好ましくは、ジチオカルバメート基、チオシアネート基およびイソチオシアネート基からなる群から選ばれた基で配位する配位子、あるいは1,3−ジケトンからなる配位子である。なお配位子Xがアルキル基、アルケニル基、アルキニル基、アルキレン基等を含む場合、それらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基、シクロアルキル基等を含む場合、それらは置換されていても無置換でもよく、単環でも縮環していてもよい。
【0046】
Xが2座配位子のとき、Xはアシルオキシ基、アシルチオ基、チオアシルオキシ基、チオアシルチオ基、アシルアミノオキシ基、チオカルバメート基、ジチオカルバメート基、チオカルボネート基、ジチオカルボネート基、トリチオカルボネート基、アシル基、アルキルチオ基、アリールチオ基、アルコキシ基およびアリールオキシ基からなる群から選ばれた基で配位する配位子、あるいは1,3−ジケトン、カルボンアミド、チオカルボンアミド、またはチオ尿素からなる配位子であるのが好ましい。Xが1座配位子のとき、Xはチオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基、アリールチオ基からなる群から選ばれた基で配位する配位子、あるいはハロゲン原子、カルボニル、ジアルキルケトン、チオ尿素からなる配位子であるのが好ましい。
【0047】
・対イオンCI
CIは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。一般に、色素が陽イオン又は陰イオンであるか、あるいは正味のイオン電荷を有するかどうかは、色素中の金属、配位子および置換基に依存する。
置換基が解離性基を有することなどにより、一般式(1)の色素は解離して負電荷を持ってもよい。この場合、一般式(1)の色素全体の電荷はCIにより電気的に中性とされる。
【0048】
対イオンCIが正の対イオンの場合、例えば、対イオンCIは、無機又は有機のアンモニウムイオン(例えばテトラアルキルアンモニウムイオン、ピリジニウムイオン等)、アルカリ金属イオン又はプロトンである。
対イオンCIが負の対イオンの場合、例えば、対イオンCIは、無機陰イオンでも有機陰イオンでもよい。例えば、ハロゲン陰イオン(例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等)、置換アリールスルホン酸イオン(例えばp−トルエンスルホン酸イオン、p−クロロベンゼンスルホン酸イオン等)、アリールジスルホン酸イオン(例えば1,3−ベンゼンジスルホン酸イオン、1,5−ナフタレンジスルホン酸イオン、2,6−ナフタレンジスルホン酸イオン等)、アルキル硫酸イオン(例えばメチル硫酸イオン等)、硫酸イオン、チオシアン酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロホスフェートイオン、ピクリン酸イオン、酢酸イオン、トリフルオロメタンスルホン酸イオン等が挙げられる。さらに電荷均衡対イオンとして、イオン性ポリマーあるいは色素と逆電荷を有する他の色素を用いてもよく、金属錯イオン(例えばビスベンゼン−1,2−ジチオラトニッケル(III)等)も使用可能である。
【0049】
吸着基(結合基)
一般式(1)で表される構造を有する色素は、半導体微粒子の表面に対する適当な酸性吸着基(結合基、interlocking group)を1つ以上有する。この基を色素中に1〜6個有するのがより好ましく、1〜4個有するのが特に好ましい。カルボキシル基、スルホン酸基、ヒドロキシル基、ヒドロキサム酸基(例えば―CONHOH等)、ホスホリル基(例えば―OP(O)(OH)等)、ホスホニル基(例えば―P(O)(OH)等)等の酸性基(解離性のプロトンを有する置換基)を色素中に有することが好ましい。なかでも、カルボキシル基、スルホン酸基、、ホスホリル基(例えば―OP(O)(OH)等)を配位子LL上に有することが好ましい。
【0050】
以下に、一般式(1)で表される色素の好ましい具体例を示すが、本発明が以下の具体例に限定されるものではない。
【0051】
【化10】

【0052】
【化11】

【0053】
【化12】

【0054】
【化13】

【0055】
上記具体例においてnは直鎖を表す。
【0056】
本発明における置換基とは例えば下記に示すものを表すことができる。
・ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、
・アルキル基〔直鎖、分岐、環状の置換もしくは無置換のアルキル基を表す。それらは、アルキル基(好ましくは炭素数1から30のアルキル基、例えばメチル、エチル、n−プロピル、イソプロピル、t−ブチル、n−オクチル、エイコシル、2−クロロエチル、2−シアノエチル、2―エチルヘキシル)、シクロアルキル基(好ましくは、炭素数3から30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル、シクロペンチル、4−n−ドデシルシクロヘキシル)、ビシクロアルキル基(好ましくは、炭素数5から30の置換もしくは無置換のビシクロアルキル基、つまり、炭素数5から30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1,2,2]ヘプタン−2−イル、ビシクロ[2,2,2]オクタン−3−イル)、更に環構造が多いトリシクロ構造なども包含するものである。以下に説明する置換基の中のアルキル基(例えばアルキルチオ基のアルキル基)もこのような概念のアルキル基を表す。]、
・アルケニル基[直鎖、分岐、環状の置換もしくは無置換のアルケニル基を表す。それらは、アルケニル基(好ましくは炭素数2から30の置換または無置換のアルケニル基、例えば、ビニル、アリル、プレニル、ゲラニル、オレイル)、シクロアルケニル基(好ましくは、炭素数3から30の置換もしくは無置換のシクロアルケニル基、つまり、炭素数3から30のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、2−シクロペンテン−1−イル、2−シクロヘキセン−1−イル)、ビシクロアルケニル基(置換もしくは無置換のビシクロアルケニル基、好ましくは、炭素数5から30の置換もしくは無置換のビシクロアルケニル基、つまり二重結合を一個持つビシクロアルケンの水素原子を一個取り去った一価の基である。例えば、ビシクロ[2,2,1]ヘプト−2−エン−1−イル、ビシクロ[2,2,2]オクト−2−エン−4−イル)を包含するものである。
・アルキニル基(好ましくは、炭素数2から30の置換または無置換のアルキニル基、例えば、エチニル、プロパルギル、トリメチルシリルエチニル基、アリール基(好ましくは炭素数6から30の置換もしくは無置換のアリール基、例えばフェニル、p−トリル、ナフチル、m−クロロフェニル、o−ヘキサデカノイルアミノフェニル)、
・芳香族基(例えば、ベンゼン環、フラン環、ピロール環、ピリジン環、チオフェン環、イミダゾール環、オキサゾール環、、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、ピリミジン環、ピラジン環もしくはこれらが縮環した環)
・ヘテロ環基(好ましくは5または6員の置換もしくは無置換の、芳香族もしくは非芳香族のヘテロ環化合物から一個の水素原子を取り除いた一価の基であり、更に好ましくは、炭素数3から30の5もしくは6員の芳香族のヘテロ環基である。例えば、2−フリル、2−チエニル、2−ピリミジニル、2−ベンゾチアゾリル)、
・シアノ基、・ヒドロキシル基、・ニトロ基、・カルボキシル基、
・アルコキシ基(好ましくは、炭素数1から30の置換もしくは無置換のアルコキシ基、例えば、メトキシ、エトキシ、イソプロポキシ、t−ブトキシ、n−オクチルオキシ、2−メトキシエトキシ)、
・アリールオキシ基(好ましくは、炭素数6から30の置換もしくは無置換のアリールオキシ基、例えば、フェノキシ、2−メチルフェノキシ、4−t−ブチルフェノキシ、3−ニトロフェノキシ、2−テトラデカノイルアミノフェノキシ)、
・シリルオキシ基(好ましくは、炭素数3から20のシリルオキシ基、例えば、トリメチルシリルオキシ、t−ブチルジメチルシリルオキシ)、
・ヘテロ環オキシ基(好ましくは、炭素数2から30の置換もしくは無置換のヘテロ環オキシ基、1−フェニルテトラゾールー5−オキシ、2−テトラヒドロピラニルオキシ)、
・アシルオキシ基(好ましくはホルミルオキシ基、炭素数2から30の置換もしくは無置換のアルキルカルボニルオキシ基、炭素数6から30の置換もしくは無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ、アセチルオキシ、ピバロイルオキシ、ステアロイルオキシ、ベンゾイルオキシ、p−メトキシフェニルカルボニルオキシ)、
・カルバモイルオキシ基(好ましくは、炭素数1から30の置換もしくは無置換のカルバモイルオキシ基、例えば、N,N−ジメチルカルバモイルオキシ、N,N−ジエチルカルバモイルオキシ、モルホリノカルボニルオキシ、N,N−ジ−n−オクチルアミノカルボニルオキシ、N−n−オクチルカルバモイルオキシ)、
・アルコキシカルボニルオキシ基(好ましくは、炭素数2から30の置換もしくは無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ、エトキシカルボニルオキシ、t−ブトキシカルボニルオキシ、n−オクチルカルボニルオキシ)、
・アリールオキシカルボニルオキシ基(好ましくは、炭素数7から30の置換もしくは無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ、p−メトキシフェノキシカルボニルオキシ、p−n−ヘキサデシルオキシフェノキシカルボニルオキシ)、
・アミノ基(好ましくは、アミノ基、炭素数1から30の置換もしくは無置換のアルキルアミノ基、炭素数6から30の置換もしくは無置換のアニリノ基、例えば、アミノ、メチルアミノ、ジメチルアミノ、アニリノ、N−メチル−アニリノ、ジフェニルアミノ)、
・アシルアミノ基(好ましくは、ホルミルアミノ基、炭素数1から30の置換もしくは無置換のアルキルカルボニルアミノ基、炭素数6から30の置換もしくは無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ、アセチルアミノ、ピバロイルアミノ、ラウロイルアミノ、ベンゾイルアミノ、3,4,5−トリ−n−オクチルオキシフェニルカルボニルアミノ)、
・アミノカルボニルアミノ基(好ましくは、炭素数1から30の置換もしくは無置換のアミノカルボニルアミノ、例えば、カルバモイルアミノ、N,N−ジメチルアミノカルボニルアミノ、N,N−ジエチルアミノカルボニルアミノ、モルホリノカルボニルアミノ)、
・アルコキシカルボニルアミノ基(好ましくは炭素数2から30の置換もしくは無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ、エトキシカルボニルアミノ、t−ブトキシカルボニルアミノ、n−オクタデシルオキシカルボニルアミノ、N−メチルーメトキシカルボニルアミノ)、
・アリールオキシカルボニルアミノ基(好ましくは、炭素数7から30の置換もしくは無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ、p−クロロフェノキシカルボニルアミノ、m−n−オクチルオキシフェノキシカルボニルアミノ)、
・スルファモイルアミノ基(好ましくは、炭素数0から30の置換もしくは無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ、N,N−ジメチルアミノスルホニルアミノ、N−n−オクチルアミノスルホニルアミノ)、
・アルキル及びアリールスルホニルアミノ基(好ましくは炭素数1から30の置換もしくは無置換のアルキルスルホニルアミノ、炭素数6から30の置換もしくは無置換のアリールスルホニルアミノ、例えば、メチルスルホニルアミノ、ブチルスルホニルアミノ、フェニルスルホニルアミノ、2,3,5−トリクロロフェニルスルホニルアミノ、p−メチルフェニルスルホニルアミノ)、
・メルカプト基、
・アルキルチオ基(好ましくは、炭素数1から30の置換もしくは無置換のアルキルチオ基、例えばメチルチオ、エチルチオ、n−ヘキサデシルチオ)、
・アリールチオ基(好ましくは炭素数6から30の置換もしくは無置換のアリールチオ、例えば、フェニルチオ、p−クロロフェニルチオ、m−メトキシフェニルチオ)、
・ヘテロ環チオ基(好ましくは炭素数2から30の置換または無置換のヘテロ環チオ基、例えば、2−ベンゾチアゾリルチオ、1−フェニルテトラゾール−5−イルチオ)、
・スルファモイル基(好ましくは炭素数0から30の置換もしくは無置換のスルファモイル基、例えば、N−エチルスルファモイル、N−(3−ドデシルオキシプロピル)スルファモイル、N,N−ジメチルスルファモイル、N−アセチルスルファモイル、N−ベンゾイルスルファモイル、N−(N‘−フェニルカルバモイル)スルファモイル)、
・スルホ基、
・アルキル及びアリールスルフィニル基(好ましくは、炭素数1から30の置換または無置換のアルキルスルフィニル基、6から30の置換または無置換のアリールスルフィニル基、例えば、メチルスルフィニル、エチルスルフィニル、フェニルスルフィニル、p−メチルフェニルスルフィニル)、
・アルキル及びアリールスルホニル基(好ましくは炭素数1から30の置換または無置換のアルキルスルホニル基、6から30の置換または無置換のアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、フェニルスルホニル、p−メチルフェニルスルホニル)、
・アシル基(好ましくはホルミル基、炭素数2から30の置換または無置換のアルキルカルボニル基、炭素数7から30の置換もしくは無置換のアリールカルボニル基、炭素数4から30の置換もしくは無置換の炭素原子でカルボニル基と結合しているヘテロ環カルボニル基、例えば、アセチル、ピバロイル、2−クロロアセチル、ステアロイル、ベンゾイル、p−n−オクチルオキシフェニルカルボニル、2―ピリジルカルボニル、2―フリルカルボニル)、
・アリールオキシカルボニル基(好ましくは、炭素数7から30の置換もしくは無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル、o−クロロフェノキシカルボニル、m−ニトロフェノキシカルボニル、p−t−ブチルフェノキシカルボニル)、
・アルコキシカルボニル基(好ましくは、炭素数2から30の置換もしくは無置換アルコキシカルボニル基、例えば、メトキシカルボニル、エトキシカルボニル、t−ブトキシカルボニル、n−オクタデシルオキシカルボニル)、
・カルバモイル基(好ましくは、炭素数1から30の置換もしくは無置換のカルバモイル、例えば、カルバモイル、N−メチルカルバモイル、N,N−ジメチルカルバモイル、N,N−ジ−n−オクチルカルバモイル、N−(メチルスルホニル)カルバモイル)、
・アリール及びヘテロ環アゾ基(好ましくは炭素数6から30の置換もしくは無置換のアリールアゾ基、炭素数3から30の置換もしくは無置換のヘテロ環アゾ基、例えば、フェニルアゾ、p−クロロフェニルアゾ、5−エチルチオ−1,3,4−チアジアゾール−2−イルアゾ)、
・イミド基(好ましくは、N−スクシンイミド、N−フタルイミド)、
・ホスフィノ基(好ましくは、炭素数2から30の置換もしくは無置換のホスフィノ基、例えば、ジメチルホスフィノ、ジフェニルホスフィノ、メチルフェノキシホスフィノ)、
・ホスフィニル基(好ましくは、炭素数2から30の置換もしくは無置換のホスフィニル基、例えば、ホスフィニル、ジオクチルオキシホスフィニル、ジエトキシホスフィニル)、
・ホスフィニルオキシ基(好ましくは炭素数2から30の置換もしくは無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ、ジオクチルオキシホスフィニルオキシ)、
・ホスフィニルアミノ基(好ましくは、炭素数2から30の置換もしくは無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ、ジメチルアミノホスフィニルアミノ)、
・シリル基(好ましくは、炭素数3から30の置換もしくは無置換のシリル基、例えば、トリメチルシリル、t−ブチルジメチルシリル、フェニルジメチルシリル)。
また、置換基は更に置換されていても良い。その際、置換基の例としては、上述の置換基を挙げることができる。
【0057】
本発明において前記一般式(1)で表される色素の含有量は特に限定されない。
【0058】
なお、本発明において、光電変換素子は上記一般式(1)で表される色素を2種以上用いてもよい。また本発明において色素とは当該色素化合物そのもののほか、酸性基や塩基性基を有する場合にはその塩やイオン化したもの等を含む意味である。
【0059】
一般式(1)で表される色素の吸収最大波長は特に限定されないが、溶液における最大吸収波長が、好ましくは500〜800nmの範囲であり、より好ましくは500〜750nmの範囲であり、特に好ましくは500〜700nmの範囲である。
【0060】
一般式(1)で表される色素は定法を適宜適用することにより合成することができる。さらに、その合成方法については、国際公開2009/053108号パンフレット、国際公開2007/091525号パンフレットを参照することができ、その記載を本願明細書に引用する。
【0061】
[電荷移動体層]
本実施形態の光電変換素子に用いられる電荷移動体層には、電解質組成物からなる層が適用できる。その酸化還元対として、例えばヨウ素とヨウ化物(例えばヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム等)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体(例えば赤血塩と黄血塩)の組み合わせ等が挙げられる。これらのうちヨウ素とヨウ化物との組み合わせが好ましい。
ヨウ素塩のカチオンは5員環又は6員環の含窒素芳香族カチオンであるのが好ましい。特に、一般式(1)により表される化合物がヨウ素塩でない場合は、WO95/18456号、特開平8−259543号、電気化学,第65巻,11号,923頁(1997年)等に記載されているピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等のヨウ素塩を併用するのが好ましい。
光電変換素子に使用される電解質組成物中には、ヘテロ環4級塩化合物と共にヨウ素を含有するのが好ましい。ヨウ素の含有量は電解質組成物全体に対して0.1〜20質量%であるのが好ましく、0.5〜5質量%であるのがより好ましい。
【0062】
電解質組成物は溶媒を含んでいてもよい。電解質組成物中の溶媒含有量は組成物全体の50質量%以下であるのが好ましく、30質量%以下であるのがより好ましく、10質量%以下であるのが特に好ましい。
溶媒としては低粘度でイオン移動度が高いか、高誘電率で有効キャリアー濃度を高めることができるか、あるいはその両方であるために優れたイオン伝導性を発現できるものが好ましい。このような溶媒としてカーボネート化合物(エチレンカーボネート、プロピレンカーボネート等)、複素環化合物(3−メチル−2−オキサゾリジノン等)、エーテル化合物(ジオキサン、ジエチルエーテル等)、鎖状エーテル類(エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等)、アルコール類(メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等)、多価アルコール類(エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等)、ニトリル化合物(アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル、ビスシアノエチルエーテル等)、エステル類(カルボン酸エステル、リン酸エステル、ホスホン酸エステル等)、非プロトン性極性溶媒(ジメチルスルホキシド(DMSO)、スルフォラン等)、水、特開2002−110262記載の含水電解液、特開2000−36332号公報、特開2000−243134号公報、及び再公表WO/00−54361号公報記載の電解質溶媒などが挙げられる。これらの溶媒は二種以上を混合して用いてもよい。
【0063】
また、電解質溶媒として、室温において液体状態であり、及び/又は室温よりも低い融点を有する電気化学的に不活性な塩を用いても良い。例えば、1−エチルー3−メチルイミダゾリウムトリフルオロメタンスルホネート、1−ブチルー3−メチルイミダゾリウムトリフルオロメタンスルホネート等にイミダゾリウム塩、ピリジニウム塩などの含窒素ヘテロ環四級塩化合物、又はテトラアルキルアンモニウム塩などが挙げられる。
【0064】
電解質組成物には、ポリマーやオイルゲル化剤を添加したり、多官能モノマー類の重合やポリマーの架橋反応等の手法によりゲル化(固体化)してもよい。
【0065】
ポリマーを添加することにより電解質組成物をゲル化させる場合、Polymer Electrolyte Reviews−1及び2(J. R. MacCallumとC. A. Vincentの共編、ELSEVIER APPLIED SCIENCE)に記載された化合物等を添加することができる。この場合、ポリアクリロニトリル又はポリフッ化ビニリデンを用いるのが好ましい。
【0066】
オイルゲル化剤を添加することにより電解質組成物をゲル化させる場合は、オイルゲル化剤としてJ. Chem. Soc. Japan, Ind. Chem. Soc., 46779 (1943)、J. Am. Chem. Soc., 111, 5542 (1989)、J. Chem. Soc., Chem. Commun., 390 (1993)、Angew. Chem. Int.Ed. Engl., 35, 1949 (1996)、Chem. Lett., 885, (1996)、J. Chem. Soc., Chem. Commun., 545, (1997)等に記載された化合物を使用することができ、アミド構造を有する化合物を用いるのが好ましい。
【0067】
多官能モノマー類の重合によって電解質組成物をゲル化する場合は、多官能モノマー類、重合開始剤、電解質及び溶媒から溶液を調製し、キャスト法、塗布法、浸漬法、含浸法等の方法により色素を担持した電極上にゾル状の電解質層を形成し、その後多官能モノマーのラジカル重合によってゲル化させる方法が好ましい。多官能モノマー類はエチレン性不飽和基を2個以上有する化合物であることが好ましく、ジビニルベンゼン、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート等が好ましい。
【0068】
電解質組成物には、金属ヨウ化物(LiI、NaI、KI、CsI、CaI等)、金属臭化物(LiBr、NaBr、KBr、CsBr、CaBr等)、4級アンモニウム臭素塩(テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等)、金属錯体(フェロシアン酸塩−フェリシアン酸塩、フェロセン−フェリシニウムイオン等)、イオウ化合物(ポリ硫化ナトリウム、アルキルチオール−アルキルジスルフィド等)、ビオロゲン色素、ヒドロキノン−キノン等を添加してよい。これらは混合して用いてもよい。
【0069】
また、本発明ではJ. Am. Ceram. Soc., 80, (12), 3157−3171 (1997)に記載のt−ブチルピリジンや、2−ピコリン、2,6−ルチジン等の塩基性化合物を添加してもよい。塩基性化合物を添加する場合の好ましい濃度範囲は0.05〜2Mである。
また、電解質としては、正孔導体物質を含む電荷輸送層を用いても良い。正孔導体物質として、9,9’−スピロビフルオレン誘導体などを用いることができる。
【0070】
電気化学素子の構成として、導電性支持体(電極層)、光電変換層(感光体層及び電荷移動体層)、ホール輸送層、伝導層、対極層を順次に積層することができる。p型半導体として機能するホール輸送材料をホール輸送層としてもちいることができる。好ましいホール輸送層としては、例えば無機系又は有機系のホール輸送材料を用いることができる。無機系ホール輸送材料としては、CuI、CuO,NiO等が挙げられる。また、有機系ホール輸送材料としては、高分子系と低分子系のものが挙げられ、高分子系のものとしては、例えばポリビニルカルバゾール、ポリアミン、有機ポリシラン等が挙げられる。また、低分子系のものとしては、例えばトリフェニルアミン誘導体、スチルベン誘導体、ヒドラゾン誘導体、フェナミン誘導体等が挙げられる。この中でも有機ポリシランは、従来の炭素系高分子と異なり、主鎖のSiに沿って非局化されたσ電子が光伝導に寄与し、高いホール移動度を有するため、好ましい(Phys. Rev. B, 35, 2818(1987))。
【0071】
伝導層は、導電性のよいものであれば特に限定されないが、例えば無機導電性材料、有機導電性材料、導電性ポリマー、分子間電荷移動錯体等が挙げられる。中でもドナー材料とアクセプター材料とから形成された分子間電荷移動錯体が好ましい。この中でも、有機ドナーと有機アクセプターとから形成されたものを好ましく用いることができる。ドナー材料は、分子構造内で電子がリッチなものが好ましい。例えば、有機ドナー材料としては、分子のπ電子系に、置換若しくは無置換アミン基、水酸基、エーテル基、セレン又は硫黄原子を有するものが挙げられ、具体的には、フェニルアミン系、トリフェニルメタン系、カルバゾール系、フェノール系、テトラチアフルバレン系材料が挙げられる。アクセプター材料としては、分子構造内で電子不足なものが好ましい。例えば、有機アクセプター材料としては、フラーレン、分子のπ電子系にニトロ基、シアノ基、カルボキシル基又はハロゲン基等の置換基を有するものが挙げられ、具体的にはPCBM、ベンゾキノン系、ナフトキノン系等のキノン系、フロオレノン系、クロラニル系、ブロマニル系、テトラシアノキノジメタン系、テトラシアノンエチレン系等が挙げられる。
伝導層の厚みは、特に限定されないが、多孔質を完全に埋めることができる程度が好ましい。
【0072】
[導電性支持体]
導電性支持体としては、金属のように支持体そのものに導電性があるものか、または表面に導電膜層を有するガラスや高分子材料を使用することができる。導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上が特に好ましい。導電性支持体としては、ガラスや高分子材料に導電性の金属酸化物を塗設したものを使用することができる。このときの導電性の金属酸化物の塗布量は、ガラスや高分子材料の支持体1m当たり、0.1〜100gが好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。好ましく使用される高分子材料の一例として、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリスルフォン(PSF)、ポリエステルスルフォン(PES)、ポリエーテルイミド(PEI)、環状ポリオレフィン、ブロム化フェノキシ等を挙げることができる。導電性支持体上には、表面に光マネージメント機能を施してもよく、例えば、特開2003−123859記載の高屈折膜及び低屈性率の酸化物膜を交互に積層した反射防止膜、特開2002−260746記載のライトガイド機能が上げられる。
この他にも、金属支持体も好ましく使用することができる。その一例としては、チタン、アルミニウム、銅、ニッケル、鉄、ステンレス、銅を挙げることができる。これらの金属は合金であってもよい。さらに好ましくは、チタン、アルミニウム、銅が好ましく、特に好ましくは、チタンやアルミニウムである。
【0073】
導電性支持体上には、紫外光を遮断する機能を持たせることが好ましい。例えば、紫外光を可視光に変えることが出来る蛍光材料を透明支持体中または、透明支持体表面に存在させる方法や紫外線吸収剤を用いる方法も挙げられる。
導電性支持体上には、さらに特開平11−250944号公報等に記載の機能を付与してもよい。
【0074】
好ましい導電膜としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、炭素、もしくは導電性の金属酸化物(インジウム−スズ複合酸化物、酸化スズにフッ素をドープしたもの等)が挙げられる。
導電膜層の厚さは0.01〜30μmであることが好ましく、0.03〜25μmであることが更に好ましく、特に好ましくは0.05〜20μmである。
導電性支持体は表面抵抗が低い程よい。好ましい表面抵抗の範囲としては50Ω/cm以下であり、さらに好ましくは10Ω/cm以下である。この下限に特に制限はないが、通常0.1Ω/cm程度である。
【0075】
導電膜の抵抗値はセル面積が大きくなると大きくなる為、集電電極を配置してもよい。支持体と透明導電膜の間にガスバリア膜及び/又はイオン拡散防止膜を配置しても良い。ガスバリア層としては、樹脂膜や無機膜を使用することができる。
また、透明電極と多孔質半導体電極光触媒含有層を設けてもよい。透明導電層は積層構造でも良く、好ましい方法としてたとえば、ITO上にFTOを積層することができる。
【0076】
[半導体微粒子]
半導体微粒子としては、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイトの微粒子が用いられる。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイトとしては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
【0077】
半導体には伝導に関わるキャリアーが電子であるn型とキャリアーが正孔であるp型が存在するが、n型を用いることが変換効率の点で好ましい。n型半導体には、不純物準位をもたず伝導帯電子と価電子帯正孔によるキャリアーの濃度が等しい固有半導体(あるいは真性半導体)の他に、不純物に由来する構造欠陥により電子キャリアー濃度の高いn型半導体が存在する。本発明で好ましく用いられるn型の無機半導体は、TiO、TiSrO、ZnO、Nb、SnO、WO、Si、CdS、CdSe、V、ZnS、ZnSe、SnSe、KTaO、FeS、PbS、InP、GaAs、CuInS、CuInSeなどである。これらのうち最も好ましいn型半導体はTiO、ZnO、SnO、WO、ならびにNbである。また、これらの半導体の複数を複合させた半導体材料も好ましく用いられる。
【0078】
半導体微粒子の粒径は、半導体微粒子分散液の粘度を高く保つ目的で、一次粒子の平均粒径が2nm以上50nm以下であることが好ましく、また一次粒子の平均粒径が2nm以上30nm以下の超微粒子であることがより好ましい。粒径分布の異なる2種類以上の微粒子を混合してもよく、この場合小さい粒子の平均サイズは5nm以下であるのが好ましい。また、入射光を散乱させて光捕獲率を向上させる目的で、上記の超微粒子に対して平均粒径が50nmを越える大きな粒子を、低含率で添加、又は別層塗布することもできる。この場合、大粒子の含率は、平均粒径が50nm以下の粒子の質量の50%以下であることが好ましく、20%以下であることがより好ましい。上記の目的で添加混合する大粒子の平均粒径は、100nm以上が好ましく、250nm以上がより好ましい。
【0079】
光散乱用の大粒子を用いることで、ヘイズ率60%以上となることが好ましい。ヘイズ率とは(拡散透過率)÷(全光透過率)で表される。
半導体微粒子の作製法としては、作花済夫の「ゾル・ゲル法の科学」アグネ承風社(1998年)等に記載のゲル・ゾル法が好ましい。またDegussa社が開発した塩化物を酸水素塩中で高温加水分解により酸化物を作製する方法も好ましい。半導体微粒子が酸化チタンの場合、上記ゾル・ゲル法、ゲル・ゾル法、塩化物の酸水素塩中での高温加水分解法はいずれも好ましいが、さらに清野学の「酸化チタン 物性と応用技術」技報堂出版(1997年)に記載の硫酸法および塩素法を用いることもできる。さらにゾル・ゲル法として、バルべ等のジャーナル・オブ・アメリカン・セラミック・ソサエティー,第80巻,第12号,3157〜3171頁(1997年)に記載の方法や、バーンサイドらのケミストリー・オブ・マテリアルズ,第10巻,第9号,2419〜2425頁に記載の方法も好ましい。
【0080】
この他に、半導体微粒子の製造方法として、例えば、チタニアナノ粒子の製造方法として好ましくは、四塩化チタンの火炎加水分解による方法、四塩化チタンの燃焼法、安定なカルコゲナイド錯体の加水分解、オルトチタン酸の加水分解、可溶部と不溶部から半導体微粒子を形成後可溶部を溶解除去する方法、過酸化物水溶液の水熱合成、またはゾル・ゲル法によるコア/シェル構造の酸化チタン微粒子の製造方法が挙げられる。
【0081】
チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、または、ルチル型があげられ、アナターゼ型、ブルッカイト型が好ましい。
チタニアナノチューブ・ナノワイヤー・ナノロッドをチタニア微粒子に混合してもよい。
【0082】
チタニアは、非金属元素などによりドーピングされていても良い。チタニアへの添加剤としてドーパント以外に、ネッキングを改善する為のバインダーや逆電子移動防止の為に表面へ添加剤を用いても良い。好ましい添加剤の例としては、ITO、SnO粒子、ウイスカー、繊維状グラファイト・カーボンナノチューブ、酸化亜鉛ネッキング結合子、セルロース等の繊維状物質、金属、有機シリコン、ドデシルベンゼンスルホン酸、シラン化合物等の電荷移動結合分子、及び電位傾斜型デンドリマーなどが挙げられる。
【0083】
チタニア上の表面欠陥を除去するなどの目的で、色素吸着前にチタニアを酸塩基又は酸化還元処理しても良い。エッチング、酸化処理、過酸化水素処理、脱水素処理、UV−オゾン、酸素プラズマなどで処理してもよい。
【0084】
[半導体微粒子分散液の調製と半導体微粒子層の作製]
本発明においては、半導体微粒子以外の固形分の含量が、半導体微粒子分散液全体の10質量%以下よりなる半導体微粒子分散液を前記の導電性支持体に塗布し、適度に加熱することにより、多孔質半導体微粒子塗布層を得ることができる。
半導体微粒子分散液を作製する方法としては、前述のゾル・ゲル法の他に、半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法、微粒子に超音波などを照射して超微粒子に粉砕する方法、あるいはミルや乳鉢などを使って機械的に粉砕しすり潰す方法、等が挙げられる。分散溶媒としては、水および/または各種の有機溶媒を用いることができる。有機溶媒としては、メタノール,エタノール,イソプロピルアルコール,シトロネロール,ターピネオールなどのアルコール類、アセトンなどのケトン類、酢酸エチルなどのエステル類、ジクロロメタン、アセトニトリル等が挙げられる。
分散の際、必要に応じて例えばポリエチレングリコール、ヒドロキシエチルセルロース、カルボキシメチルセルロースのようなポリマー、界面活性剤、酸、またはキレート剤等を分散助剤として少量用いてもよい。しかし、これらの分散助剤は、導電性支持体上へ製膜する工程の前に、ろ過法や分離膜を用いる方法、あるいは遠心分離法などによって大部分を除去しておくことが好ましい。半導体微粒子分散液は、半導体微粒子以外の固形分の含量が分散液全体の10質量%以下とすることができる。この濃度は好ましくは5%以下であり、さらに好ましくは3%以下であり、特に好ましくは1%以下である。さらに好ましくは0.5%以下であり、特に好ましくは0.2%である。すなわち、半導体微粒子分散液中に、溶媒と半導体微粒子以外の固形分を半導体微分散液全体の10質量%以下とすることができる。実質的に半導体微粒子と分散溶媒のみからなることが好ましい。
半導体微粒子分散液の粘度が高すぎると分散液が凝集してしまい製膜することができず、逆に半導体微粒子分散液の粘度が低すぎると液が流れてしまい製膜することができないことがある。したがって分散液の粘度は、25℃で10〜300N・s/mが好ましい。さらに好ましくは、25℃で50〜200N・s/mである。
【0085】
半導体微粒子分散液の塗布方法としては、アプリケーション系の方法としてローラ法、ディップ法等を使用することができる。またメータリング系の方法としてエアーナイフ法、ブレード法等を使用することができる。またアプリケーション系の方法とメータリング系の方法を同一部分にできるものとして、特公昭58−4589号に開示されているワイヤーバー法、米国特許2681294号明細書等に記載のスライドホッパー法、エクストルージョン法、カーテン法等が好ましい。また汎用機を使用してスピン法やスプレー法で塗布するのも好ましい。湿式印刷方法としては、凸版、オフセットおよびグラビアの3大印刷法をはじめ、凹版、ゴム版、スクリーン印刷等が好ましい。これらの中から、液粘度やウェット厚さに応じて、好ましい製膜方法を選択する。また半導体微粒子分散液は粘度が高く、粘稠性を有するため、凝集力が強いことがあり、塗布時に支持体とうまく馴染まない場合がある。このような場合に、UVオゾン処理で表面のクリーニングと親水化を行うことにより、塗布した半導体微粒子分散液と導電性支持体表面の結着力が増し、半導体微粒子分散液の塗布が行い易くなる。
半導体微粒子層全体の好ましい厚さは0.1〜100μmである。半導体微粒子層の厚さはさらに1〜30μmが好ましく、2〜25μmがより好ましい。半導体微粒子の支持体1m当りの担持量は0.5g〜400gが好ましく、5〜100gがより好ましい。
【0086】
塗布した半導体微粒子の層に対し、半導体微粒子同士の電子的接触の強化と、支持体との密着性の向上のため、また塗布した半導体微粒子分散液を乾燥させるために、加熱処理が施される。この加熱処理により多孔質半導体微粒子層を形成することができる。その他、部材の特性や用途に応じて適宜公知の方法により半導体微粒子層を形成してもよい。例えば、特開2001−291534号公報に開示された記載の材料や調製方法、作製方法を参照することができ、本明細書に引用する。
なお、半導体微粒子の支持体1m当たりの塗布量は0.5〜500g、さらには5〜100gが好ましい。
【0087】
半導体微粒子に色素を吸着させるには、溶液と色素よりなる色素吸着用色素溶液の中に、よく乾燥した半導体微粒子を長時間浸漬するのが好ましい。色素吸着用色素溶液に使用される溶液は、色素が溶解できる溶液なら特に制限なく使用することができる。例えば、エタノール、メタノール、イソプロパノール、トルエン、t−ブタノール、アセトニトリル、アセトン、n−ブタノールなどを使用することができる。その中でも、エタノール、トルエンを好ましく使用することができる。
溶液と色素よりなる色素吸着用色素溶液は必要に応じて50℃ないし100℃に加熱してもよい。色素の吸着は半導体微粒子の塗布前に行っても塗布後に行ってもよい。また、半導体微粒子と色素を同時に塗布して吸着させてもよい。未吸着の色素は洗浄によって除去する。塗布膜の焼成を行う場合は色素の吸着は焼成後に行うことが好ましい。焼成後、塗布膜表面に水が吸着する前にすばやく色素を吸着させるのが特に好ましい。光電変換の波長域をできるだけ広くするように、混合する色素が選ばれる。色素を混合する場合は、すべての色素が溶解するようにして、色素吸着用色素溶液とすることが好ましい。
【0088】
色素の使用量は、全体で、支持体1m当たり0.01〜100ミリモルが好ましく、より好ましくは0.1〜50ミリモル、特に好ましくは0.1〜10ミリモルである。この場合、色素の使用量は5モル%以上とすることが好ましい。
また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.001〜1ミリモルが好ましく、より好ましくは0.1〜0.5ミリモルである。このような色素量とすることによって、半導体における増感効果が十分に得られる。
【0089】
[対極]
対極(対向電極)は、光電気化学電池の正極として働くものである。対向電極は、通常前述の導電性支持体と同義であるが、強度が十分に保たれるような構成では支持体は必ずしも必要でない。ただし、支持体を有する方が密閉性の点で有利である。対向電極の材料としては、白金、カーボン、導電性ポリマー、などがあげられる。好ましい例としては、白金、カーボン、導電性ポリマーが挙げられる。
【0090】
対極の構造としては、集電効果が高い構造が好ましい。好ましい例としては、特開平10−505192号公報などが挙げられる。
受光電極は酸化チタンと酸化スズ(TiO/SnO)などの複合電極を用いても良く、チタニアの混合電極として例えば、特開2000−113913号公報等が挙げられる。チタニア以外の混合電極として例えば、特開2001−185243号公報、特開2003−282164号公報等が挙げられる。
【0091】
素子の構成としては、第1電極層、第1光電変換層、導電層、第2光電変換層、第2電極層を順次積層した構造を有していてもよい。この場合、第1光電変換層と第2光電変換層に用いる色素は同一または異なっていてもよく、異なっている場合には、吸収スペクトルが異なっていることが好ましいい。その他、適宜この種の電気化学素子に適用される構造や部材を適用することができる。
【実施例】
【0092】
以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。
【0093】
(色素の調製)
下記スキーム1に記載の方法で例示化合物A−2を合成した。
【0094】
スキーム1
【0095】
【化14】

【0096】
【化15】

【0097】
A−2と同様にして、A−1、及びA−3〜A−18を合成した。
【0098】
(実験1)
(光電変換素子の作製)
図1に示す光電変換素子を以下のようにして作製した。
ガラス基板上に、透明導電膜としてフッ素をドープした酸化スズをスパッタリングにより形成し、これをレーザーでスクライブして、透明導電膜を2つの部分に分割した。
次に、水とアセトニトリルの容量比4:1からなる混合溶媒100mlにアナターゼ型酸化チタン(日本アエロジル社製のP−25(商品名))を32g配合し、自転/公転併用式のミキシングコンディショナーを使用して均一に分散、混合し、半導体微粒子分散液を得た。この分散液を透明導電膜に塗布し、500℃で加熱して受光電極を作製した。
その後、同様にシリカ粒子とルチル型酸化チタンとを40:60(質量比)で含有する分散液を作製し、この分散液を前記の受光電極に塗布し、500℃で加熱して絶縁性多孔体を形成した。次いで対極として炭素電極を形成した。
次に、下記表1に記載された増感色素のエタノール溶液(3×10−4モル/l)に、上記の絶縁性多孔体が形成されたガラス基板を48時間浸漬した。増感色素の染着したガラスを4−tert−ブチルピリジンの10%エタノール溶液に30分間浸漬した後、エタノールで洗浄し自然乾燥させた。このようにして得られる感光層の厚さは10μmであり、半導体微粒子の塗布量は20g/mであった。電解液は、ヨウ化ジメチルプロピルイミダゾリウム(0.5モル/l)、ヨウ素(0.1モル/l)のメトキシプロピオニトリル溶液を用いた。
【0099】
(色素の極大吸収波長の測定)
用いた色素の最大吸収波長を測定した。その結果を表1に示す。測定は、分光光度計(U−4100(商品名)、日立ハイテク社製)によって行い、溶液はTHF:エタノール=1:1を用い、濃度が2μMになるように調整した。
【0100】
【表1】

【0101】
(光電変換効率の測定)
500Wのキセノンランプ(ウシオ製)の光をAM1.5Gフィルター(Oriel社製)およびシャープカットフィルター(KenkoL−42、商品名)を通すことにより紫外線を含まない模擬太陽光を発生させた。この光の強度は89mW/cmであった。作製した光電変換素子にこの光を照射し、発生した電気を電流電圧測定装置(ケースレー238型、商品名)にて測定した。これにより求められた光電気化学電池の変換効率を測定した結果を下記表2に示した。結果は、変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
また、各々の素子を暗所で80℃、80%RHで100時間経時したあとの効率の低下率を測定した。低下率がフレッシュの3%未満を◎、3%以上5%未満を○、5%以上10%未満を△、10%以上を×とした。結果を表2中の湿熱耐久性の欄に示した。
【0102】
【表2】

【0103】
比較対照として、下記に記載の増感色素S−1、S−11、S−12、S−13を用いた。
【化16】

(特許第3731752号に記載の化合物)
【0104】
【化17】

【0105】
【化18】

【0106】
本発明の色素を用いて作製された電気化学電池は、表2に示されているように、特に色素としてA1〜A5、A−9、A11〜A13、A17を使用した場合は、変換効率は7.5%以上と高い値を示した。その他の本発明の色素を使用した場合でも、変換効率は7.3%以上7.5%未満と比較的高いレベルであった。
それに対して、S−1、S−11、S−12、S−13の比較例は、変換効率は7.1%未満と不十分であった。
【0107】
(実験2)
ガラス基板上にITO膜を作製し、その上にFTO膜を積層することにより、透明導電膜を作製した。その後透明導電膜上に酸化物半導体多孔質膜を形成することにより、透明電極板を得た。そしてその透明電極板を使用して光電気化学電池を作製し、変換効率を測定した。その方法は以下の(1)〜(5)の通りである。
【0108】
(1)ITO(インジウム・スズ・オキサイド)膜用原料化合物溶液の調製
塩化インジウム(III)四水和物5.58gと塩化スズ(II)二水和物0.23gとをエタノール100mlに溶解して、ITO膜用原料化合物溶液とした。
【0109】
(2)FTO(フッ素ドープ酸化スズ)膜用原料化合物溶液の調製
塩化スズ(IV)五水和物0.701gをエタノール10mlに溶解し、これにフッ化アンモニウム0.592gの飽和水溶液を加え、この混合物を超音波洗浄機に約20分間かけ、完全に溶解して、FTO膜用原料化合物溶液とした。
【0110】
(3)ITO/FTO透明導電膜の作製
厚さ2mmの耐熱ガラス板の表面を化学洗浄し、乾燥した後、このガラス板を反応器内に置き、ヒータで加熱した。ヒータの加熱温度が450℃になったところで、(1)で得られたITO膜用原料化合物溶液を、口径0.3mmのノズルから圧力0.06MPaで、ガラス板までの距離を400mmとして、25分間噴霧した。
このITO膜用原料化合物溶液の噴霧後、2分間(この間ガラス基板表面にエタノールを噴霧し続け、基板表面温度の上昇を抑えるようにした。)経過し、ヒータの加熱温度が530℃になった時に、(2)で得られたFTO膜用原料化合物溶液を同様の条件で2分30秒間噴霧した。これにより、耐熱ガラス板上に厚さ530nmのITO膜、厚さ170nmのFTO膜が順次形成された透明電極板が得られた。
比較のために、厚さ2mmの耐熱ガラス板上に同様に、厚さ530nmのITO膜のみを成膜した透明電極板と、同じく厚さ180nmのFTO膜のみを成膜した透明電極板とをそれぞれ作製した。
これら3種の透明電極板を加熱炉にて、450℃で2時間加熱した。
【0111】
(4)光電気化学電池の作製
次に、上記3種の透明電極板を用いて、特許第4260494号中の図2に示した構造の光電気化学電池を作製した。酸化物半導体多孔質膜15の形成は、平均粒径約230nmの酸化チタン微粒子をアセトニトリル100mlに分散してペーストとし、これを透明電極11上にバーコート法により厚さ15μmに塗布し、乾燥後450℃で1時間焼成して行い、この酸化物半導体多孔質膜15に表2記載の色素を担持した。色素溶液への浸漬条件は実験1と同じとした。
さらに、対極16には、ガラス板上にITO膜とFTO膜とを積層した導電性基板を使用し、電解質層17には、ヨウ素/ヨウ化物の非水溶液からなる電解液を用いた。光電気化学電池の平面寸法は25mm×25mmとした。
【0112】
(5)光電気化学電池の評価
この光電気化学電池について、人工太陽光(AM1.5)を照射し、その発電効率を求めた。その結果を表3に示す。変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
増感色素S−1を用いた試料No.11〜13では変換効率が低いのに対し、本発明の例示色素を使用した試料No.1〜9では良好な結果を示すことがわかった。透明電極板として、ITO膜とFTO膜とを積層したものを用いた光電気化学電池では、ITO膜のみもしくはFTO膜のみを成膜したものを用いた場合に比べ特に変換効率が高く、本発明の色素でその効果が高いことがわかった。
【0113】
【表3】

【0114】
(実験3)
FTO膜上に集電電極を配し、光電気化学電池を作製し、変換効率を評価した。評価は以下の通り、試験セル(i)と試験セル(iv)の2種類とした。
【0115】
(試験セル(i))
100mm×100mm×2mmの耐熱ガラス板の表面を化学洗浄し、乾燥した後、このガラス板を反応器内に置き、ヒータで加熱した後、実験2で使用したFTO(フッ素ドープ酸化スズ)膜用原料化合物溶液を、口径0.3mmのノズルから圧力0.06MPaで、ガラス板までの距離を400mmとして、25分間噴霧し、FTO膜付きガラス基板を用意した。その表面に、エッチング法により深さ5μmの溝を格子回路パターン状に形成した。フォトリソグラフでパターン形成した後に、フッ酸を用いてエッチングを行った。これに、めっき形成を可能とするためにスパッタ法により金属導電層(シード層)を形成し、更にアディティブめっきにより金属配線層3を形成した。金属配線層3は、透明基板2表面から凸レンズ状に3μm高さまで形成した。回路幅は60μmとした。この上から、遮蔽層5としてFTO膜を400nmの厚さでSPD法により形成して、電極基板(i)とした。なお、電極基板(i)の断面形状は、特開2004−146425中の図2に示すものとなっていた。
電極基板(i)上に、平均粒径25nmの酸化チタンをアセトニトリル 100mlに分散して得た分散液を塗布・乾燥し、450℃で1時間加熱・焼結した。これを表4に示す色素のエタノール溶液へ浸漬して色素を吸着させた。浸漬条件は実施例1と同じとした。50μm厚の熱可塑性ポリオレフィン樹脂シートを介して白金スパッタFTO基板と対向して配置し、樹脂シート部を熱溶融させて両極板を固定した。
なお、あらかじめ白金スパッタ極側に開けておいた電解液の注液口から、0.5Mのヨウ化塩と0.05Mのヨウ素とを主成分に含むメトキシアセトニトリル溶液を注液し、電極間に満たした。さらに周辺部及び電解液注液口をエポキシ系封止樹脂を用いて本封止し、集電端子部に銀ペーストを塗布して試験セル(i)とした。AM1.5の疑似太陽光により、試験セル(i)の光電変換特性を評価した。その結果を表4に示した。
【0116】
(試験セル(iv))
試験セル(i)と同様の方法で100×100mmのFTO膜付きガラス基板を用意した。そのFTOガラス基板上に、アディティブめっき法により金属配線層3(金回路)を形成した。金属配線層3(金回路)は基板表面に格子状に形成し、回路幅50μm、回路厚5μmとした。この表面に厚さ300nmのFTO膜を遮蔽層5としてSPD法により形成して試験セル(iv)とした。電極基板(iv)の断面をSEM−EDXを用いて確認したところ、配線底部でめっきレジストの裾引きに起因すると思われる潜り込みがあり、影部分にはFTOが被覆されていなかった。
電極基板(iv)を用い、試験セル(i)と同様に、試験セル(iv)を作製した。AM1.5の疑似太陽光により試験セル(iv)の光電変換特性を評価し、結果を表4に示した。結果は、変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
【0117】
【表4】

【0118】
表4より、本発明の色素を用いた場合は、試験セル(i)の場合の変換効率は高い値を示した。一方、試験セル(iv)を用いた場合についてみると、比較例の色素を用いた場合と比較して、本発明の色素を用いた場合は、変換効率が高くなった。このため本発明の色素を用いることにより、試験セル選択の自由度が上がることがわかった。
【0119】
(実験4)
ペルオキソチタン酸及び酸化チタン微粒子を生成する方法、並びにそれを用いて酸化物半導体膜を作製する方法について試験を行い、光電気化学電池を作製し、評価した。
【0120】
(光電池セル(A))
(1)酸化物半導体膜形成用塗布液(A)の調製
5gの水素化チタンを1リットルの純水に懸濁し、5質量%の過酸化水素液400gを30分かけて添加し、ついで80℃に加熱して溶解してペルオキソチタン酸の溶液を調製した。この溶液の全量から90容積%を分取し、濃アンモニア水を添加してpH9に調整し、オートクレーブに入れ、250℃で5時間、飽和蒸気圧下で水熱処理を行ってチタニアコロイド粒子(A)を調製した。得られたチタニアコロイド粒子は、X線回折により結晶性の高いアナターゼ型酸化チタンであった。
次に、上記で得られたチタニアコロイド粒子(A)を10質量%まで濃縮し、前記ペルオキソチタン酸溶液を混合し、この混合液中のチタンをTiO換算し、TiO質量の30質量%となるように膜形成助剤としてヒドロキシプロピルセルロースを添加して半導体膜形成用塗布液を調製した。
【0121】
(2)酸化物半導体膜(A)の作製
次いで、フッ素ドープした酸化スズが電極層として形成された透明ガラス基板上に前記塗布液を塗布し、自然乾燥し、引き続き低圧水銀ランプを用いて6000mJ/cmの紫外線を照射してペルオキソ酸を分解させ、塗膜を硬化させた。塗膜を300℃で30分間加熱してヒドロキシプロピルセルロースの分解およびアニーリングを行って酸化物半導体膜(A)をガラス基板に形成した。
【0122】
(3)酸化物半導体膜(A)への色素の吸着
次に、分光増感色素として本発明の色素の濃度3×10−4モル/リットルのエタノール溶液を調製した。この色素溶液を100rpmスピナーで、金属酸化物半導体膜(A)上へ塗布して乾燥した。この塗布および乾燥工程を5回行った。
【0123】
(4)電解質溶液の調製
アセトニトリルと炭酸エチレンとの体積比が1:5の混合溶媒に、テトラプロピルアンモニウムアイオダイドを0.46モル/リットル、ヨウ素を0.07モル/リットルの濃度となるように溶解して電解質溶液を調製した。
【0124】
(5)光電気セル(A)の作製
(2)で作製した、色素を吸着させた酸化物半導体膜(A)が形成されたガラス基板を一方の電極とし、他方の電極として、フッ素ドープした酸化スズを電極として形成しその上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に(4)の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(A)を作製した。
【0125】
(6)光電気セル(A)の評価
光電気セル(A)は、ソーラーシュミレーターで100W/mの強度の光を照射して、η(変換効率)を測定し、その結果を表5に示した。
【0126】
(光電池セル(B))
紫外線を照射してペルオキソ酸を分解させ、膜を硬化させた後、Arガスのイオン照射(日新電気製:イオン注入装置、200eVで10時間照射)を行った以外は酸化物半導体膜(A)と同様にして酸化物半導体膜(B)を形成した。
酸化物半導体膜(A)と同様に、酸化物半導体膜(B)に色素の吸着を行った。
その後実施例1と同様の方法で光電気セル(B)を作成し、ηを測定した。その結果を表5に示した。
【0127】
(光電池セル(C))
18.3gの4塩化チタンを純水で希釈して、TiO換算で1.0質量%含有する水溶液を得た。この水溶液を撹拌しながら、15質量%のアンモニア水を添加し、pH9.5の白色スラリーを得た。このスラリーを濾過洗浄し、TiO換算で、10.2質量%の水和酸化チタンゲルのケーキを得た。このケーキと5質量%過酸化水素液400gを混合し、ついで80℃に加熱して溶解してペルオキソチタン酸の溶液を調製した。この溶液全量から90体積%を分取し、これに濃アンモニア水を添加してpH9に調整し、オートクレーブに入れ、250℃で5時間、飽和蒸気圧下で水熱処理を行ってチタニアコロイド粒子(C)を調製した。
次に、上記で得られたペルオキソチタン酸溶液とチタニアコロイド粒子(C)を使用して酸化物半導体膜(A)と同様にして酸化物半導体膜(C)を形成し、金属酸化物半導体膜(A)と同様にして、分光増感色素として本発明の色素の吸着を行った。
その後光電気セル(A)と同様の方法で光電気セル(C)を作製し、ηを測定した。その結果を表5に示した。
【0128】
(光電池セル(D))
18.3gの4塩化チタンを純水で希釈してTiO換算で1.0質量%含有する水溶液を得た。これを撹拌しながら、15質量%のアンモニア水を添加し、pH9.5の白色スラリーを得た。このスラリーを濾過洗浄した後、純水に懸濁してTiOとして0.6質量%の水和酸化チタンゲルのスラリーとし、これに塩酸を加えてpH2とした後、オートクレーブに入れ、180℃で5時間、飽和蒸気圧下で水熱処理を行ってチタニアコロイド粒子(D)を調製した。
次に、チタニアコロイド粒子(D)を10質量%まで濃縮し、これに、TiOに換算して、30質量%となるように膜形成助剤としてヒドロキシプロピルセルロースを添加して、半導体膜形成用塗布液を調製した。次いで、フッ素ドープした酸化スズが電極層として形成された透明ガラス基板上に、前記塗布液を塗布し、自然乾燥し、引き続き低圧水銀ランプを用いて6000mJ/cmの紫外線を照射し、膜を硬化させた。さらに、300℃で30分間加熱してヒドロキシプロピルセルロースの分解およびアニーリングを行い、酸化物半導体膜(D)を形成した。
次に、酸化物半導体膜(A)と同様にして分光増感色素として、本発明の色素の吸着を行った。
その後、光電気セル(A)と同様の方法で光電気セル(D)を作成し、ηを測定した。結果を表5に示した。結果は、変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
【0129】
【表5】

【0130】
表5より、本発明の色素の場合には、試験セル(A)〜(C)を使用した場合には特に変換効率が高いことがわかった。
【0131】
(実験5)
方法を変えて酸化チタンの調製又は合成を行い、得られた酸化チタンから酸化物半導体膜を作製し、光電気化学電池とし、その評価を行った。
【0132】
(1)熱処理法による酸化チタンの調製
市販のアナターゼ型酸化チタン(石原産業(株)製、商品名ST−01)を用い、これを約900℃に加熱してブルーカイト型の酸化チタンに変換し、さらに約1,200℃に加熱してルチル型の酸化チタンとした。それぞれ順に、比較酸化チタン1(アナターゼ型)、酸化チタン1(ブルーカイト型)、比較酸化チタン2(ルチル型)とする。
【0133】
(2)湿式法による酸化チタンの合成
(酸化チタン2(ブルーカイト型))
蒸留水954mlを還流冷却器付きの反応槽に装入し、95℃に加温する。撹拌速度を約200rpmに保ちながら、この蒸留水に四塩化チタン(Ti含有量:16.3質量%、比重1.59、純度99.9%)水溶液46mlを約5.0ml/minの速度で反応槽に滴下した。このとき、反応液の温度が下がらないように注意した。その結果、四塩化チタン濃度が0.25mol/リットル(酸化チタン換算2質量%)であった。反応槽中では反応液が滴下直後から、白濁し始めたがそのままの温度で保持を続け、滴下終了後さらに昇温し沸点付近(104℃)まで加熱し、この状態で60分間保持して完全に反応を終了した。
反応により、得られたゾルを濾過し、次いで60℃の真空乾燥器を用いて粉末とした。この粉末をX線回折法により定量分析した結果、(ブルーカイト型121面のピーク強度)/(三本が重なる位置でのピーク強度)比は0.38、(ルチル型のメインピーク強度)/(三本が重なる位置でのピーク強度)比は0.05であった。これらから求めると酸化チタンは、ブルーカイト型が約70.0質量%、ルチル型が約1.2質量%、アナターゼ型が約28.8質量%の結晶性であった。また、透過型電子顕微鏡でこの微粒子を観察したところ、1次粒子の平均粒径は0.015μmであった。
【0134】
(酸化チタン3(ブルーカイト型))
三塩化チタン水溶液(Ti含有量:28質量%、比重1.5、純度99.9%)を蒸留水で希釈し、チタン濃度換算で0.25モル/Lの溶液とした。このとき、液温が上昇しないよう氷冷して、50℃以下に保った。次に、この溶液を還流冷却器付きの反応槽に500ml投入し、85℃に加温しながらオゾンガス発生装置から純度80%のオゾンガスを1L/minでバブリングし、酸化反応を行なった。この状態で2時間保持し、完全に反応を終了した。得られたゾルをろ過、真空乾燥し、粉末とした。この粉末をX線回折法により定量分析した結果、(ブルーカイト型121面のピーク強度)/(三本が重なる位置でのピーク強度)比は0.85、(ルチル型のメインピーク強度)/(三本が重なる位置でのピーク強度)比は0であった。これらから求めると二酸化チタンは、ブルーカイト型が約98質量%、ルチル型が0質量%、アナターゼ型が0質量%であり、約2%は無定形であった。また、透過型電子顕微鏡でこの微粒子を観察したところ、1次粒子の平均粒径は0.05μmであった。
【0135】
(色素増感型光電変換素子の作製および評価)
上記の酸化チタン1〜3で調製した酸化チタンを半導体として特開2000−340269の図1に示す構成を有する光電変換素子を次のように作製した。
ガラス基板上にフッ素ドープの酸化スズをコートし、導電性透明電極とした。電極面上にそれぞれの酸化チタン粒子を原料としたペーストを作成し、バーコート法で厚さ50μmに塗布した後、500℃で焼成して膜厚約20μmの薄層を形成した。次に色素の3×10−4モル濃度のエタノール溶液を調製し、これに上記の酸化チタンの薄層を形成したガラス基板を浸漬し、12時間室温で保持した。
【0136】
電解液としてテトラプロピルアンモニウムのヨウ素塩とヨウ化リチウムのアセトニトリル溶液を用い、白金を対極として特開2000−340269の図1に示す構成を有する光電変換素子を作製した。光電変換は160wの高圧水銀ランプの光(フィルターで赤外線部をカット)を上記の素子に照射し、その際の変換効率を測定した。結果を表6に示す。結果は、変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
【0137】
【表6】

【0138】
表6より、本発明の色素は変換効率が高いことがわかった。
【0139】
(実験6)
粒径の異なる酸化チタンを用いて半導体電極として、光電気化学電池を作製し、その特性を評価した。
[ペーストの調製]
まず光電極を構成する半導体電極の半導体層又は光散乱層を形成するためのペーストを以下の手順で調製した。
【0140】
(ペースト1)
球形のTiO粒子(アナターゼ型、平均粒径;25nm、以下、球形TiO粒子1という)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペーストを調製した。
【0141】
(ペースト2)
球形TiO粒子1と、球形のTiO粒子(アナターゼ型、平均粒径;200nm、以下、球形TiO粒子2という)とを硝酸溶液に入れて撹拌することによりチタニアスラリーを調製した。次に、チタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してペースト(TiO粒子1の質量:TiO粒子2の質量=30:70)を調製した。
【0142】
(ペースト3)
ペースト1に、棒状のTiO粒子(アナターゼ型、直径;100nm、アスペクト比;5、以下、棒状TiO粒子1という)を混合し、棒状TiO粒子1の質量:ペースト1の質量=10:90のペーストを調製した。
【0143】
(ペースト4)
ペースト1に、棒状TiO粒子1を混合し、棒状TiO粒子1の質量:ペースト1の質量=30:70のペーストを調製した。
【0144】
(ペースト5)
ペースト1に、棒状TiO粒子1を混合し、棒状TiO粒子1の質量:ペースト1の質量=50:50のペーストを調製した。
【0145】
(ペースト6)
ペースト1に、板状のマイカ粒子(直径;100nm、アスペクト比;6、以下、板状マイカ粒子1という)を混合し、板状マイカ粒子1の質量:ペースト1の質量=20:80のペーストを調製した。
【0146】
(ペースト7)
ペースト1に、棒状のTiO粒子(アナターゼ、直径;30nm、アスペクト比;6.3、以下、棒状TiO粒子2という)を混合し、棒状TiO2粒子2の質量:ペースト1の質量=30:70のペーストを調製した。
【0147】
(ペースト8)
ペースト1に、棒状のTiO粒子(アナターゼ、直径;50nm、アスペクト比;6.1、以下、棒状TiO粒子3という)を混合し、棒状TiO粒子3の質量:ペースト1の質量=30:70のペーストを調製した。
【0148】
(ペースト9)
ペースト1に、棒状のTiO粒子(アナターゼ、直径;75nm、アスペクト比;5.8、以下、棒状TiO粒子4という)を混合し、棒状TiO粒子4の質量:ペースト1の質量=30:70のペーストを調製した。
【0149】
(ペースト10)
ペースト1に、棒状のTiO粒子(アナターゼ、直径;130nm、アスペクト比;5.2、以下、棒状TiO粒子5という)を混合し、棒状TiO粒子5の質量:ペースト1の質量=30:70のペーストを調製した。
【0150】
(ペースト11)
ペースト1に、棒状のTiO粒子(アナターゼ、直径;180nm、アスペクト比;5、以下、棒状TiO粒子6という)を混合し、棒状TiO粒子6の質量:ペースト1の質量=30:70のペーストを調製した。
【0151】
(ペースト12)
ペースト1に、棒状のTiO粒子(アナターゼ、直径;240nm、アスペクト比;5、以下、棒状TiO粒子7という)を混合し、棒状TiO粒子7の質量:ペースト1の質量=30:70のペーストを調製した。
【0152】
(ペースト13)
ペースト1に、棒状のTiO粒子(アナターゼ、直径;110nm、アスペクト比;4.1、以下、棒状TiO粒子8という)を混合し、棒状TiO粒子8の質量:ペースト1の質量=30:70のペーストを調製した。
【0153】
(ペースト14)
ペースト1に、棒状のTiO粒子(アナターゼ、直径;105nm、アスペクト比;3.4、以下、棒状TiO粒子9という)を混合し、棒状TiO粒子9の質量:ペースト1の質量=30:70のペーストを調製した。
【0154】
(光電気化学電池1)
以下に示す手順により、特開2002−289274記載の図5に示した光電極12と同様の構成を有する光電極を作製し、更に、光電極を用いて、当該光電極以外は色素増感型太陽電池20と同様の構成を有する10×10mmのスケールの光電気化学電池1を作製した。
【0155】
ガラス基板上にフッ素ドープされたSnO導電膜(膜厚;500nm)を形成した透明電極を準備した。そして、このSnO導電膜上に、上記のペースト2をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成した。更に、ペースト4を用いてこのスクリーン印刷と焼成とを繰り返すことにより、SnO導電膜上に図5に示す半導体電極2と同様の構成の半導体電極(受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;6μm、光散乱層の層厚;4μm、光散乱層に含有される棒状TiO粒子1の含有率;30質量%)を形成し、増感色素を含有していない光電極を作製した。
【0156】
次に、半導体電極に色素を以下のようにして吸着させた。まずマグネシウムエトキシドで脱水した無水エタノールを溶媒として、これに本発明の色素を、その濃度が3×10−4mol/Lとなるように溶解し、色素溶液を調製した。次に、この溶液に半導体電極を浸漬し、これにより、半導体電極に色素を約1.5ミリモル/m吸着し、光電極10を完成させた。
【0157】
次に、対極として上記の光電極と同様の形状と大きさを有する白金電極(Pt薄膜の厚さ;100nm)、電解質Eとして、ヨウ素及びヨウ化リチウムを含むヨウ素系レドックス溶液を調製した。更に、半導体電極の大きさに合わせた形状を有するデュポン社製のスペーサーS(商品名:「サーリン」)を準備し、特開2002−289274号公報記載の図3に示すように、光電極10と対極CEとスペーサーSを介して対向させ、内部に上記の電解質を充填して光電気化学電池1を完成させた。
【0158】
(光電気化学電池2)
半導体電極の製造を以下のようにして行ったこと以外は、光電気化学電池1と同様の手順により特開2002−289274記載の図1に示した光電極10及び特開2002−289274号公報記載の図3に示した色素増感型太陽電池20と同様の構成を有する光電極及び光電気化学電池2を作製した。
【0159】
ペースト2を半導体層形成用ペーストとして使用した。そして、SnO導電膜上に、ペースト2をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成し、半導体層を形成した。
【0160】
ペースト3を光散乱層の最内部の層形成用ペーストとして使用した。また、ペースト5を光散乱層の最外部の層形成用ペーストとして使用した。そして、色素増感太陽電池1と同様にして半導体層上に光散乱層を形成した。
【0161】
そして、SnO導電膜上に、特開2002−289274記載の図1に示す半導体電極2と同様の構成の半導体電極(受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;3μm、最内部の層の層厚;4μm、最内部の層に含有される棒状TiO粒子1の含有率;10質量%、最外部の層の層厚;3μm、最内部の層に含有される棒状TiO粒子1の含有率;50質量%)を形成し、増感色素を含有していない光電極を作製した。光電気化学電池1と同様に、光電極と対極CEとスペーサーSを介して対向させ、内部に上記の電解質を充填して光電気化学電池2を完成させた。
【0162】
(光電気化学電池3)
半導体電極の製造に際して、ペースト1を半導体層形成用ペーストとして使用し、ペースト4を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により図5に示した光電極10及び特開2002−289274記載の図3に示した光電気化学電池20と同様の構成を有する光電極及び光電気化学電池3を作製した。なお、半導体電極は、受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;5μm、光散乱層の層厚;5μm、光散乱層に含有される棒状TiO粒子1の含有率;30質量%であった。
【0163】
(光電気化学電池4)
半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト6を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により図5に示した光電極10及び特開2002−289274記載の図3に示した光電気化学電池20と同様の構成を有する光電極及び光電気化学電池4を作製した。なお、半導体電極は、受光面の面積;10mm×10mm、層厚;10μm、半導体層の層厚;6.5μm、光散乱層の層厚;3.5μm、光散乱層に含有される板状マイカ粒子1の含有率;20質量%であった。
【0164】
(光電気化学電池5)
半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト8を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び光電気化学電池5を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子3の含有率;30質量%であった。
【0165】
(光電気化学電池6)
半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト9を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び光電気化学電池6を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子4の含有率;30質量%であった。
【0166】
(光電気化学電池7)
半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト10を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び光電気化学電池7を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子5の含有率;30質量%であった。
【0167】
(光電気化学電池8)
半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト11を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び光電気化学電池8を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子6の含有率;30質量%であった。
【0168】
(光電気化学電池9)
半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト13を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び光電気化学電池9を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子8の含有率;30質量%であった。
【0169】
(光電気化学電池10)
半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト14を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び光電気化学電池10を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子9の含有率;30質量%であった。
【0170】
(光電気化学電池11)
半導体電極の製造に際して、ペースト2のみを用いて半導体層のみからなる半導体電極(受光面の面積;10mm×10mm、層厚;10μm、)を作製したこと以外は、光電気化学電池1と同様の手順により光電極及び比較光電気化学電池1を作製した。
【0171】
(電気化学電池12)
半導体電極の製造に際して、ペースト2を半導体層形成用ペーストとして使用し、ペースト7を光散乱層形成用ペーストとして使用したこと以外は、光電気化学電池1と同様の手順により光電極及び比較光電気化学電池2を作製した。なお、半導体電極の光散乱層に含有される棒状TiO粒子2の含有率;30質量%であった。
【0172】
[電池特性試験]
電池特性試験を行ない、光電気化学電池1〜10、比較光電気化学電池1〜2について変換効率ηを測定した。電池特性試験は、ソーラーシミュレータ(WACOM製、WXS−85H)を用い、AM1.5フィルターを通したキセノンランプから1000W/m2の疑似太陽光を照射することにより行った。I−Vテスターを用いて電流−電圧特性を測定し、エネルギー変換効率(η/%)を求めた。その結果を表7に示す。結果は、変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
【0173】
【表7】

【0174】
表7の通り、本発明の色素は変換効率が高いことがわかった。
【0175】
(実験7)
金属酸化物微粒子に金属アルコキシドを加えスラリー状としたものを導電性基板に塗布し、その後、UVオゾン照射、UV照射又は乾燥を行い、電極を作製した。その後、光電気化学電池を作製し、変換効率を測定した。
【0176】
(金属酸化物微粒子)
金属酸化物微粒子としては、酸化チタンを用いた。酸化チタンは、質量比で、30%ルチル型及び70%アナターゼ型、平均粒径25nmのP25粉末(Degussa社製、商品名)を用いた。
【0177】
(金属酸化物微粒子粉末の前処理)
金属酸化物微粒子をあらかじめ熱処理することで表面の有機物と水分を除去した。酸化チタン微粒子の場合は450℃のオーブンで大気下、30分間加熱した。
【0178】
(金属酸化物微粒子に含まれる水分量の測定)
温度26℃、湿度72%の環境に保存しておいた酸化チタン、P25粉末(Degussa社製、商品名)に含まれる水分量を、熱重量測定における重量減少、及び300℃に加熱したときに脱着した水分量のカールフィッシャー滴定により定量した。
【0179】
酸化チタン、P25粉末(Degussa社製、商品名)を300℃で加熱したときに脱着する水分量をカールフィッシャー滴定によって定量したところ、0.1033gの酸化チタン微粉末中に0.253mgの水が含まれていた。すなわち、酸化チタン微粉末は約2.5wt%の水分を含んでいたため、金属酸化物微粒子粉末は金属アルコキシドとの混合前に450℃のオーブンで30分間熱処理し、冷却後デシケーター中に保存して用いた。
【0180】
(金属アルコキシドペーストの調製)
金属酸化物微粒子を結合する役割をする金属アルコキシドとしては、チタン原料としてはチタン(IV)テトライソプロポキシド(TTIP)、ジルコニウム原料としてはジルコニウム(IV)テトラn−プロポキシド、ニオブ原料としてはニオブ(V)ペンタエトキシド(全てAldrich社製)をそれぞれ用いた。
【0181】
金属酸化物微粒子と金属アルコキシドのモル濃度比は、金属アルコキシドの加水分解によって生じるアモルファス層が過度に厚くならず、かつ粒子同士の結合が十分行えるように、金属酸化物微粒子径に応じて適宜調節した。なお、金属アルコキシドはすべて、0.1Mのエタノール溶液とした。酸化チタン微粒子とチタン(IV)テトライソプロポキシド(TTIP)とを混合する場合には、酸化チタン微粒子1gに対し、3.55gの0.1M TTIP溶液を混合した。このとき、得られたペースト中の酸化チタン濃度は約22質量%となり、塗布に適当な粘度となった。また、このときの酸化チタンとTTIPとエタノールは、質量比で1:0.127:3.42、モル比で1:0.036:5.92であった。
同様に、酸化チタン微粒子とTTIP以外のアルコキシドの混合ペーストについても微粒子濃度が22質量%となるように調製した。酸化亜鉛及び酸化スズ微粒子を用いたペーストでは16質量%とした。酸化亜鉛及び酸化スズの場合は、金属酸化物微粒子1gに対して、金属アルコキシド溶液5.25gの比で混合した。
【0182】
金属酸化物微粒子と金属アルコキシド溶液は、密閉容器中においてマグネチックスターラーによって2時間攪拌して均一なペーストを得た。
導電性基板へのペーストの塗布方法は、ドクターブレード法、スクリーン印刷法、スプレー塗布法などを用いることが可能であり、適当なペースト粘度は塗布方法によって適宜選択した。ここでは簡便にガラス棒で塗布する方法(ドクターブレード法に類似)を用いた。この場合、適当なペースト粘度を与える金属酸化物微粒子の濃度は概ね5〜30質量%の範囲となった。
【0183】
金属アルコキシドの分解によって生成するアモルファス金属酸化物のレイヤー厚さは本実施例では0.1〜0.6nm程度の範囲にある。概ね0.05〜1.3nm程度が本手法による室温製膜に適切な範囲となっていた。
【0184】
(導電性基板上へのペーストの塗布と風乾処理)
スズドープ酸化インジウム(ITO)導電膜付きポリエチレンテレフタレート(PET)フィルム基板(20Ω/cm)又はフッ素ドープ酸化スズ(FTO)導電膜付きガラス基板(10Ω/cm)に、スペーサーとして粘着テープ2枚を一定間隔で平行に貼り付け、上記の方法に従って調製した各ペーストを、ガラス棒を用いて均一に塗布した。
【0185】
ペーストを塗布後、色素吸着前に、UVオゾン処理、UV照射処理、又は乾燥処理の有無について条件を変えて多孔質膜を作製した。
(乾燥処理)
導電性基板へ塗布した後の膜を大気中室温で2分程度で風乾した。この過程でペースト中の金属アルコキシドが大気中の水分によって加水分解を受け、Tiアルコキシド、Zrアルコキシド、Nbアルコキシドからそれぞれアモルファスの酸化チタン、酸化ジルコニウム、酸化ニオブが形成された。
生成したアモルファス金属酸化物が、金属酸化物微粒子同士及び膜と導電性基板を接着する役割を果たすため、風乾するのみで機械的強度と付着性に優れた多孔質膜が得られた。
【0186】
(UVオゾン処理)
UVオゾン処理には日本レーザー電子社製のNL−UV253 UVオゾンクリーナーを用いた。UV光源には185nmと254nmに輝線を持つ4.5W水銀ランプ3個を備えており、試料を光源から約6.5センチの距離に水平に配置した。チャンバー中に酸素気流を導入することでオゾンが発生する。本実施例においてはこのUVオゾン処理を2時間行なった。なお、このUVオゾン処理によるITO膜及びFTO膜の導電性の低下は全く見られなかった。
【0187】
(UV処理)
チャンバー中を窒素置換して処理を行う以外は同様に、前記UVオゾン処理と同様に、2時間処理を行った。このUV処理によるITO膜及びFTO膜の導電性の低下はまったく見られなかった。
【0188】
(色素吸着)
増感色素には本発明の色素を用い、0.5mMのエタノール溶液を調製した。本実施例では上記のプロセスで作製した多孔質膜を100℃のオーブンで1時間乾燥した後に増感色素の溶液に浸漬し、そのまま室温で50分間放置して酸化チタン表面に増感色素を吸着した。増感色素吸着後の試料はエタノールで洗浄し、風乾した。
【0189】
(光電気化学電池の作製と電池特性評価)
色素吸着後の多孔質膜が形成された導電性基板を光電極とし、これと白金微粒子をスパッタリングにより修飾したITO/PETフィルム又はFTO/ガラス対極を対向させて、光電気化学電池を試作した。上記光電極の実効面積は約0.2cmとした。電解質溶液には0.5MのLiI,0.05MのI,0.5Mのt−ブチルピリジンを含む3−メトキシプロピオニトリルを用い、毛管現象によって両電極間のギャップに導入した。
【0190】
電池性能の評価は、一定フォトン数(1016cm−2)照射下での光電流作用スペクトル測定及びAM1.5擬似太陽光(100mW/cm)照射下でのI−V測定により行なった。これらの測定には分光計器社製のCEP−2000型分光感度測定装置を用いた。
得られた出力特性値を表8にまとめた。結果は、変換効率が2.5%以上のものを◎、2.0%以上2.5%未満のものを○、1.5%以上2.0%未満のものを△、1.5%未満のものを×として表示した。
【0191】
【表8】

【0192】
表8において、「UVオゾン」、「UV」、「乾燥」の欄はそれぞれ、多孔質膜の形成後、増感色素吸着前における、UVオゾン処理、UV照射処理、乾燥処理の有無を表す。処理したものが「○」であり、処理なしのものが「×」である。
表8の「酸化チタンの前処理の欄は、酸化チタン微粒子の前処理(450℃のオーブンで30分間熱処理)の有無を示す。試料6、14、22は、高TTIP濃度(酸化チタン:TTIPのモル比が1:0.356)のペーストを用いた試料を表す。他の試料(試料1〜5,7〜13,23,24)は全て酸化チタン:TTIP=1:0.0356のペーストを用いている。
【0193】
表8に示す結果から、本発明の色素を使用した場合には、多孔質膜の形成後、増感色素吸着前における、UVオゾン処理、UV照射処理、乾燥処理の有無にかかわらず、光電気化学電池の変換効率が高いことがわかった。
【0194】
(実験8)
溶媒としてアセトニトリルを用い、ヨウ化リチウム0.1mol/l、ヨウ素0.05mol/l、ヨウ化ジメチルプロピルイミダゾリウム0.62mol/lを溶解した電解質溶液を調製した。ここに下記に示すNo.1〜No.8のベンズイミダゾール系化合物をそれぞれ濃度0.5mol/lになるように別々に添加し、溶解した。
【0195】
【化19】

【0196】
ガラス基板上に、透明導電膜としてフッ素をドープした酸化スズをスパッタリングにより、導電膜を形成した。この導電膜上にアナターゼ型酸化チタン粒子を含有する分散液(水とアセトニトリルの容量比4:1からなる混合溶媒100mlにアナターゼ型酸化チタン(日本アエロジル社製のP−25(商品名))を32g配合し、自転/公転併用式のミキシングコンディショナーを使用して均一に分散、混合して得た、半導体微粒子分散液)を塗布し、その後500℃で焼結して厚さ15μmの感光層を形成した。この感光層に、No.1〜No.8のベンズイミダゾール系化合物電解液を、滴下した。
ここにポリエチレンフィルム製のフレーム型スペーサー(厚さ25μm)をのせ、白金対電極でこれを覆い、光電変換素子を作製した。
得られた光電変換素子に、Xeランプを光源として強度100mW/cmの光を照射した。表9に得られた開放電圧と光電変換効率を示した。開放電圧は、6.3V以上のものを◎、6.0V以上6.3V未満のものを○、5.7V以上6.0V未満のものを△、5.7V未満のものを×として表示した。結果は、変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
なお、表9には、ベンズイミダゾール系化合物を加えていない電解液を用いた光電変換素子の結果も示した。
【0197】
【表9】

【0198】
表9の結果から、本発明の色素は変換効率が高いことがわかる。
【0199】
(実験8−2)
上記(実験8)のNo.5の化合物を使用した光電変換素子に封止剤として、エピコート828((商品名)、
ジャパンエポキシレジン社製)、硬化剤及びプラスチックペーストからなる樹脂組成物中に直径25μmのガラス球体がほぼ均一に分散された封止剤ペーストを 用いたこと以外は同様にして、色素増感太陽電池を作製し、光電変換効率の測定を行った。
これにより求めた各色素増感太陽学電池の変換効率(η)、85℃で1000時間暗所保存後の変換効率の低下率、及び500時間連続光照射後の変換効率の低下率を測定した。
フレシュの結果は、変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
また、耐久性の評価結果は、変換効率の低下率がフレシュの3%未満を◎、3%以上5%未満を○、5%以上10%未満を△、10%以上を×とした。結果を表10中の湿熱耐久性の欄に示した。
【0200】
【表10】

【0201】
表10より、本発明の色素増感太陽電池は、変換効率の初期値はいずれも7.3%以上と高い値を示した。また、暗所保存後及び連続光照射後において、いずれも低下率は3%以上5%未満かそれより低く、比較例に比べて耐久性が優れていることがわかった。
【0202】
(実験9)
(光電気化学電池1)
以下に示す手順により、特開2004−152613記載の図1に示した光電極10と同様の構成を有する光電極(ただし、半導体電極2を2層構造とした。)を作製し、更に、この光電極を用いた以外は特開2004−152613記載の図1に示した色素増感型太陽電池20と同様の構成を有する光電気化学電池(半導体電極2の受光面F2の面積:1cm)を作製した。なお、2層構造を有する半導体電極2の各層について、透明電極1に近い側に配置される層を「第1の層」、多孔体層PSに近い側に配置される層を「第2の層」という。
【0203】
まず、平均粒子径25nmのP25粉末(Degussa社製、商品名)と、これと粒子径の異なる酸化チタン粒子、P200粉末(平均粒子径:200nm、Degussa社製、商品名)とを用い、P25とP200の合計の含有量が15質量%で、P25とP200との質量比が、P25:P200=30:70となるように、これらにアセチルアセトン、イオン交換水、界面活性剤(東京化成社製、商品名;「Triton−X」)を加え、混練して第2の層形成用のスラリー(以下、「スラリー1」とする)を調製した。
【0204】
次に、P200を使用せず、P25のみを使用したこと以外は前述のスラリー1と同様の調製手順により第1の層形成用のスラリー(P1の含有量;15質量%、以下、「スラリー2」とする)を調製した。
【0205】
一方、ガラス基板(透明導電性ガラス)上にフッ素ドープされたSnO導電膜(膜厚:700nm)を形成した透明電極(厚さ:1.1mm)を準備した。そして、このSnO導電膜上に、上述のスラリー2をバーコーダで塗布し、次いで乾燥させた。その後、大気中、450℃で30分間焼成した。このようにして、透明電極上に、半導体電極2の第1の層を形成した。
【0206】
更に、スラリー1を用いて、上述と同様の塗布と焼成とを繰り返すことにより、第1の層上に、第2の層を形成した。このようにして、SnO導電膜上に半導体電極2(受光面の面積;1.0cm、第1層と第2層の合計厚さ:10μm(第1の層の厚さ:3μm、第2の層の厚さ:7μm))を形成し、増感色素を含有していない状態の光電極10を作製した。
【0207】
次に、増感色素として本発明の色素のエタノール溶液(増感色素の濃度;3×10−4mol/L)を調製した。この溶液に前記光電極10を浸漬し、80℃の温度条件のもとで20時間放置し、増感色素を吸着させた。その後、開放電圧Vocを向上させるために、色素吸着後の半導体電極を4−tert−ブチルピリジンのアセトニトリル溶液に15分浸漬した後、25℃に保持した窒素気流中において乾燥させ、上記光電極10を完成させた。
【0208】
次に、上記の光電極と同様の形状と大きさを有する対極CEを作製した。先ず、透明導電性ガラス上に、塩化白金酸六水和物のイソプロパノール溶液を滴下し、大気中で乾燥した後に450℃で30分焼成処理することにより、白金焼結対極CEを得た。なお、この対極CEには予め電解質Eの注入用の孔(直径1mm)を設けておいた。
【0209】
次に、溶媒となるメトキシアセトニトリルに、ヨウ化亜鉛と、ヨウ化−1,2−ジメチル−3−プロピルイミダゾリウムと、ヨウ素と、4−tert−ブチルピリジンとを溶解させて液状電解質(ヨウ化亜鉛の濃度:10mmol/L、ヨウ化ジメチルプロピルイミダゾリウムの濃度:0.6mol/L、ヨウ素の濃度:0.05mol/L、4−tert−ブチルピリジン濃度:1mol/L)を調製した。
【0210】
次に、半導体電極の大きさに合わせた形状を有する三井デュポンポリケミカル社製のスペーサS(商品名:「ハイミラン」,エチレン/メタクリル酸ランダム共重合体アイオノマーフィルム)を準備し、特開2004−152613記載の図1に示すように、光電極と対極とをスペーサを介して対向させ、それぞれを熱溶着により張り合わせて電池の筐体(電解質未充填)を得た。
【0211】
次に、液状電解質を対極の孔から筐体内に注入した後、孔をスペーサと同素材の部材で塞ぎ、更に対極の孔にこの部材を熱溶着させて孔を封止し、光電気化学電池1を完成させた。
【0212】
(光電気化学電池2)
液状電解質におけるヨウ化亜鉛の濃度を50mmol/Lとしたこと以外は、光電気化学電池1と同様の手順及び条件で光電気化学電池2を作製した。
【0213】
(光電気化学電池3)
液状電解質におけるヨウ化亜鉛の代わりにヨウ化リチウムを添加し、液状電解質におけるヨウ化リチウムの濃度を20mmol/Lとしたこと以外は、光電気化学電池1と同様の手順及び条件で光電気化学電池3を作製した。
【0214】
(光電気化学電池4)
液状電解質におけるヨウ化亜鉛の代わりにヨウ化リチウムを添加し、液状電解質におけるヨウ化リチウムの濃度を100mmol/Lとしたこと以外は、光電気化学電池1と同様の手順及び条件で光電気化学電池2を作製した。
【0215】
(電池特性評価試験)
以下の手順により、光電気化学電池1〜4について、光電変換効率(η(%))を測定した。
【0216】
電池特性評価試験は、ソーラーシミュレータ(ワコム製、商品名;「WXS−85−H型」)を用い、AMフィルター(AM1.5)を通したキセノンランプ光源からの疑似太陽光の照射条件を、100mW/cmとする(いわゆる「1Sun」の照射条件)測定条件の下で行った。
【0217】
各光電気化学電池について、I−Vテスターを用いて室温にて電流−電圧特性を測定し、これらから光電変換効率η[%]を求めた。得られた結果を表11(1Sunの照射条件)の「fresh」として示す。また、60℃、1Sun照射で、10Ω負荷での作動条件で色素増感型太陽電池1〜2及び比較色素増感型太陽電池1〜2の光電変換効率η[%]の80℃で300時間経時後に調べた耐久性評価試験の結果も表11に示した。Freshの変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
【0218】
【表11】

【0219】
表11に示した結果から明らかなように、本発明の色素は電解質にヨウ化亜鉛やヨウ化リチウムを添加した場合でも優れたものであることがわかった。
【0220】
(実験10)
1.二酸化チタン分散液の調製
内側をフッ素樹脂コーティングした内容積200mlのステンレス製容器に二酸化チタン微粒子(日本アエロジル(株)製,Degussa P−25)15g、水45g、分散剤(アルドリッチ社製、Triron X−100)1g、直径0.5mmのジルコニアビーズ(ニッカトー社製)30gを入れ、サンドグラインダーミル(アイメックス社製)を用いて1500rpmで2時間分散処理した。得られた分散液からジルコニアビーズを濾別した。得られた分散液中の二酸化チタン微粒子の平均粒径は2.5μmであった。なお粒径はMALVERN社製のマスターサイザーにより測定した。
【0221】
2.色素を吸着した酸化チタン微粒子層(電極A)の作製
フッ素をドープした酸化スズを被覆した20mm×20mmの導電性ガラス板(旭ガラス(株)製,TCOガラス−U,表面抵抗:約30Ω/m)を準備し、その導電層側の両端(端から3mmの幅の部分)にスペーサー用粘着テープを張った後で、導電層上にガラス棒を用いて上記分散液を塗布した。分散液の塗布後、粘着テープを剥離し、室温で1日間風乾した。次にこの半導体塗布ガラス板を電気炉(ヤマト科学(株)製マッフル炉FP−32型)に入れ、450℃で30分間焼成した。半導体塗布ガラス板を取り出し冷却した後、表12に示す色素のエタノール溶液(濃度:3×10−4mol/L)に3時間浸漬した。色素が吸着した半導体塗布ガラス板を4−tert−ブチルピリジンに15分間浸漬した後、エタノールで洗浄し、自然乾燥させた。このようにして得られた色素増感酸化チタン微粒子層の厚さは10μmであり、酸化チタン微粒子の塗布量は20g/mであった。また色素の吸着量は、その種類に応じて0.1〜10mmol/mの範囲内であった。
【0222】
3.光電気化学電池の作製
溶媒としては、アセトニトリルと3−メチル−2−オキサゾリジノンとの体積比90/10の混合物を用いた。この溶媒に、ヨウ素と電解質塩として、1−メチル−3−ヘキシルイミダゾリウムのヨウ素塩を加えて、0.5mol/Lの電解質塩および0.05mol/Lのヨウ素を含んだ溶液を調製した。この溶液に、(溶媒+窒素含有高分子化合物+塩)100質量部に対し、窒素含有高分子化合物(α)を10質量部加えた。さらに窒素含有高分子化合物の反応性窒素原子に対する求電子剤(β)を0.1モル混合し、均一な反応溶液とした。
【0223】
一方、導電性ガラス板上に形成された色素増感酸化チタン微粒子層の上にスペーサーを介して白金を蒸着したガラス板からなる対極の白金薄膜側を載置し、導電性ガラス板と白金蒸着ガラス板とを固定した。得られた組立体の開放端を上記電解質溶液に浸漬し、毛細管現象により色素増感酸化チタン微粒子層中に反応溶液を浸透させた。
次いで80℃で30分間加熱して、架橋反応を行った。このようにして、特開2000−323190号記載の図2に示す通り、導電性ガラス板10の導電層12上に、色素増感酸化チタン微粒子層20、電解質層30、および白金薄膜42およびガラス板41からなる対極40が順に積層された本発明の光電気化学電池1−1(サンプルNo.1)を得た。
また色素と電解質組成物の組成の組み合わせを表12に示すように変更した以外上記工程を繰り返すことにより、異なる感光層20および/または電荷移動層30を有する光電気化学電池1−2、1−3を得た。
【0224】
4.光電気化学電池A、Bの作製
(1)光電気化学電池A
前述のようにして本発明の色素により色素増感された酸化チタン微粒子層からなる電極A(20mm×20mm)を同じ大きさの白金蒸着ガラス板にスペーサーを介して重ねあわせた。次に両ガラス板の隙間に毛細管現象を利用して電解液(アセトニトリルと3−メチル−2−オキサゾリジノンとの体積比90/10の混合物を溶媒としたヨウ素0.05mol/L、ヨウ化リチウム0.5mol/Lの溶液)を浸透させて、光電気化学電池A−1を作製した。また色素を表12に示すように変更した以外上記工程を繰り返すことにより、光電気化学電池A−2、A−3を得た。
【0225】
(2)光電気化学電池B(特開平9−27352号に記載の電解質)
前述のようにして本発明の色素により色素増感された酸化チタン微粒子層からなる電極A(20mm×20mm)上に、電解液を塗布し、含浸させた。なお電解液は、ヘキサエチレングリコールメタクリル酸エステル(日本油脂化学(株)製,ブレンマーPE−350)1gと、エチレングリコール1gと、重合開始剤として2−ヒドロキシ−2−メチル−1−フェニル−プロバン−1−オン(日本チバガイギー(株)製,ダロキュア1173)20mgを含有した混合液に、ヨウ化リチウム500mgを溶解し10分間真空脱気することにより得た。次に前記混合溶液を含浸させた多孔性酸化チタン層を減圧下に置くことにより、多孔性酸化チタン層中の気泡を除き、モノマーの浸透を促した後、紫外光照射により重合して高分子化合物の均一なゲルを多孔性酸化チタン層の微細空孔内に充填した。このようにして得られたものをヨウ素雰囲気に30分間曝して、高分子化合物中にヨウ素を拡散させた後、白金蒸着ガラス板を重ね合わせ、光電気化学電池B−1を得た。また色素を表12に示すように変更した以外上記工程を繰り返すことにより、光電気化学電池B−2、B−3を得た。
【0226】
5.光電変換効率の測定
500Wのキセノンランプ(ウシオ電機(株)製)の光をAM1.5フィルター(Oriel社製)およびシャープカットフィルター(Kenko L−42)を通すことにより、紫外線を含まない模擬太陽光とした。光強度は89mW/cmとした。
【0227】
前述の光電気化学電池の導電性ガラス板10と白金蒸着ガラス板40にそれぞれワニ口クリップを接続し、各ワニ口クリップを電流電圧測定装置(ケースレーSMU238型)に接続した。これに導電性ガラス板10側から模擬太陽光を照射し、発生した電気を電流電圧測定装置により測定した。これにより求められた光電気化学電池の変換効率(η)の初期値(fresh)と、300時間連続照射時の変換効率の低下率をまとめて表12に示す。Freshの変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
【0228】
【表12】

【0229】
(備考)
(1)色素の記号は本文中に記載の通りである。
(2)窒素含有高分子αは以下の化合物を示す。
【0230】
【化20】

【0231】
(3)電解質塩
MHIm:1−メチル−3−ヘキシルイミダゾリウムのヨウ素塩
MBIm:1−ブチル−3−メチルイミダゾリウムのヨウ素塩
(4)溶媒
AN:アセトニトリル。
PC:プロピレンカーボネート。
NMO:3−メチル−2−オキサゾリジノン。
(5)求電子剤β
【化21】

【0232】
表12に示した結果から明らかなように、本発明の色素はこの場合でも変換効率が高く、耐久性も高く優れたものであることがわかった。
【0233】
(実験11)
ゾル−ゲル法によって調整した懸濁液を用いてスクリーン印刷によりTiO2の多孔質層をFTOガラス上に塗布し450℃で焼成した。これに本発明の色素化合物A−2、及び増感色素S−1の10−4mol/Lエタノール溶液中に浸漬することで、色素を吸着させた。
100mgの2,2′,7,7′ーテトラキス(ジフェニルアミノ)−9,9′ースピロビフルオレンを5mlのクロロホルムに溶解した。溶液を染料表面にそれを軽く塗ることによって、この溶液を層の細孔内にしみこませた。次に溶液の一滴を直接表面に置いて室温で乾燥した。ついで被覆支持体を蒸着装置に装着して約10−5ミリバールの真空下の熱蒸着によってさらに厚さ100nmの2,2′,7,7′ーテトラキス(ジフェニルアミノ)−9,9′ースピロビフルオレンの層を適用した。さらに蒸着装置内でこの被覆支持体に対極として厚さ200nmの金の層を被覆した。
このように調製した試料を高圧ランプ、光学フィルター、レンズおよびマウンティングを含む光学装置に取り付けた。フィルターの使用およびレンズの移動によって強度を変えることができた。金の層とSnO層とに接点を付け、試料を照射している間電流測定装置に示した装置に取り付けた。測定のために、適当な光学フィルターを用い波長が430nm未満の光を遮断した。さらに放射線の強度を約1000W/m2)にほぼ一致するように装置を調整した。
金の層およびSnO 2層に接点を付け、また試料を照射している間は両接点をポテンシオスタットに接続した。外部電圧をかけずに増感色素S−1を用いた試料では約90nAの電流を生じたが、本発明の色素化合物A−2を用いた試料では約190nAの電流を生じた。どちらの試料の場合も照射しないと電流は消失した。
【0234】
(実験12)
特開2000−90989の実験1と同様に作成したタンデムセルにおいても、比較色素S−1にくらべ本発明の色素A−3では変換効率が高いことが確認できた。
【0235】
(実験13)
チタンイソプロポキシド125mlを0.1M−硝酸水溶液(キシダ化学株式会社製)750mlに滴下し、80℃で8時間加熱して、加水分解反応をさせることにより、ゾル液を調製した。得られたゾル液をチタン製オートクレーブにて250℃で15時間保持し、粒子成長させ、その後、超音波分散を30分間行うことにより、平均一次粒径20nmの酸化チタン粒子を含むコロイド溶液を得た。
【0236】
得られた酸化チタン粒子を含むコロイド溶液を、エバポレーターにて、酸化チタンが10wt%の濃度になるまでゆっくりと濃縮した後、ポリエチレングレコール(キシダ化学株式会社製、重量平均分子量:200000)を酸化チタンに対する重量比で40%添加し、攪拌することにより、酸化チタン粒子が分散した懸濁液を得た。
【0237】
透明導電膜2としてSnO膜を形成したガラス基板1の透明導電膜2側に、調製した酸化チタン懸濁液をドクターブレード法で塗布し、面積10mm×10mm程度の塗膜を得た。この塗膜を120℃で30分間予備乾燥し、さらに酸素雰囲気下、500℃で30分間焼成し、第1層多孔質光電変換層4の第1層多孔質半導体層となる、膜厚が10μm程度の酸化チタン膜を形成した。
【0238】
次に、市販の酸化チタン微粒子(テイカ社製、製品名:TITANIX JA−1、粒径約180nm)4.0gと酸化マグネシウム粉末(キシダ化学株式会社製)0.4gを蒸留水20mlに入れ、塩酸でpH=1に調整した。さらに、ジルコニアビーズを加え、この混合溶液をペイントシェイカーで8時間分散処理した。その後、ポリエチレングレコール(キシダ化学株式会社製、重量平均分子量:200000)を酸化チタンに対する重量比で40%添加し、攪拌することにより、酸化チタン粒子が分散した懸濁液を得た。
【0239】
第1層多孔質半導体層の酸化チタン膜を形成したガラス基板1の第1層多孔質半導体層上に、調製した酸化チタン懸濁液をドクターブレード法で塗布し、塗膜を得た。この塗膜を80℃で20分間予備乾燥し、さらに酸素雰囲気下、約500℃で60分間焼成し、第2層多孔質光電変換層5の第2層多孔質半導体層となる、膜厚が22μm程度の酸化チタン膜1を形成した。多孔質半導体層のへイズ率を測定したところ、84%であった。
【0240】
吸収スペクトルにおける最大感度吸収波長領域を短波長側に有する色素(第1色素)として、下記式で表されるメロシアニン系色素S−2をエタノールに溶解して、濃度3×10−4モル/リットルの第1色素の吸着用色素溶液を調製した。
S−2
【0241】
【化22】

【0242】
透明導電膜2と多孔質半導体層3を具備したガラス基板1を、約50℃に加温した第1色素の吸着用色素溶液に10分間浸漬させて、多孔質半導体層3に第1色素を吸着させた。その後、ガラス基板1を無水エタノールで数回洗浄し、約60℃で約20分間乾燥させた。次いで、ガラス基板1を0.5N−塩酸に約10分間浸漬させ、その後エタノールで洗浄して、第2層多孔質半導体層に吸着された第1色素を脱着した。さらに、ガラス基板1を約60℃で約20分間乾燥させた。
【0243】
次に、吸収スペクトルにおける最大感度吸収波長領域を長波長側に有する色素(第2色素)として、比較色素S−1、及び本発明の色素A−2をエタノールに溶解して、濃度3×10−4モル/リットルの第2色素の吸着用色素溶液を調製した。
【0244】
透明導電膜2と多孔質半導体層3を具備したガラス基板1を、室温、常圧で第2色素の吸着用色素溶液に15分間浸漬させて、多孔質半導体層3に第2色素を吸着させた。その後、ガラス基板1を無水エタノールで数回洗浄し、約60℃で約20分間乾燥させた。ここで多孔質半導体層のへイズ率を測定したところ、84%(S−1を使用した場合)、85%(本発明の色素を使用した場合)であった。
【0245】
次に、3−メトキシプロピオニトリル溶媒に、ジメチルプロピルイミダゾリウムヨージドが濃度0.5モル/リットル、ヨウ化リチウムが濃度0.1モル/リットル、ヨウ素が濃度0.05モル/リットルになるように溶解させて、酸化還元性電解液を調製した。第1色素と第2色素を吸着させた多孔質半導体層3を具備したガラス基板1の多孔質半導体層3側と、対向電極層8として白金を具備したITOガラスからなる対極側支持体20の白金側とが対向するように設置し、その間に調製した酸化還元性電解液を注入し、周囲をエポキシ系樹脂の封止材9により封止して、色素増感型太陽電池を完成した。
【0246】
また、第2層多孔質半導体層を第1多孔質半導体層と同じ層とする、すなわち第1多孔質半導体層を形成する酸化チタン懸濁液を用いて第2層多孔質半導体層を形成すること以外は、酸化チタン膜1と同様に酸化チタン膜2を作成し、これを用いて同様に太陽電池を作製し、評価した。多孔質光電変換層のヘイズ率は15%(S−1を使用した場合)、16%(本発明の色素を使用した場合)であった。
【0247】
得られた太陽電池を測定条件:AM−1.5(100mW/cm2)で評価した結果を表13に示した。変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
【0248】
【表13】

【0249】
本発明の色素は光電変換効率に優れ、この系でも有効であることがわかる。
(実験14)
市販の酸化チタン粒子(テイカ株式会社製、平均粒径20nm)4.0gとジエチレングリコールモノメチルエーテル20mlとを、硬質ガラスビーズを使用してペイントシェイカーにより6時間分散させて酸化チタン懸濁液を作成した。次いで、この酸化チタン懸濁液を、ドクターブレードを用いて、予め酸化スズ導電層を付着させたガラス板(電極層)に塗布し、100℃で30分予備乾燥した後、電気炉で500℃で40分間焼成し、ガラス板上に酸化チタン膜(半導体材料)を形成した。これとは別に、本発明の増感色素及び比較色素をエタノールに溶解して光増感色素溶液を得た。
【0250】
この光増感色素溶液の濃度は5×10−4モル/リットルであった。次に、この溶液中に、膜状の酸化チタンが形成された前記のガラス板を入れ、60℃で60分間色素吸着を行った後、乾燥することにより、ガラス板上に半導体材料及び光増感色素からなる光電変換層を形成した(試料A)。前記試料Aの光電変換層上に、ホール輸送材料としてのポリビニルカルバゾール(重量平均分子量3,000)のトルエン溶液(1%)を塗布して、減圧乾燥してホール輸送層を形成した(試料B)。分子間電荷移動錯体としてのエチルカルバゾール1.95g及び5−ニトロナフトキノン2.03gを100mlアセトンに溶解して、得られた溶液を試料Bのホール輸送層上に繰り返し塗布して伝導層を形成した。次いで、伝導層上に金電極(対電極)を蒸着して光電変換素子を得た(試料C)。得られた光電変換素子(試料C)にソーラーシミュレーターで100W/m2の強度の光を照射した。結果を表14に示した。変換効率は、1.5%以上のものを◎、1.0%以上1.5%未満のものを○、0.5%以上1.0%未満のものを△、0.5%未満のものを×として表示した。
【0251】
【表14】

【0252】
本発明の色素は光電変換効率に優れ、この系でも有効であることがわかる。
(実験15)
(1)第1光電変換層の形成
市販の酸化チタン粒子(テイカ株式会社製、平均粒径30nm)4.0gとジエチレングリコールモノメチルエーテル20mlを硬質ガラスビーズを使用しペイントシェイカーにより6時間分散させ酸化チタン懸濁液を作成した。次いで、この酸化チタン懸濁液をドクターブレードを用いて、予め酸化スズ導電層が付着されたガラス板に塗布し、100℃で30分予備乾燥した後、電気炉で500℃で40分間焼成し、酸化チタン膜を得た。
【0253】
これとは別に、下記S−3で表された色素〔cis−dithiocyanine−N−bis(2,2’−bipyridyl−4,4’−dicarboxylic acid) ruthenium〕をエタノールに溶解した。
S−3
【0254】
【化23】

【0255】
この色素の濃度は3×10−4モルであった。次に、この溶液中に膜状の酸化チタンを形成した前記のガラス板を入れ、60℃で720分間色素吸着を行ってから乾燥し、本発明の第1光電変換層(試料A)を得た。
【0256】
(2)第2光電変換層の形成
市販の酸化ニッケル粒子(キシダ化学、平均粒径100nm)4.0gとジエチレングリコールモノメチルエーテル20mlをガラスビーズを使用しペイントシェイカーで8時間分散させ酸化ニッケル懸濁液とした。次いで、この酸化チタン懸濁液をドクターブレードを用いて、酸化スズ導電層が付着されたガラス板に塗布し、100℃で30分予備乾燥した後、300℃で30分間焼成し、酸化ニッケル膜を得た。
【0257】
これとは別に、本発明の色素及び比較色素S−1をジメチルスルホキシドに溶解した。
【0258】
この色素の濃度は1×10−4モルであった。次に、この溶液中に膜状の酸化チタンを形成した前記のガラス板を入れ、70℃で60分間色素吸着を行ってから乾燥し、本発明の第2光電変換層(試料B)を得た。
【0259】
(3)前記の試料A上に試料Bを位置させる。これら2つの電極の間に液体電解質を入れ、この側面を樹脂で封止した後、リード線を取付けて、本発明の光電変換素子(素子構成C)を作成した。なお、液体電解質は、アセトニトリル/炭酸エチレンの混合溶媒(体積比が1:4)に、テトラプロピルアンモニウムアイオダイドとヨウ素とを、それぞれの濃度が0.46モル/l、0.06モル/lとなるように溶解したものを用いた。
【0260】
また、前記の試料Aを一方の電極として備え、対電極として白金を担持した透明導電性ガラス板を用いた。2つの電極の間に液体電解質を入れ、この側面を樹脂で封止した後、リード線を取付けて、本発明の光電変換素子(素子構成D)を作成した。
【0261】
得られた光電変換素子(試料C、及びD)にソーラーシミュレーターで1000W/mの強度の光を照射した。結果を表15に示した。変換効率は、6.5%以上のものを◎、6.0%以上6.5%未満のものを○、5.0%以上6.0%未満のものを△、5.0%未満のものを×として表示した。
【0262】
【表15】

【0263】
本発明の色素は光電変換効率に優れ、この系でも有効であることがわかる。
(実験16)
高分子電解質を用いた色素増感型太陽電池の作製した例について説明する。
【0264】
酸化チタン膜を作製する塗液は、市販の酸化チタン粒子(テイカ株式会社社製、商品名AMT−600、アナターゼ型結晶、平均粒径30nm、比表面積50m/g)4.0gとジエチレングリコールモノメチルエーテル20mlとをガラスビーズを使用し、ペイントシェイカーで7時間分散させ、酸化チタン懸濁液を調製した。この酸化チタン懸濁液をドクターブレードを用いて、11μm程度の膜厚、10mm×10mm程度の面積で、SnOを透明導電膜としてガラス基板1上に作製された基板上に、透明導電膜側に塗布し、100℃で30分間予備乾燥した後、460℃で40分間酸素下で焼成し、その結果、膜厚が8μm程度の酸化チタン膜Aを作製した。
【0265】
次に本発明の色素及び比較の色素S−1を無水エタノールに濃度3×10−4モル/リットルで溶解させ吸着用色素溶液を作製した。この吸着用色素溶液を上述で得られた酸化チタン膜と透明導電膜を具備した透明基板を容器にそれぞれ入れ、約4時間浸透させることにより色素を吸着させた。その後、無水エタノールで数回洗浄し約60℃で約20分間乾燥させた。
次に、一般式(105)で表されるモノマー単位のうち、Rをメチル基、Aを8個のポリエチレンオキサイド基と2個のポリプロピレンオキサイド基と中心核としてブタンテトライル基により構成されるモノマー単位を使用した。
【化24】

(式中、Rは水素原子またはメチル基であり、Aはエステル基と炭素原子で結合している残基であり、nは2〜4である。)
このモノマー単位をプロピレンカーボネート(以下、PCと記載する)に20wt%の濃度で溶解させ、また、熱重合開始剤としてアゾビスイソブチロニトリル(AIBN)をモノマー単位に対して1wt%の濃度で溶解させモノマー溶液を作製する。このモノマー溶液を上述の酸化チタン膜に含浸させる手順について以下に示す。真空容器内にビーカー等の容器を設置し、その中に透明導電膜を具備した透明基板上の酸化チタン膜Aを入れ、ロータリーポンプで約10分間真空引きする。真空容器内を真空状態に保ちながらモノマー溶液をビーカー内に注入し、約15分間含浸させ酸化チタン3中にモノマー溶液を十分に染み込ます。ポリエチレン製セパレーター、PETフィルムと押さえ板を設置し冶具にて固定する。その後、約85℃で30分間加熱することにより、熱重合させ高分子化合物を作製する。
【0266】
次に、高分子化合物に含浸させる酸化還元性電解液を作製する。酸化還元性電解液は、PCを溶媒として濃度0.5モル/リットルのヨウ化リチウムと濃度0.05モル/リットルのヨウ素を溶解させて作製した。この溶液中に上述の酸化チタン膜Aに作製した高分子化合物を約2時間浸すことにより、高分子化合物中に酸化還元性電解液を染み込ませて高分子電解質を作製した。
【0267】
その後、白金膜を具備した導電性基板を設置し、エポキシ系の封止剤にて周囲を封止し素子Aを作成した。
また、酸化チタン膜Aを色素吸着後、モノマー処理を行わずに、PCを溶媒として濃度0.5モル/リットルのヨウ化リチウムと濃度0.05モル/リットルのヨウ素を溶解させて作製した酸化還元電解液をそのまま対極との間に注入して封止して素子Bを作成した。素子A、Bを用いて、ソーラーシミュレーターで1000W/m2の強度の光を照射した。結果を表16に示した。変換効率は、3.5%以上のものを◎、2.5%以上3.5%未満のものを○、2.0%以上2.5%未満のものを△、2.0%未満のものを×として表示した。
【0268】
【表16】

【0269】
本発明の色素は光電変換効率に優れ、この系でも有効であることがわかる。
(実験17)
(光電変換素子の作製)
図1に示す光電変換素子を以下のようにして作製した。
ガラス基板上に、透明導電膜としてフッ素をドープした酸化スズをスパッタリングにより形成し、これをレーザーでスクライブして、透明導電膜を2つの部分に分割した。
次に、水とアセトニトリルの容量比4:1からなる混合溶媒100mlにアナターゼ型酸化チタン(日本アエロジル社製のP−25(商品名))を32g配合し、自転/公転併用式のミキシングコンディショナーを使用して均一に分散、混合し、半導体微粒子分散液を得た。この分散液を透明導電膜に塗布し、500℃で加熱して受光電極を作製した。
その後、同様にシリカ粒子とルチル型酸化チタンとを40:60(質量比)で含有する分散液を作製し、この分散液を前記の受光電極に塗布し、500℃で加熱して絶縁性多孔体を形成した。次いで対極として炭素電極を形成した。
次に、下記表17に記載された増感色素(複数混合または単独)のエタノール溶液に、上記の絶縁性多孔体が形成されたガラス基板を5時間浸漬した。増感色素の染着したガラスを4−tert−ブチルピリジンの10%エタノール溶液に30分間浸漬した後、エタノールで洗浄し自然乾燥させた。このようにして得られる感光層の厚さは10μmであり、半導体微粒子の塗布量は20g/mであった。電解液は、ヨウ化ジメチルプロピルイミダゾリウム(0.5モル/l)、ヨウ素(0.1モル/l)のメトキシプロピオニトリル溶液を用いた。
【0270】
(光電変換効率の測定)
500Wのキセノンランプ(ウシオ製)の光をAM1.5Gフィルター(Oriel社製)およびシャープカットフィルター(KenkoL−42、商品名)を通すことにより紫外線を含まない模擬太陽光を発生させた。この光の強度は89mW/cmであった。作製した光電変換素子にこの光を照射し、発生した電気を電流電圧測定装置(ケースレー238型、商品名)にて測定した。これにより求められた光電気化学電池の変換効率を測定した結果を下記表17に示した。結果は、変換効率が7.5%以上のものを◎、7.3%以上7.5%未満のものを○、7.1%以上7.3%未満のものを△、7.1%未満のものを×として評価した。
【0271】
【表17】

【0272】
増感色素S−4、S−5の構造は以下に示した。
【化25】

【0273】
以上のように、本発明の色素を用いて作製された光電変換素子は、高いレベルの光電気変換効率を示した。
【符号の説明】
【0274】
1 導電性支持体
2 感光体層
21 色素
22 半導体微粒子
3 電荷移動体層
4 対極
5 受光電極
6 回路
10 光電変換素子
100 光電気化学電池

【特許請求の範囲】
【請求項1】
下記一般式(1)で表される金属錯体化合物からなる色素。
M(LLm1(LLm2(X)m3・CI・・・一般式(1)
[式中、Mは金属原子を表す。LLは下記一般式(2)により表される2座または3座の配位子である。
【化1】

(ただし、RおよびRはそれぞれ独立にカルボキシル基、スルホン酸基、ヒドロキシル基、ヒドロキサム酸基、ホスホリル基、またはホスホニル基を表す。RおよびRはそれぞれ独立に置換基を表す。RおよびRはそれぞれ独立にアルキル基、アリール基および/またはヘテロ環基を表す。LおよびLはそれぞれ独立にヘテロアリーレン基、エテニレン基および/またはエチニレン基からなる共役鎖を表す。a1およびa2はそれぞれ独立に0〜3の整数を表す。a1が2以上のときRは同じでも異なっていてもよく、a2が2以上のときRは同じでも異なっていてもよい。b1およびb2はそれぞれ独立に0〜3の整数を表す。b1が2以上のときRは同じでも異なっていてもよく互いに連結して環を形成してもよく、b2が2以上のときRは同じでも異なっていてもよく互いに連結して環を形成してもよい。b1およびb2が共に1以上のときRとRが連結して環を形成してもよい。n1およびn2はそれぞれ独立に1〜5の整数を表し、n3は0または1を表す。)
LLは下記一般式(3)により表される置換基を有していても良い2座または3座の配位子である。
【化2】

(式中、Za、ZbおよびZcはそれぞれ独立に5または6員環を形成しうる非金属原子群を表す。cは0または1を表す。Za、ZbおよびZc上に少なくとも、1つの一般式(4)で表される置換基を有する。
【化3】

〔式中、AはCOOH、SOH、PO、BO、SH、OH、及びNHから選ばれる基を表す。Lは単結合または下記一般式(5)〜(12)で表される共役基を表す。GはH、CN、NO、COOR、COSR、COR、CSR、NCS、CF、CONR、OCFまたはC6H5−mFm(Rはアルキル基、アリール基またはヘテロ環基を表す。mは1〜5の整数を表す。〕を表す。〕
【化4】

〔式中、n1〜n6は1〜10を表す。m7、m8、m9、m11、m12、m14、及びm15はそれぞれ0〜20を表す。R〜R15は置換基を表す。*は結合部位を表す。X1〜4はそれぞれ独立にCH、OまたはNを表す。〕
Xはアシルオキシ基、アシルチオ基、チオアシルオキシ基、チオアシルチオ基、アシルアミノオキシ基、チオカルバメート基、ジチオカルバメート基、チオカルボネート基、ジチオカルボネート基、トリチオカルボネート基、アシル基、チオシアネート基、イソチオシアネート基、シアネート基、イソシアネート基、シアノ基、アルキルチオ基、アリールチオ基、アルコキシ基およびアリールオキシ基からなる群から選ばれた基で配位する1座または2座の配位子、あるいはハロゲン原子、カルボニル、ジアルキルケトン、1,3−ジケトン、カルボンアミド、チオカルボンアミドまたはチオ尿素からなる1座または2座の配位子を表す。
m1は1〜3の整数を表し、m1が2以上のときLLは同じでも異なっていてもよく、
m2は1〜2の整数を表し、m2が2のときLLは同じでも異なっていてもよく、
m3は0〜3の整数を表し、m3が2のときXは同じでも異なっていてもよく、またX同士が連結していてもよく、
CIは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。]
【請求項2】
前記L及びLがエチニレン基、または、チオフェンから任意の水素原子2個か除かれた基であることを特徴とする請求項1に記載の色素。
【請求項3】
前記R及びRがそれぞれ独立にアルキル基又は置換もしくは無置換のアリール基であることを特徴とする請求項1又は2に記載の色素。
【請求項4】
前記一般式(4)のAがCOOHであり、GがCNである請求項1〜3のいずれか1項に記載の色素。
【請求項5】
請求項1〜4のいずれか1項に記載の金属錯体色素と半導体微粒子とを有する感光体層を具備することを特徴とする光電変換素子。
【請求項6】
請求項5に記載の光電変換素子を備えてなることを特徴とする光電気化学電池。

【図1】
image rotate


【公開番号】特開2012−36236(P2012−36236A)
【公開日】平成24年2月23日(2012.2.23)
【国際特許分類】
【出願番号】特願2010−174801(P2010−174801)
【出願日】平成22年8月3日(2010.8.3)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】