説明

荷電変換薄膜および粒子加速器

【課題】炭素製の荷電変換薄膜の作成および取り扱いを容易にすること。
【解決手段】陽子ビームが周回する周回軌道(11)が内部に形成された加速器本体(2)と、前記加速器(1)に荷電粒子としての負極性水素イオンビームを、前記加速器本体(2)内に入射する入射部(3)と、前記入射部(3)から入射された前記負極性水素イオンビームの入射軌道(11b)上に配置され、前記負極性水素イオンビームから電子を剥離して陽子ビームに変換するカーボンナノチューブ薄膜により構成された荷電変換薄膜(16)と、を備えた粒子加速器(1)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子から電子を剥離させる荷電変換薄膜および前記荷電変換薄膜を備えた粒子加速器に関する。
本発明は、特に、負水素イオンビームから電子を剥離して陽子ビームに荷電を変換するのに好適な荷電変換薄膜および前記荷電変換薄膜を備えた粒子加速器に関する。
【背景技術】
【0002】
円環状の粒子加速器において、周回する荷電粒子ビームを取り出すための技術として、特許文献1(特開平10−64699号公報)記載の技術が知られている。
特許文献1には、周回する水素の負イオンビーム(H)を正のイオンビーム(H)、すなわち、陽子に変換して取り出す円形加速器において、共鳴状態となりベータトロン振動振幅が増加したHイオンが通過する位置にベリリウム製の荷電変換薄膜を配置し、荷電変換薄膜を通過する際にHイオンから電子が剥離して(奪い取られて)、Hイオンとなったイオンビームが円形加速器(111)の外周側に偏向されて取り出す技術が記載されている。また、特許文献1には、荷電変換薄膜として、ベリリウム製の荷電変換薄膜以外に、炭素製あるいはアルミニウム製の薄膜を使用可能であることが記載されている。
【0003】
このほかにも、非特許文献1には、陽子加速器において、リング内を周回している陽子に陽子を入射する場合に、入射部に荷電変換薄膜を配置し、入射された負水素イオンから電子を剥離して陽子に変換して、周回している陽子に影響を与えずに陽子を追加入射する技術も記載されている。
【0004】
【特許文献1】特開平10−64699号公報(「0019」、「0030」、「0033」)
【非特許文献1】山崎良成、他3名、“J−PARC加速器”、[online]、2005年6月1日、高エネルギー物理学研究者会議、[平成19年9月1日検索]、インターネット<URL:www.jahep.org/hepnews/2005/Vol24No1-2005.4.5.6yamazaki.pdf>
【発明の開示】
【発明が解決しようとする課題】
【0005】
前記特許文献1に記載されているように、一部の円形加速器ではベリリウム製の荷電変換薄膜が使用されるが、ベリリウムは有害であるという問題があると共に、非特許文献1に記載されているような高エネルギーの光線(ビーム)が得られるシンクロトロン型の加速器では、ベリリウム製の荷電変換薄膜は使用されず、炭素製の荷電変換薄膜が一般的に使用されている。
【0006】
ここで、従来使用されている炭素製の荷電変換薄膜は、剥離剤としての硫化ナトリウムが塗布されたガラス板に、炭素を蒸着させて形成したものが使用されていた。このような蒸着法で作成した炭素薄膜は、機械的強度が非常に弱く、脆い。したがって、荷電変換薄膜として使用しようとする場合、まず、炭素薄膜をガラス板から機械的に剥離しようとすると炭素薄膜が破れてしまうため、水に漬けて剥離剤を溶かして剥離させていた。また、水中に剥離された炭素薄膜は、内部応力で湾曲し、筒状に巻き取られた状態になりやすい問題がある。したがって、荷電変換薄膜として使用するために加速器にセットする場合、筒状の炭素薄膜を平らに延ばす必要があったが、炭素薄膜を強く引張りすぎると、破れてしまう問題があった。すなわち、従来の炭素製の荷電変換薄膜では、機械的強度が非常に弱く、脆弱で壊れやすく、人手による取り扱いがほぼ不可能であり、取り扱いが非常に面倒であったという問題があった。
【0007】
特に、近年の加速器の大強度化に伴って、荷電変換すべきビームのエネルギーは1GeV、強度はMWと増大しており、厚さが300〜500μg/cmの炭素薄膜が必要となっている。しかしながら、このような厚さで数cm四方の大きさの炭素薄膜は、蒸着法等の従来の方法では製作が容易でないばかりか、そのようにして作製された炭素薄膜でも、やはり可撓性が低く且つ脆弱であり、取り扱いに特別な注意を払う必要があるという問題があった。
また、厚さが厚くなると、通過する高エネルギー荷電粒子のエネルギーロスによる加熱で高温になりやすく、寿命が短いという問題がある。
【0008】
本発明は前記事情に鑑み、炭素製の荷電変換薄膜の作成および取り扱いを容易にすることを技術的課題とする。
【課題を解決するための手段】
【0009】
前記技術的課題を解決するために請求項1記載の発明の荷電変換薄膜は、
カーボンナノチューブが不規則且つ緊密に絡み合ったカーボンナノチューブ薄膜により構成され、入射された荷電粒子から電子を剥離することを特徴とする。
【0010】
請求項2に記載の発明は、請求項1に記載の荷電変換薄膜において、
改良直噴熱分解合成法により作製された前記カーボンナノチューブ薄膜により構成されたことを特徴とする。
【0011】
請求項3に記載の発明は、請求項1または2に記載の荷電変換薄膜において、
比重が1g/cc以下、厚さが10μm以下、厚さの一様性が10%以内の前記カーボンナノチューブ薄膜により構成されたことを特徴とする。
【0012】
前記技術的課題を解決するために請求項4記載の発明の粒子加速器は、
陽子ビームが周回する周回軌道が内部に形成された加速器本体と、
荷電粒子としての負極性水素イオンビームを、前記加速器本体内に入射する入射部と、
前記入射部から入射された前記負極性水素イオンビームの入射軌道上に配置され、前記負極性水素イオンビームから電子を剥離して陽子ビームに変換する請求項1ないし3のいずれかに記載の荷電変換薄膜と、
を備えたことを特徴とする。
【発明の効果】
【0013】
請求項1記載の発明によれば、荷電変換薄膜がカーボンナノチューブにより構成されているので、機械的強度が高く、人手で取り扱うことができるため、荷電変換薄膜を持ち運んだり、セットする作業等の取り扱いが飛躍的に容易にできる。
請求項2記載の発明によれば、改良直噴熱分解合成法により量産された低コストのカーボンナノチューブ薄膜で、取り扱いが非常に容易に荷電変換を行うことができる。
請求項3記載の発明によれば、高エネルギーの荷電粒子の荷電変換を行うことができる。
請求項4記載の発明によれば、機械的強度が高く、非常に容易に取り扱うことが可能な荷電変換薄膜により加速器で荷電変換を行うことができる。また、カーボンナノチューブが不規則且つ緊密に配置されているため、輻射の放熱効率が高く、入射されるビームによる熱に対する寿命が長くなる。したがって、荷電変換薄膜の交換回数が少なく、作業者の被曝線量が少ない加速器を提供することができる。
【発明を実施するための最良の形態】
【0014】
次に図面を参照しながら、本発明の実施の形態の具体例(実施例)を説明するが、本発明は以下の実施例に限定されるものではない。
なお、以下の図面を使用した説明において、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
【実施例1】
【0015】
図1は本発明の実施例1の粒子加速器の全体説明図である。
図1において、本発明の実施例1の粒子加速器の一例としての陽子加速器1では、内部が真空排気されており、陽子ビーム(Hビーム)が周回する周回軌道11を有する環状の加速器本体2を有する。前記加速器本体2には、荷電粒子が入射される入射部3と、加速された陽子ビームが出射される出射部4とを有する。前記加速器本体2内部には、複数の電磁石と加速装置とが配置されており、内部を移動する陽子を電磁力により偏向させて周回させると共に加速し、前記出射部4から放出させる。
【0016】
図2は実施例1の粒子加速器の入射部の要部拡大説明図である。
図2において、陽子ビーム軌道11の陽子ビーム移動方向に対して、入射部3の上流側および下流側には、陽子ビームを偏向させるシンクロトロン電磁石12,13が配置されている。前記シンクロトロン電磁石12,13の間の入射部3には、荷電粒子の一例としての負水素ビーム(Hビーム)が入射される入射接続部14が接続されている。前記入射部3には、前記入射接続部14から入射されたHビームが照射される荷電変換薄膜16が配置されている。また、前記入射部3には、周回する陽子ビームを加速軌道11aに沿って移動させると共に、入射されたHビームを偏向してバンプ軌道(入射軌道)11bに沿って移動させて荷電変換薄膜16に入射させる複数のバンプ電磁石17,18,19,20が配置されている。
【0017】
図3は実施例1の荷電変換薄膜の要部拡大説明図である。
図2、図3において、実施例1の荷電変換薄膜16の上下両端縁は、二又状に形成された薄膜支持部21a,21bを有する薄膜支持枠体21により支持されている。前記薄膜支持枠体21は、荷電変換薄膜16の交換等のメンテナンス時に、荷電変換薄膜16を支持する薄膜支持枠体21を前記バンプ軌道11bに対して進入、退避させる薄膜交換装置22に支持されている。
実施例1の荷電変換薄膜16は、カーボンナノチューブが不規則且つ緊密に絡み合ったカーボンナノチューブ薄膜により構成されており、例えるならカーボンナノチューブにより構成された繊維が複雑に絡み合った布生地のような薄膜により構成されている。実施例1では、特に、荷電変換薄膜16として、比重が1g/cc以下、厚さが10μm以下、厚さの一様性(厚さのばらつき)が10%以下のものが好適に使用可能である。なお、このようなカーボンナノチューブ製の荷電変換薄膜は、改良直噴熱分解合成法により作製可能であり、前記改良直噴熱分解合成法は、例えば、「独立行政法人産業技術総合研究所広報部、“高品質単層カーボンナノチューブ量産とサンプル配布を開始”、[online]、2007年2月13日、独立行政法人産業技術総合研究所、[平成19年9月1日検索]、インターネット<URL:http://www.aist.go.jp/aist_j/press_release/pr2007/pr20070213/pr20070213.html>」に記載されており、従来公知である。
【0018】
(実施例1の作用)
前記構成を備えた実施例1の粒子加速器1では、カーボンナノチューブ製の荷電変換薄膜16、すなわち、炭素製の荷電変換薄膜16に対して、Hビームが入射されると、電子が剥離される(奪い取られる)。したがって、負水素イオンビームの電子が剥離されて電荷が変化し(荷電変換され)、正水素イオンビーム、すなわち、陽子となる(H→H+2e)。荷電変換薄膜16で発生した陽子は、加速軌道11に供給され、周回する。
前記実施例1の粒子加速器1では、柔軟性が高く機械的強度が高いカーボンナノチューブ製の荷電変換薄膜16を使用するため、μmオーダーの薄膜でも、直接人手により引張ったり折り曲げたりすることができる、したがって、荷電変換薄膜16を人手で容易に扱うことができ、薄膜支持枠体21に装着、取り外す作業を容易に行うことができる。また、実施例1のカーボンナノチューブ薄膜16は、炭素原子の集合密度が、従来の蒸着法の炭素薄膜により遙かに小さく、従来の炭素薄膜の比重が2〜3g/ccであるのに比べ、実施例1のカーボンナノチューブ薄膜1の比重は1g/cc以下である。したがって、高エネルギー荷電粒子が膜中を通過する際生じるエネルギー損失の単位飛距離当たりの値が低くなり、膜内の発熱密度が低くなるので、荷電変換膜としての寿命が長くなることが期待される。
【0019】
(実験例)
次に、実施例1のカーボンナノチューブ製の荷電変換薄膜16による荷電変換の効果を確認する実験を行った。
実験は、大学共同利用機関法人高エネルギー加速器研究機構の施設内の陽子加速器を使用して実験を行った。
(実験例1)
実験例1は、カーボンナノチューブ製の荷電変換薄膜と、従来の薄膜(フォイル)とで膜の温度がどのように変化するかを測定した。実験は、加速器1を2.7×10−7mbの真空度に排気し、入射されるビームのエネルギーは650keVに設定した。なお、実験は、ビーム照射直後の薄膜支持枠体に支持された薄膜の温度を測定して比較した。
実験例1−1では、厚さが3〜4μmのカーボンナノチューブ製の荷電変換薄膜16を使用した。
実験例1−2では、厚さが1μmのカーボンナノチューブ製の荷電変換薄膜16を使用した。
【0020】
比較例1−1では、厚さが304μg/cm(約1μm)のHBCフォイル(ホウ素がドープされた蒸着法で作製された炭素薄膜、Hybrid Boron mixed Carbon Foil)の荷電変換薄膜として使用した。
比較例1−2では、厚さが0.2mm、0.1g/cc)のエアロゲルフォイル(シリカエアロゲル)を荷電変換薄膜として使用した。
【0021】
(実験例1の実験結果)
照射後の荷電変換薄膜16の温度は、実験例1−1では1223℃、実験例1−2では1229℃、すなわち、カーボンナノチューブ製の荷電変換薄膜16では、約1230℃であり、薄膜支持枠体21で荷電変換薄膜16を支持する際の張力の不均一に起因して、熱により皺が発生するまで、ほぼこの温度で推移したことが確認された。
比較例1−1では、1800℃程度であり、比較例1−2では高温になると熱で溶けてしまい測定不能であった。
したがって、カーボンナノチューブ製の荷電変換薄膜では、熱を放出する効率、すなわち、輻射放射効率が高いことが確認された。よって、従来の薄膜よりも、熱に対する寿命が長くなることが期待される。
なお、実験例1−1では、全照射時間12時間18分に渡ってビームを照射したが、実験終了時、ビーム照射スポット部分に皺に沿った細かい亀裂が見られたものの、大きな断裂は確認されなかった。また、実験例1−2では、全照射時間4時間15分間ビームを照射したが、実験開始から数時間照射後にビーム照射スポット部分に亀裂が発生し、その後亀裂の幅が広がり、実験終了時にはビームスポットの大きさの孔となった。
【0022】
(実験例2)
図4は実験例2の実験方法の説明図である。
実験例2では、膜厚の厚さの分布の広がりについて実験を行った。図4において、実験例2では、アメリシウム241(241Am)をα線源とするα線のエネルギースペクトルを測定する。すなわち、直径7mm(φ7)の有効面積を有するα線源31に対して、48mmの間隔をあけて荷電変換薄膜16を配置し、荷電変換薄膜16に対して60mmの間隔をあけてSSD(Surface Barrier Semiconductor Detector:表面障壁型半導体検出器)により構成された放射線測定装置32を配置する。膜の厚さ分布は、膜を通過したα線のエネルギースペクトルの広がりからα線のエネルギーの広がりおよびEnergy stragglingを差し引いて求める。なお、stragglingは、アルファ線のエネルギーロスが膜中の電子と衝突し、エネルギーを付与することによって発生することに起因する現象であり、この衝突が確率的に発生するため、アルファ線のエネルギーロスが統計的な広がりを持つ現象を指す。なお、stragglingによるエネルギーロス分布σは、Bohrにより、Zを入射粒子の原子番号、Zを透過物質の原子番号、Nを透過物質の原子密度、Δxを透過物質の厚さとし、eを電気素量とした場合に、式(1)で与えられることがわかっている。
σ=4πZNΔx …式(1)
【0023】
前記条件の下、実験例2−1では、厚さが3〜4μmのカーボンナノチューブ製の荷電変換薄膜を使用した。
実験例2−2では、厚さが8〜10μmのカーボンナノチューブ製の荷電変換薄膜を使用した。
比較例2−1では、薄膜支持枠体に荷電変換薄膜を支持しない状態(Blank状態)で測定を行った。
比較例2−2では、従来の蒸着炭素薄膜(メーカー測定値184μg/cm=厚さ約1μm弱)の荷電変換薄膜を使用した。
実験結果を図5に示す。
【0024】
図5は実験例2の実験結果の説明図であり、横軸に測定エネルギー、縦軸にエネルギーが測定された回数を取ったグラフである。
図6は図5に示す実験結果を片対数グラフで表示してガウス分布に対して一致するか否かを判別するための説明図であり、横軸に測定エネルギー、縦軸にエネルギーが測定された回数を取ったグラフである。
図7は図5の実験結果に基づいて得られた膜厚の分布の説明図であり、横軸に厚さを取り、縦軸に単位厚さ当りの割合を取ったグラフである。
なお、図7は、図5、図6に示す実験結果において、現在、エネルギーロスや飛程、straggling等を計算するコンピュータシミュレーターとして公知のSRIM/TRIMを使用して、エネルギーロスを再現する膜の厚さと、その厚さによるstragglingを計算し、それらの計算値に基づいて、実験結果から膜厚の分布を計算した。
【0025】
図5において、241Amのα線のエネルギーは5.486MeVであり、薄膜の厚さが厚くなるほど通過時にエネルギーが減少していることが確認されており、カーボンナノチューブがランダムに不規則且つ緊密に絡み合った形態の実施例1(実験例2−1、2−2)の荷電変換薄膜でも、カーボンナノチューブに衝突せずに隙間を透過するのではなく、衝突が発生することが確認され、十分に電子を剥離可能であることがわかる。
また、図6において、測定されたスペクトルについて、ピークの近傍と高エネルギー側をガウス分布で近似してみると、ピークの1σ(標準偏差)程度低エネルギー〜高エネルギー側の部分はガウス分布で良く再現されていることがわかる。ガウス分布が一致する部分の割合は、スペクトルに含まれるカウント数の80%以上である。ピークの1σ程度低エネルギーよりも低エネルギー側は、ガウス分布からズレて複雑な分布を示すが、この部分は、α線のエネルギーの広がりや、測定器の分解能、あるいは、薄膜のわずかな皺などにより、実効的な厚さが増え、エネルギーロスがわずかに大きくなった部分等が含まれていると考えられる。
【0026】
但し、高エネルギー側の裾は、α線のエネルギーロスの小さい部分の分布に対応しているため、荷電変換薄膜として有用かどうかは、透過α線のエネルギースペクトルの高エネルギー側の裾がどの程度広がっているかから判断される。図6に示すように、実験例2−1、2−2共に、高エネルギー側の裾は大きな広がりがなく、ガウス分布に良く一致している。このようにして得られた厚さの広がりは、膜の平均の厚さの1/10程度であり、蒸着薄膜(比較例2−2)の場合と大差がないことがわかった。すなわち、カーボンナノチューブ製の薄膜では、厚さに広がりがあることを考慮して厚さを選べば十分な荷電変換効率を得られることを示している。したがって、カーボンナノチューブ製の薄膜でも荷電変換薄膜としての適正が損なわれないことがわかった。
さらに、図7において、比較例2−1や実験例2−1、2−2では、実験条件とほぼ同じ膜厚が測定され、実用上はこの値を厚さの広がりと考えても問題が起こらないと考えられる。
【0027】
したがって、前記実験結果から、実施例1の荷電変換薄膜16では、従来の蒸着法による荷電変換薄膜と同様に入射された荷電粒子から電子を剥離することができると共に、機械的強度が強く、人手で取り扱えることができるため、従来に比べて取り扱いが飛躍的に容易にできる。また、輻射放射性能が高く、ビームが照射されても放熱効果が高いため、熱に対する寿命が長くすることが期待できる。また、膜厚が3〜4μm以上にすると亀裂も生じにくいため、入射した荷電粒子の中で、亀裂により荷電変換されないものが少なくなることが期待される。さらに、荷電変換薄膜16の寿命が延び、薄膜の交換頻度が減少するため、放射線作業である薄膜交換作業の回数を減らすことができ、担当者の放射線被曝量が減少することが期待できる。
【0028】
(変更例)
以上、本発明の実施例を詳述したが、本発明は、前記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内で、種々の変更を行うことが可能である。本発明の変更例(H01)〜(H03)を下記に例示する。
(H01)前記実施例において、カーボンナノチューブ製の荷電変換薄膜は、高エネルギーの加速器において好適に使用可能であるが、これに限定されず、比較的低エネルギーの加速器において使用されるベリリウム製の荷電変換薄膜に替えて使用することも可能である。
【0029】
(H02)前記実施例において、荷電変換する荷電粒子として負水素イオンビームを例示し、これに対して好適に使用可能であるが、これに限定されず、荷電変換される任意の荷電粒子に適用可能である。したがって、前記実施例では加速器として陽子加速器を例示したが、これに限定されず、荷電粒子の荷電変換(荷電変化)が行われる任意の粒子加速器に適用可能である。
(H03)前記実施例において、荷電変換薄膜16を支持する構成として、薄膜支持枠体21を例示したが、この構成に限定されず、任意の構成を採用可能である。
【図面の簡単な説明】
【0030】
【図1】図1は本発明の実施例1の粒子加速器の全体説明図である。
【図2】図2は実施例1の粒子加速器の入射部の要部拡大説明図である。
【図3】図3は実施例1の荷電変換薄膜の要部拡大説明図である。
【図4】図4は実験例2の実験方法の説明図である。
【図5】図5は実験例2の実験結果の説明図であり、横軸に測定エネルギー、縦軸にエネルギーが測定された回数を取ったグラフである。
【図6】図6は図5に示す実験結果を片対数グラフで表示してガウス分布に対して一致するか否かを判別するための説明図であり、横軸に測定エネルギー、縦軸にエネルギーが測定された回数を取ったグラフである。
【図7】図7は図5の実験結果に基づいて得られた膜厚の分布の説明図であり、横軸に厚さを取り、縦軸に単位厚さ当りの割合を取ったグラフである。
【符号の説明】
【0031】
1…粒子加速器、
2…加速器本体、
3…入射部、
11…周回軌道、
11b…入射軌道、
16…荷電変換薄膜。

【特許請求の範囲】
【請求項1】
カーボンナノチューブが不規則且つ緊密に絡み合ったカーボンナノチューブ薄膜により構成され、入射された荷電粒子から電子を剥離することを特徴とする荷電変換薄膜。
【請求項2】
改良直噴熱分解合成法により作製された前記カーボンナノチューブ薄膜により構成されたことを特徴とする請求項1に記載の荷電変換薄膜。
【請求項3】
比重が1g/cc以下、厚さが10μm以下、厚さの一様性が10%以内の前記カーボンナノチューブ薄膜により構成されたことを特徴とする請求項1または2に記載の荷電変換薄膜。
【請求項4】
陽子ビームが周回する周回軌道が内部に形成された加速器本体と、
荷電粒子としての負極性水素イオンビームを、前記加速器本体内に入射する入射部と、
前記入射部から入射された前記負極性水素イオンビームの入射軌道上に配置され、前記負極性水素イオンビームから電子を剥離して陽子ビームに変換する請求項1ないし3のいずれかに記載の荷電変換薄膜と、
を備えたことを特徴とする粒子加速器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2009−87581(P2009−87581A)
【公開日】平成21年4月23日(2009.4.23)
【国際特許分類】
【出願番号】特願2007−252471(P2007−252471)
【出願日】平成19年9月27日(2007.9.27)
【出願人】(504151365)大学共同利用機関法人 高エネルギー加速器研究機構 (125)
【出願人】(301021533)独立行政法人産業技術総合研究所 (6,529)
【Fターム(参考)】