説明

茎液流測定用センサ、茎液流測定装置及び茎液流測定方法

【課題】感度が良く、安価で、茎の直径が小さな植物の茎液流を測定することができる茎液流測定用センサ、茎液流測定装置及び茎液流測定方法を提供する。
【解決手段】茎液流測定用センサ1は、絶縁性の合成樹脂フィルム又はシート、或いは、絶縁性のセラミックウェハなどの無機材料のシート又薄い板からなる基材2と、その表面に配置された一対の薄膜金属測温抵抗体3、5と、その一対の抵抗体3、5の間に並列に形成された薄膜金属ヒータ4、さらに、薄膜金属測温抵抗体3、5の電気信号をそれぞれ取り出す一対の導電性材料6、及び薄膜金属ヒータ4へ電流を供給する導電性材料7からなる。基材2の表面は、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4を配置した後、絶縁材料8でコーティングされている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ヒートパルス法により植物の茎液の流速を測定する茎液流測定用センサ、茎液流測定装置及び茎液流測定方法に関する。
【背景技術】
【0002】
植物の導管内を流れる茎液流を測定する方法として、例えば、特許文献1に示される方法がある。この例では、取付座から所定間隔を開けて突出させた2本の温度センサと、その間に配置されたヒータとからなるセンサ装置を用いている。このヒータにパルス状の電流を流し、温度センサにより温度変化を検出し、ヒートパルスの移動速度を計測することにより、間接的に茎液流を測定する。
【特許文献1】特開平5−188070号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、従来のセンサ装置においては、装置が大きいため、茎の直径の小さな植物に適用することが困難であった。また、温度センサとして熱電対を用いており、温度変化に対する感度が悪かった。さらに、温度センサとヒータとは別のものであり、2種類の装置が必要でコストアップにつながっていた。
【0004】
本発明は、このような事情に鑑みてなされたもので、茎の直径が小さな植物の茎液流を測定することができる安価で感度がよく取扱いが容易な茎液流測定用センサ、茎液流測定装置及び茎液流測定方法を提供することを目的としている。
【課題を解決するための手段】
【0005】
係る目的を達成すべく、本発明の茎液流測定用センサは、絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えた構成を採用した。
【0006】
温度センサを薄膜金属測温抵抗体とすることができるので、熱電対に比べ感度が大きく、精度が高い。また、熱電対のような基準接点は必要ない。また、量産に適した構造なので、安価にできる。さらに、センサを小型化できるので、茎の直径が小さな植物の茎液流を測定することができる。
【0007】
また、本発明の茎液流測定用センサは、前記薄膜金属測温抵抗体及び前記薄膜金属ヒータが同一形状で同一金属の抵抗体であるので、量産に適しており、安価にできる。
【0008】
また、本発明の茎液流測定用センサは、前記薄膜金属測温抵抗体及び前記薄膜金属ヒータが同一形状をした白金抵抗体であることが好ましく、この場合には、感度がよく、量産に適しており、安価にできる。
【0009】
前記基材が絶縁性の合成樹脂フィルム又はシート、例えば、プラスチックフィルム又はシート、或いは、セラミックウェハなどの絶縁性の無機材料からなるシート又は薄い板であるので、薄い基材の表面に薄膜の抵抗体を設けることによりセンサを作製でき、センサを薄型化できる。
【0010】
また、本発明の茎液流測定用センサは、前記一方の薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離と、前記他方の薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離が等間隔ではないものとすることができ、この場合には、ヒートパルス法により茎液の流速を計測することができる。
【0011】
また、本発明の茎液流測定用センサは、前記基材、前記薄膜金属測温抵抗体及び前記薄膜金属ヒータが湾曲可能であるので、小さな植物の茎に巻いて使用することができる。
【0012】
また、本発明の茎液流測定用センサは、前記基材が絶縁性の合成樹脂フィルム、例えば、絶縁性のプラスチックフィルムからなり、前記薄膜金属測温抵抗体及び前記薄膜金属ヒータを挟み込むようにして形成されている場合には、市販の薄膜金属測温抵抗体及び薄膜金属ヒータと、絶縁性の合成樹脂フィルム、例えば、絶縁性のプラスチックフィルムを用いて形成でき、安価にできる。
【0013】
また、本発明の茎液流測定装置は、絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えている茎液流測定用センサ、前記薄膜金属ヒータにパルス電流を印加する印加手段、前記一対の薄膜金属測温抵抗体の抵抗値を測定する測定手段、該測定手段で測定された前記抵抗値から前記一対の薄膜金属測温抵抗体の温度をそれぞれ算出する温度算出手段、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間を計測する計測手段、該計測手段で計測された計測時間から茎液の流速を算出する流速算出手段、及び前記茎液の流速に応じた信号を出力する出力手段、からなる。
【0014】
近年、例えば、トマト栽培を行うビニールハウス内では、農家の負担を軽減するためにコンピュータ制御が取り入れられている。このシステムは、気温や湿度、照度などの栽培環境を計測して、ビニールハウス内の状態を把握している。しかし、植物の状態は人間が目視で行っていたので、結局、水や肥料の量は人間が決定して供給する他なかった。本発明によれば、トマトの茎液の流速を自動検出できるので、それに応じた量の水や肥料を投入すればよく、栽培を自動化できる。
【0015】
また、本発明の茎液流測定装置は、一対の前記薄膜金属測温抵抗体において、植物の茎の上方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXa、該植物の茎の下方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXb(Xa>Xb)、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間をt0、予め求められるキャリブレーション定数をbとすると、前記植物の茎液の流速Fを、F=b(Xa+Xb)/(2×t0)で算出する算出手段を有するので、簡単な計算式で茎液の流速を求めることができ、計測時間を短縮できる。
【0016】
また、本発明の茎液流測定装置は、前記薄膜金属ヒータの抵抗値を測定するヒータ測定手段と、前記抵抗値から前記薄膜金属ヒータの温度を算出するヒータ温度算出手段と、を具備し、前記印加手段が、その前記薄膜金属ヒータの温度をもとに、前記薄膜金属ヒータに印加するパルス電流を決定するので、薄膜金属ヒータの温度に応じて、薄膜金属ヒータの温度設定や加熱時間を制御できるので、より精度の高い計測を行うことができる。
【0017】
また、本発明の茎液流測定装置は、前記印加手段が所定の周期で前記薄膜金属ヒータにパルス電流を印加し、前記出力手段が前記速度算出手段が算出した前記茎液の流速に応じて水及び/又は肥料の量を調整する信号を出力するので、茎液の流速に応じて水及び/又は肥料の量を調整することができ、栽培を自動化できる。
【0018】
また、本発明の茎液流測定方法は、絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えている茎液流測定用センサ及びコンピュータを用いて構築された茎液流測定システムにおいて、コンピュータが備える印加手段が前記薄膜金属ヒータにパルス電流を印加するステップと、コンピュータが備える測定手段が前記一対の薄膜金属測温抵抗体の抵抗値を測定するステップと、コンピュータが備える温度算出手段が前記測定手段で測定された前記抵抗値から前記一対の薄膜金属測温抵抗体の温度をそれぞれ算出するステップと、コンピュータが備える計測手段が、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間を計測するステップと、コンピュータが備える流速算出手段が前記計測手段で計測された計測時間から茎液の流速を算出するステップと、コンピュータが備える出力手段が前記茎液の流速に応じた信号を出力するステップを実行する構成を採用した。
【0019】
また、本発明の茎液流測定方法は、一対の前記薄膜金属測温抵抗体において、植物の茎の上方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXa、該植物の茎の下方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXb(Xa>Xb)、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間をt0、予め求められるキャリブレーション定数をbとすると、前記植物の茎液の流速Fを、F=b(Xa+Xb)/(2×t0)で算出するステップを備える。
【0020】
また、本発明の茎液流測定方法は、ヒータ測定手段が前記薄膜金属ヒータの抵抗値を測定し、ヒータ温度算出手段が前記抵抗値から前記薄膜金属ヒータの温度を算出し、前記印加手段が、その前記薄膜金属ヒータの温度をもとに、前記薄膜金属ヒータに印加するパルス電流を決定するので、薄膜金属ヒータの温度に応じて、薄膜金属ヒータの温度設定や加熱時間を制御できるので、より精度の高い計測を行うことができる。
【0021】
また、本発明の茎液流測定方法は、前記印加手段が所定の周期で前記薄膜金属ヒータにパルス電流を印加し、前記出力手段が前記速度算出手段が算出した前記茎液の流速に応じて水及び/又は肥料の量を調整する信号を出力するので、茎液の流速に応じて水及び/又は肥料の量を調整することができ、栽培を自動化できる。
【発明の効果】
【0022】
本発明に係る茎液流測定用センサは、絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えたので、感度が良く、安価で、茎の直径が小さな植物の茎液流を測定することができる。
【発明を実施するための最良の形態】
【0023】
絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えた。
【実施例1】
【0024】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明に係る茎液流測定用センサの第1の実施形態を示す斜視図である。
【0025】
図1に示すように、茎液流測定用センサ1は、絶縁性の合成樹脂フィルム又はシート、或いは、絶縁性のセラミックウェハなどの無機材料のシート又薄い板からなる基材2と、その表面に配置された一対の薄膜金属測温抵抗体3、5と、その一対の抵抗体3、5の間に並列に形成された薄膜金属ヒータ4、さらに、薄膜金属測温抵抗体3、5の電気信号をそれぞれ取り出す一対の導電性材料6、及び薄膜金属ヒータ4へ電流を供給する導電性材料7からなる。基材2の表面は、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4を配置した後、絶縁材料8でコーティングされている。
【0026】
基材2は、例えば、厚さ1μm〜300μm、特に好ましくは厚さ10μm〜250μm、更に好ましくは厚さ50μm〜200μmである絶縁性の合成樹脂フィルム(特に、絶縁性のプラスチックフィルム)、又は、厚さ200μm〜1000μm、特に好ましくは厚さ250μm〜800μmである絶縁性の合成樹脂製シート(特に、絶縁性のプラスチックシート)などの絶縁性のフィルム又はシートで構成することができ、又、厚さ200μm〜1000μm、特に好ましくは厚さ250μm〜800μmである絶縁性無機材料シート又は薄い板(特に、セラミックウェハなどの絶縁性の無機材料シート又は薄い板)を好適に挙げることができる。基材2をセラミックウェハで構成すれば、茎液流測定用センサ1を頑丈にできるので、茎に挿して用いる場合に有効である。また、基材2を薄いプラスチックフィルムで構成すれば、茎液流測定用センサ1を湾曲させることができ、茎液流測定用センサ1を茎に巻きつけて用いる場合に有効である。
【0027】
絶縁性の基材としては、例えば、ポリエステル、ポリアミド、ポリエーテルイミド、テフロン(登録商標)などのフッ素樹脂などのプラスチックフィルム又はシート、或いは、芳香族ポリエステル、芳香族ポリアミド、芳香族ポリエーテルイミド、ポリイミド、フッ素樹脂などの耐熱性を有する絶縁性の合成樹脂フィルム又はシートを好適に挙げることができる。
【0028】
薄膜金属測温抵抗体3、5の電気信号をそれぞれ取り出す一対の導電性材料6、及び薄膜金属ヒータ4へ電流を供給する導電性材料7は、同一の材質・形状のものを用いることもできるし、導電性材料6と導電性材料7とで異なるものとすることもできる。また、その材質は、銅線であることが好ましいが、本発明はこれに限定されるものではなく、種々の材質のものを用いることができる。
【0029】
薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4は、同一金属の抵抗体とすることができる。金属の抵抗体の抵抗値Rと温度Tの関係は、温度0℃の時の抵抗値をA、温度係数をαとすると、R=A(1+αT)と規定される。したがって、抵抗体の抵抗値Rを測定することにより、その温度を算出できる。また、本発明においては、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4を同一形状とすることもできる。これにより、量産に適しており、安価にできる。
【0030】
本発明においては、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4を同一形状をした白金薄膜抵抗体で構成することができる。薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4は、温度が0℃の時に抵抗が100Ωとなる様に厚さと面積が規定されたパターンが形成されている。薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4は、Pt100相等のものを使用できる。この抵抗値Rは、温度をT度とすれば、R=100(1+0.3851T)と設定できる。なお、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4の材質として、白金抵抗体を例に挙げたが、本発明はこれに限定されるものではなく、銅やニッケルなどの種々の材質を用いることができる。
【0031】
この例では、一方の薄膜金属測温抵抗体3と薄膜金属ヒータ4の中心間距離Xaを10mm、他方の薄膜金属測温抵抗体5と薄膜金属ヒータ4の中心間距離Xbを5mmとした。なお、中心間距離とは、例えば、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4のパターンの面積の中心点の距離とする。このようにXa、Xbが等間隔ではないので、詳しくは後述するが、ヒートパルス法により、植物の茎液の流速を算出することができる。なお、茎に取り付ける際には、中心間距離の大きい薄膜金属測温抵抗体3を茎の上方に、中心間距離の小さい薄膜金属測温抵抗体5を茎の下方になるように配置する。
【0032】
薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4は、基材2の表面にスパッタ法や蒸着法により形成することもできるし、予め所定のパターンに形成された市販の白金薄膜抵抗体を基材上に載置することもできる。
【0033】
スパッタ法においては、まず、基材2の表面近くに膜の原料となる白金(ターゲット)を配置する。そして、基材2とターゲットの全体を真空状態にして、基材2とターゲットの間に電圧をかけると、真空中で電子やイオンが高速移動し、電子やイオンがターゲットに衝突する。ターゲットに衝突したイオンは、ターゲットの粒子をはじき飛ばし、はじき飛ばされたターゲットの粒子が基材2に衝突、付着し、膜が形成される。
【0034】
蒸着法においては、まず、基材2の表面から所定の間隔を開けて膜の原料である白金を配置する。そして、全体を真空状態にして、原料を熱で溶かすことにより、原料が蒸発し、気体分子となり、基材2に衝突、付着し、膜が形成される。加熱溶解の方法によって、抵抗加熱式、電子ビーム式、高周波誘導式、レーザー式などがある。
【0035】
次に、本発明に係る茎液流測定用センサの植物の茎への取付方法を説明する。
図2は、茎液流測定用センサの植物の茎への第1の取付方法を示す図であり、(a)はその正面図、(b)はその断面図である。図3は、茎液流測定用センサの植物の茎への第2の取付方法を示す図であり、(a)はその正面図、(b)はその断面図である。
【0036】
図2(a)、(b)に示すように、トマトなどの茎11の側方に茎の繊維に沿って小さな切り込みを入れて、その切り込みの中に茎液流測定用センサ1の先端から3分の2ほどを挿入する。この方法によれば、茎11の繊維に沿って小さな切り込みを入れるだけなので、植物への悪影響が少ない。また、茎液流測定用センサ1の先端を直接茎11の内部の導管内に直接配置することができるので、正確な測定が可能となる。
【0037】
また、図3(a)、(b)に示すように、トマトなどの茎11の表面に沿って茎液流測定用センサ1を湾曲させて配置し、その周りに断熱材12を巻きつけることもできる。この方法によれば、茎11に切り込みを入れないので、植物への悪影響を最小限に抑えられる。また、断熱材12を巻きつけてあるので、外的環境に影響されることなく、正確な測定を行うことができる。
【0038】
次に、本発明に係る茎液流測定装置について説明する。
図4は、本発明に係る茎液流測定装置を示す構成図である。図5は、本発明に係る茎液流測定装置を構成するコンピュータのブロック図である。
【0039】
図4に示す茎液流測定装置20は、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4と、それらに電流を供給する電源と、薄膜金属測温抵抗体3に流れる電流を制御する定電流ダイオード21と、薄膜金属ヒータ4に流れる電流を制御する定電流ダイオード22と、薄膜金属測温抵抗体5に流れる電流を制御する定電流ダイオード23と、薄膜金属ヒータ4にパルス状の電流を供給するためのスイッチング回路24と、スイッチング回路24に電気信号を出力すると共に、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4の電圧値を入力するデータロガー25と、データロガー25にLAN(Local Area Network)などを介して接続されたコンピュータ26からなる。
【0040】
薄膜金属測温抵抗体3、5には、定電流ダイオード21、23により、1mAの電流が供給されている。一方、薄膜金属ヒータ4には、定電流ダイオード22により、20mAの電流が供給され、スイッチング回路24により、矩形パルス状の電流が印加される。そして、パルス状の電流を流した後に、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4のそれぞれの抵抗値を測定し、それらの各温度を算出する。なお、抵抗値の測定に関し、実測データにはノイズが含まれるので、ローパスフィルタによりノイズを除去することが好ましい。また、この例では、データロガー25とコンピュータ26を用いているが、簡易的な利用に関しては、AD変換機能を備えた1チップマイクロプロセッサなどでそれらの代替が可能である。
【0041】
図5に示すように、コンピュータ26は、タイマ28が内蔵されたCPU27と、RAM29、ROM30、ハードディスク31(HD)等の記憶部と、入力インターフェース32(入力I/F)及び出力インターフェース33(出力I/F)等を有し、これらがバスライン34を介して接続されている。また、入力I/F32には、LANの通信回線が接続されると共に、入力装置としてのキーボード35やマウス36が接続され、出力I/F33にはスピーカ37が接続され、これらは、例えばパソコンがデスクトップの場合に、パソコン本体38によって構成されている。また、出力I/F33には、ディスプレイ39やビニールハウス内の水や肥料の量を調整するバルブ(図6参照)等が接続される。
【0042】
このような茎液流測定装置20を用いれば、植物の茎液の流速を計測して、水や肥料の調整をするバルブに電気信号を出力することができるので、水や肥料の供給を自動化できる。また、茎液の流速を計測して、植物の状態を把握できるので、別途、音声、LED(Light Emitting Diode)、文字などを表示するメッセージ表示装置などを使ってその状態を知らせる手段を備えることにより、植物とのコミュニケーション玩具又は癒し玩具として利用できる。
【0043】
次に、本発明に係る茎液流測定用センサを用いた茎液流測定システムについて説明する。
図6は、本発明に係る茎液流測定用センサを用いた茎液流測定システムを示す構成図である。
【0044】
図6に示すように、茎液流測定用センサ1を用いた茎液流測定システム50は、ビニールハウス51と、ビニールハウス51の屋根に設けられた天窓52と、ビニールハウス51内の地面に配置されたポット53と、ポット53の土壌に植えられたトマトの苗54と、苗54に水や肥料を供給するパイプ55と、パイプ55に接続されて水や肥料の量を調節するバルブ56と、ビニールハウス51の外部の風量を測定する風力センサ57と、ビニールハウス51の外部の照度を測定する照度センサ58と、ビニールハウス51内の温度を測定する温度センサ59と、ビニールハウス51内の二酸化炭素量を測定する炭素センサ60と、ビニールハウス51内の湿度を測定する湿度センサ61と、バルブ56と各種センサ1、57乃至61に接続され、各種センサ1、57乃至61の各種測定値に基づき、バルブ56に信号を出力する制御盤62からなる。なお、上記のセンサ57乃至61については、本発明ではこれらに限定されるものではなく、これらの内から適宜選択配置することもできるし、さらに他のセンサを付加することもできる。
【0045】
茎液流測定用センサ1は、図2、図3に示すように、茎11に挿入したり、茎11に巻きつけて使用される。制御盤62は、図4に示したように、データロガー25やコンピュータ26等を備えている。これらの装置を用いて、各種センサ1、57乃至61の各種測定値に基づき、バルブ56に信号を出力し、自動で水や肥料の供給を行うことができる。なお、茎液流測定用センサ1での測定は、薄膜金属ヒータ4に例えば、30分おきにパルス電流を印加し、薄膜金属測温抵抗体3、5の抵抗値を測定し、その温度を算出することにより、30分毎の茎液の流速を求める。そして、例えば、前日からの茎液の流速の変化と、前日からの各種センサの測定値から当日の水や肥料の供給量を決定する。また、30分おきに計測するのは、パルス電流が印加されて温まった茎の温度が十分下がるまでの時間の一例であり、この時間は適宜設定できる。
【0046】
次に、本発明に係る茎液流測定方法について説明する。
図7は、本発明に係る茎液流測定用方法を示すフローチャートである。
本発明においては、ヒートパルス法により茎液流を測定している。
【0047】
本発明に係る茎液流測定用方法においては、まず、コンピュータ26が備える印加手段により薄膜金属ヒータ4にパルス電流を印加する(S101)。ここで、電流を矩形パルス状の電流とするのは、薄膜金属ヒータ4に矩形パルス電流を印加した際に、一旦、薄膜金属測温抵抗体3、5に温度差が生じ、茎液が流れることによって、再び温度が一致するので、その所要時間t0を測定することにより茎液の流速を求めるというヒートパルス法を用いるためである。なお、パルス電流によって上昇させる薄膜金属ヒータ4の温度は、茎の温度より5〜10℃ほど高い温度である。
【0048】
薄膜金属ヒータ4の温度が上昇することにより、その熱が茎11内を伝達し、一対の薄膜金属測温抵抗体3、5に達する。そうすると、薄膜金属測温抵抗体3、5の抵抗値が変化するので、その抵抗値をそれぞれ測定する(S102)。抵抗値Rと温度Tは、R=100(1+0.3851T)という関係式で示される関係にあるので、測定された抵抗値から一対の薄膜金属測温抵抗体3、5の温度をそれぞれ算出する(S103)。
【0049】
次に、パルス電流を印加した後、薄膜金属測温抵抗体3、5の各温度が等しくなるまでその測定を繰返し(S104)、両者の温度が等しくなるまでの時間t0を計測する(S105)。
【0050】
ここで、薄膜金属測温抵抗体3と薄膜金属ヒータ4の中心間距離をXa、薄膜金属測温抵抗体5と薄膜金属ヒータ4の中心間距離をXb(Xa>Xb)とし、薄膜金属測温抵抗体3を茎11の上方に、薄膜金属測温抵抗体5を茎11の下方に配置したとすると、薄膜金属ヒータ4にパルス電流を印加した際に、まず、熱が茎11を伝わり、薄膜金属ヒータ4との中心間距離が小さい茎11の下方に配置された薄膜金属測温抵抗体5の温度が上昇する。そして、茎11の中を茎液が流れ、薄膜金属ヒータ4の熱が茎11の上方に運ばれる。そうすると、茎11の上方に配置された薄膜金属測温抵抗体3の温度が次第に上昇する。一方、茎11の下方に配置された薄膜金属測温抵抗体5の温度は、茎液に熱を奪われ、次第に下降する。このようにして、薄膜金属ヒータ4にパルス電流を印加した後に、一旦、薄膜金属測温抵抗体3、5に温度差が生じ、再び温度が一致するので、その所要時間t0を測定する。
【0051】
続いて、計測手段で計測された計測時間から茎液の流速を算出する(S106)。ここで、ヒートパルス速度vは、v=(Xa+Xb)/(2×t0)で算出される。また、茎液の流速Fは、予め求められるキャリブレーション定数をbとすると、F=bvで算出される。このようにして、茎液の流速を算出したら、それに応じた信号を出力する(S107)。例えば、茎液の流速が遅くなっていれば、各種センサの測定値を考慮しつつ、バルブ56に信号を出力し、水や肥料を多めに供給することができる。
【0052】
また、本発明においては、薄膜金属測温抵抗体3、5の抵抗値の測定手段と同様の構成を有する測定手段を用いて、薄膜金属ヒータ4の抵抗値を測定し、温度算出手段が薄膜金属ヒータ4の温度を算出し、印加手段が、その温度をもとにして、薄膜金属ヒータ4に印加する電流を断続することにより、ヒータ4の温度、加熱時間をフィードバック制御することもできる。なお、薄膜金属ヒータ4を白金抵抗体で構成すれば、その抵抗値Rは、温度をT度とすれば、R=100(1+0.3851T)で算出される。
【0053】
さらに、印加手段が所定の周期で薄膜金属ヒータ4にパルス電流を印加し、出力手段が流速算出手段が算出した茎液の流速に応じて水及び/又は肥料の量を調整する信号を出力することもできる。これにより、茎液の流速を自動で測定し、それに応じた量の水及び/又は肥料を供給することができる。
【0054】
次に、本発明に係る茎液流測定の実験結果について説明する。
図8は、本発明に係る茎液流測定の実験結果を示すグラフである。
【0055】
図8には、薄膜金属ヒータ4に印加されるパルス電流71、薄膜金属測温抵抗体3の温度72、薄膜金属測温抵抗体5の温度73が示されている。この例では、薄膜金属測温抵抗体3と薄膜金属ヒータ4の中心間距離Xaを10mm、薄膜金属測温抵抗体5と薄膜金属ヒータ4の中心間距離Xbを5mmとし、薄膜金属測温抵抗体3を茎11の上方に、薄膜金属測温抵抗体5を茎11の下方に配置した。パルス電流71は、20mAで40秒間通電した。なお、パルス電流は、一定電流に印加した後、しばらくその電流値で流し続け、やがて止める矩形のパルス電流でもいいし、徐々に温度を上げていって所定値に達した後、徐々に温度を下げるような三角形状のパルス電流などでも良い。また、この実施例では、パルス電流を40秒間印加したが、より正確に計測するためには、例えば、10秒以内、より好ましくは5秒以内というように短時間印加することが好ましい。
【0056】
薄膜金属ヒータ4にパルス電流71が印加されると、まず、薄膜金属測温抵抗体5の温度73の温度が上昇する。そして、茎11の中を茎液が流れ、薄膜金属ヒータ4の熱が茎11の上方に運ばれる。そうすると、茎11の上方に配置された薄膜金属測温抵抗体3の温度72が次第に上昇する。一方、茎11の下方に配置された薄膜金属測温抵抗体5の温度73は、茎液に熱を奪われ、次第に下降する。このようにして、薄膜金属ヒータ4にパルス電流を印加した後に、一旦、薄膜金属測温抵抗体3、5に温度差が生じ、再び温度が一致する時が来るので、その時間t0を測定する。
【0057】
この例では、時間t0は、20秒であった。そこで、v=(Xa+Xb)/(2×t0)で算出されるヒートパルス速度vは、0.375mm/secとなった。この図では、測定値に雑音が含まれているが、ローパスフィルタなどで雑音を除去することが望ましく、それにより温度が等しくなる点をより正確に計測することができる。
【実施例2】
【0058】
図9は、本発明に係る茎液流測定用センサの第2の実施形態を示す図であり、(a)はその正面図、(b)はその側面図である。
なお、前述した実施形態と同一部品同一部位には同じ符号を付してその詳細な説明を省略する。
【0059】
図9に示すように、茎液流測定用センサ101は、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4を絶縁性フィルム(例えば、厚さ10μm〜200μmの絶縁性の合成樹脂フィルム、特に、耐熱性及び絶縁性を有するプラスチックフィルムなど)102で挟み込むようにして形成されている。具体的には、茎液流測定用センサ101の表面積の略2倍の大きさをした表面積を持つ絶縁性フィルム102を用意し、この絶縁性フィルム102の略半分の範囲に、薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4を配置し、絶縁性フィルムの他の半分の範囲の部分を薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4の表面を覆うように折り返して薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4の両面を挟み込むようにする。このような構成をとることにより、市販されている薄膜金属測温抵抗体3、5及び薄膜金属ヒータ4と、市販されている絶縁性フィルム102を用いて茎液流測定用センサ101を形成できるので、装置を安価にできる。また、この茎液流測定用センサ101は、湾曲可能であるので、茎に巻きつけて使用することができる。
【0060】
以上、本発明の実施の形態について説明を行ったが、本発明はこうした実施の形態に何等限定されるものではなく、あくまで例示であって、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
【産業上の利用可能性】
【0061】
本発明に係る茎液流測定用センサ、茎液流測定装置及び茎液流測定方法は、ヒートパルス法により植物の茎液の流速を測定する茎液流測定用センサ、茎液流測定装置及び茎液流測定方法に適用できる。
【図面の簡単な説明】
【0062】
【図1】本発明に係る茎液流測定用センサの第1の実施形態を示す斜視図である。
【図2】茎液流測定用センサの植物の茎への第1の取付方法を示す図であり、(a)はその正面図、(b)はその断面図である。
【図3】茎液流測定用センサの植物の茎への第2の取付方法を示す図であり、(a)はその正面図、(b)はその断面図である。
【図4】本発明に係る茎液流測定装置を示す構成図である。
【図5】本発明に係る茎液流測定装置を構成するコンピュータのブロック図である。
【図6】本発明に係る茎液流測定用センサを用いた茎液流測定システムを示す構成図である。
【図7】本発明に係る茎液流測定用方法を示すフローチャートである。
【図8】本発明に係る茎液流測定の実験結果を示すグラフである。
【図9】本発明に係る茎液流測定用センサの第2の実施形態を示す図であり、(a)はその正面図、(b)はその側面図である。
【符号の説明】
【0063】
1、101・・・・・・・茎液流測定用センサ
2・・・・・・・・・・・基材
3、5・・・・・・・・・薄膜金属測温抵抗体
4・・・・・・・・・・・薄膜金属ヒータ
6、7・・・・・・・・・導電性材料
8・・・・・・・・・・・絶縁材料
11・・・・・・・・・・茎
12・・・・・・・・・・断熱材
20・・・・・・・・・・茎液流測定装置
21、22、23・・・・定電流ダイオード
24・・・・・・・・・・スイッチング回路
25・・・・・・・・・・データロガー
26・・・・・・・・・・コンピュータ
27・・・・・・・・・・CPU
28・・・・・・・・・・タイマ
29・・・・・・・・・・RAM
30・・・・・・・・・・ROM
31・・・・・・・・・・ハードディスク
32・・・・・・・・・・入力インターフェース
33・・・・・・・・・・出力インターフェース
34・・・・・・・・・・バスライン
35・・・・・・・・・・キーボード
36・・・・・・・・・・マウス
37・・・・・・・・・・スピーカ
38・・・・・・・・・・パソコン本体
39・・・・・・・・・・ディスプレイ
50・・・・・・・・・・茎液流測定システム
51・・・・・・・・・・ビニールハウス
52・・・・・・・・・・天窓
53・・・・・・・・・・ポット
54・・・・・・・・・・苗
55・・・・・・・・・・パイプ
56・・・・・・・・・・バルブ
57・・・・・・・・・・風力センサ
58・・・・・・・・・・照度センサ
59・・・・・・・・・・温度センサ
60・・・・・・・・・・炭素センサ
61・・・・・・・・・・湿度センサ
62・・・・・・・・・・制御盤
71・・・・・・・・・・パルス電流
72、73・・・・・・・薄膜金属測温抵抗体の温度
102・・・・・・・・・絶縁性フィルム

【特許請求の範囲】
【請求項1】
絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えたことを特徴とする茎液流測定用センサ。
【請求項2】
前記薄膜金属測温抵抗体及び前記薄膜金属ヒータが同一形状で同一金属の抵抗体である請求項1記載の茎液流測定用センサ。
【請求項3】
前記基材がプラスチックフィルムである請求項1又は2に記載の茎液流測定用センサ。
【請求項4】
絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えている茎液流測定用センサ、
前記薄膜金属ヒータにパルス電流を印加する印加手段、
前記一対の薄膜金属測温抵抗体の抵抗値を測定する測定手段、
該測定手段で測定された前記抵抗値から前記一対の薄膜金属測温抵抗体の温度をそれぞれ算出する温度算出手段、
前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間を計測する計測手段、
該計測手段で計測された計測時間から茎液の流速を算出する流速算出手段、及び
前記茎液の流速に応じた信号を出力する出力手段、
からなる茎液流測定装置。
【請求項5】
一対の前記薄膜金属測温抵抗体において、植物の茎の上方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXa、該植物の茎の下方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXb(Xa>Xb)、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間をt0、予め求められるキャリブレーション定数をbとすると、前記植物の茎液の流速Fを、F=b(Xa+Xb)/(2×t0)で算出する算出手段を有する請求項4に記載の茎液流測定装置。
【請求項6】
前記薄膜金属ヒータの抵抗値を測定するヒータ測定手段と、前記抵抗値から前記薄膜金属ヒータの温度を算出するヒータ温度算出手段と、を具備し、前記印加手段が、その前記薄膜金属ヒータの温度をもとに、前記薄膜金属ヒータに印加するパルス電流を決定する請求項4又は5に記載の茎液流測定装置。
【請求項7】
絶縁性の基材上に形成された一対の薄膜金属測温抵抗体及びその一対の抵抗体の間に並列に形成された薄膜金属ヒータ、さらに、前記一対の薄膜金属測温抵抗体の電気信号をそれぞれ取り出す一対の導電性材料、及び前記薄膜金属ヒータへ電流を供給する導電性材料を備えている茎液流測定用センサ及びコンピュータを用いて構築された茎液流測定システムにおいて、
コンピュータが備える印加手段が前記薄膜金属ヒータにパルス電流を印加するステップと、
コンピュータが備える測定手段が前記一対の薄膜金属測温抵抗体の抵抗値を測定するステップと、
コンピュータが備える温度算出手段が前記測定手段で測定された前記抵抗値から前記一対の薄膜金属測温抵抗体の温度をそれぞれ算出するステップと、
コンピュータが備える計測手段が、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間を計測するステップと、
コンピュータが備える流速算出手段が前記計測手段で計測された計測時間から茎液の流速を算出するステップと、
コンピュータが備える出力手段が前記茎液の流速に応じた信号を出力するステップを実行する茎液流測定方法。
【請求項8】
一対の前記薄膜金属測温抵抗体において、植物の茎の上方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXa、該植物の茎の下方に配置される薄膜金属測温抵抗体と前記薄膜金属ヒータの中心間距離をXb(Xa>Xb)、前記印加手段により前記薄膜金属ヒータにパルス電流が印加された後、前記温度算出手段で算出された前記一対の薄膜金属測温抵抗体の各温度が等しくなるまでの時間をt0、予め求められるキャリブレーション定数をbとすると、前記植物の茎液の流速Fを、F=b(Xa+Xb)/(2×t0)で算出するステップを有する請求項7に記載の茎液流測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2008−233047(P2008−233047A)
【公開日】平成20年10月2日(2008.10.2)
【国際特許分類】
【出願番号】特願2007−77254(P2007−77254)
【出願日】平成19年3月23日(2007.3.23)
【出願人】(802000020)財団法人浜松科学技術研究振興会 (63)
【Fターム(参考)】