説明

薄型多層カーボンナノチューブ製造用触媒組成物とその調製方法

【課題】本発明は、薄型多層カーボンナノチューブ(MWCNT)製造用触媒組成物と触媒組成物の調製方法に関する。
【解決手段】より詳しくは、i)FeおよびAlからなる主触媒、ii)Mgからなる不活性担体、および、iii))Co、Ni、Cr、Mn、Mo、W、V、SnまたはCuから選ばれる少なくとも1種の任意の共触媒を含む多成分金属触媒に関する。さらに、本発明は、直径が5〜20nmであり、アスペクト比が100〜10,000である薄型多層カーボンナノチューブを高収率で得ることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、薄型多層カーボンナノチューブ(thin multi-walled carbon nanotube,MWCNT)製造用触媒組成物と触媒組成物の調製方法に関する。より詳しくは、本発明は、i)FeおよびAlからなる主触媒、ii)Mgからなる不活性担体、iii)Co、Ni、Cr、Mn、Mo、W、V、SnまたはCuから選ばれる少なくとも1種の任意の共触媒を含む多成分金属触媒に関する。さらに、本発明は、直径が5〜20nmであり、アスペクト比が100〜10,000である薄型多層カーボンナノチューブを高収率で得ることができる。
【背景技術】
【0002】
カーボンナノチューブは、1つの炭素原子が、隣り合う3つの炭素原子と結合することで、六角形のハニカム形状を有する。さらに、そのグラファイト平面は、ナノサイズの直径を有する円筒状に巻かれる。
【0003】
カーボンナノチューブは、そのサイズや形状により特有の物理的特性を示す。カーボンナノチューブは、中空構造であるため、比較的軽い。また、導電性は、銅と同様に優れ、熱伝導性は、ダイアモンドと同様に優れる。さらに、引張強度は鉄と同様に優れる。
【0004】
カーボンナノチューブは、その筒状に巻かれた形状によって、単層カーボンナノチューブと、多層カーボンナノチューブ、および、ロープカーボンナノチューブに分類される。
このようなカーボンナノチューブは、一般的に、アーク放電法、レーザ蒸着法、プラズマCVD法、熱CVD法、気相成長法、または、電解法によって製造することができる。これらの中で、熱CVD法は、基板を用いることなく、炭化水素ガスと金属触媒とが直接反応することでカーボンナノチューブを成長させることができるので、好ましく用いられてきた。さらに、熱CVD法によれば大量の高純度カーボンナノチューブを経済的に製造することができる。
【0005】
熱CVD法では、金属触媒が必要になる。このような金属として、通常、Ni、CoまたはFeが使われている。それぞれの触媒金属粒子は、カーボンナノチューブ形成の核となる。それゆえ、金属触媒は、ナノサイズ粒子である必要があった。もちろん、多くの研究者が金属触媒の開発を試みている。
【0006】
現在までに報告されている金属触媒の調製方法として、以下の調製方法が開示されている。(1)i)触媒金属と担体とを含む溶液を調製し、ii)pH、温度および/または成分量を調整することで、触媒組成物を共沈させ、そして、iii)空気中または他のガス雰囲気下で該沈殿物を熱処理する方法が開示されている。(2)触媒金属および細粒担体を含む懸濁液を乾燥または蒸発させる方法が開示されている。(3)i)ゼオライトのようなカチオン性粒子担体と触媒金属塩とを混合することで、金属をイオン化し、そして、ii)高温で水素や他の還元剤を用いて、イオン化された金属を金属粒子に還元する方法が開示されている。(4)触媒金属をマグネシア、アルミナ、および/または、シリカ等の固体酸化物担体材料とか焼する方法が開示されている。(5)か焼前に触媒金属前駆体溶液をスプレードライし、金属組成物をか焼する方法が開示されている。
【0007】
触媒CVD法によれば、金属触媒組成物は、カーボンナノチューブの製造過程でゆっくり消費される。この金属触媒組成物の消費は、エンキャッピング(encapping)による金属組成物の不活性化に起因する。そこでは、炭素原子が金属触媒粒子を包む。通常、不活性化された触媒金属の再活性化は、不可能であり、経済的ではない。ある場合には、金属触媒や担体材料を含む金属触媒組成物1グラムを用いて、たった数グラムのカーボンナノチューブしか得ることができない。それゆえ、商業化可能なスケールでカーボンナノチューブを製造するために、高収率の金属触媒組成物や合成条件の開発が必要とされてきた。
【0008】
さらに、以下の技術が現在までに特許公報や文献で報告されている。
Hyperion Catalysis International Inc.によるアメリカ特許5165909(特許文献1)によれば、i)AlにFe触媒を担持した後、空気中約500℃で触媒組成物を焼成し、ii)水素ガスを用いて、約900℃で触媒組成物を還元し、そして、iii)水素雰囲気下、約1000℃で、炭素源としてのベンゼンを反応させることで、炭素繊維を製造する方法が開示されている。しかしながら、この炭素繊維製造の触媒収率はそんなに良くなく、さらに、金属触媒を調製する過程では、か焼および還元の複雑な工程ならびに800℃以上の反応温度が必要となる。
【0009】
このような上記特許公報の欠点を解消するために、アメリカ特許6696387では、i)主触媒としてFe、ii)触媒担体として、アルミナおよび/またはマグネシア粒子、そして、iii)V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Ru、Os、Co、Rh、Ir、Ni、Pd、Ptまたはランタノイドから選ばれる少なくとも1種の任意の共触媒を含む触媒組成物が開示されている。しかしながら、アルミナおよび/またはマグネシアからなる担体材料を使用するために、金属触媒と担体材料とを均一に分散することができないので、この触媒組成物を用いて、規則正しい多層カーボンナノチューブを高い触媒収率で得ることは困難である。
【0010】
国際公開WO2007/33438(特許文献2)には、多層カーボンナノチューブを製造するための触媒システムが開示されている。この文献には、炭化水素を多層カーボンナノチューブと水素に選択的に変換するための(Ni,Co)Fe(Alwで表される化合物を含む触媒システムが開示されている。さらに、より好ましい触媒組成として、CoFe24(Al23)4.5、 CoFe24(Al23)16および CoFe24 (Al23)32が開示されている。すなわち、i)主触媒として(Ni,Co)およびFe、ii)触媒担体としてアルミナを含む触媒組成物が開示されている。しかしながら、アルミナ担体材料を使用するために、金属触媒と担体材料とを均一に分散することができないので、この触媒組成物を用いても、規則正しい多層カーボンナノチューブを高い触媒収率で得ることは困難である。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】アメリカ特許5165909
【特許文献2】国際公開WO2007/33438
【発明の概要】
【発明が解決しようとする課題】
【0012】
担体材料として、Al(OH)、アルミナおよび/またはマグネシアを用いる場合の、触媒組成物の不均一分散に起因する低い触媒収率を解決するために、本願の発明者らは、新しい触媒組成物の開発を試みてきた。
【課題を解決するための手段】
【0013】
結果として、本願の発明者らは、触媒収率を高めるために、水溶液中の共沈プロセスを用いて、すべての触媒成分を処理することによって、より均一に分散した触媒組成物を開発した。
【0014】
本発明は、以下の式(1)で表されるカーボンナノチューブ製造用触媒組成物を提供する。
【0015】
【数1】

【0016】
ここで、Feは、鉄、その酸化物またはその誘導体からなる触媒金属を示し;Alは、アルミニウム、その酸化物またはその誘導体からなる触媒金属を示し;
Mgは、マグネシウム、その酸化物またはその誘導体からなる不活性担体を示し;
Mは、Co、Ni、Cr、Mn、Mo、W、V、SnまたはCuから選ばれる少なくとも1種の遷移金属、その酸化物またはその誘導体を示す。
【0017】
x、yおよびzは、それぞれ、[FeとAlの和]、MおよびMgのモル分率を示し、以下の式(2)を満たす。
【0018】
【数2】

【0019】
aおよびbは、それぞれ、FeおよびAlのモル分率を示し、以下の式 (3)を満たす。
【0020】
【数3】

【0021】
さらに、前記[FeとAlの和]、MおよびMgのモル分率は、好ましくは下記式(4)を満たす。
【0022】
【数4】

【0023】
前記FeとAlのモル分率は、下記式(5)を満たすことが好ましい。
【0024】
【数5】

【0025】
本発明は、i)触媒組成物([Fea:Alb]x:My:Mgz)を得るための多成分金属塩をイオン交換水に溶解し、ii)共沈剤溶液を添加することによって、多成分触媒組成物を共沈または配位沈殿(coordinated precipitating)し、iii)得られた共沈した触媒組成物を濾過、乾燥、粉砕し、iv)400〜1200℃で熱酸化することで、粉砕した触媒組成物をか焼し、そして、v)熱酸化後のか焼した触媒組成物をさらに乾燥粉砕することからなるカーボンナノチューブ製造用触媒組成物の調製プロセスを提供する。
【0026】
前記金属塩としては、硝酸塩、硫酸塩、アルコキシド、炭酸塩または塩化物が好ましい。
前記共沈剤溶液としては、金属成分を含まない塩基性水溶液を使用することができる。さらに、共沈剤としては、炭酸水素アンモニウム(NHHCO)が好ましい。
【0027】
また、本発明は、I)カーボンナノチューブ製造用触媒組成物を調製し、II)500〜900℃で、水素と炭素数1〜4の飽和または不飽和炭化水素から選ばれる少なくとも1種の炭素源との混合ガスを反応容器に供給し、そして、III)熱CVD法によって、触媒組成物表面上に供給した炭素源を蒸着させることで、カーボンナノチューブを成長させ、製造することからなるカーボンナノチューブ製造プロセスを提供する。
【0028】
前記反応容器としては、竪型固定床反応器(vertical fixed-bed reactor)、横型固定床反応器(horizontal fixed-bed reactor)、ロータリーキルン反応器(rotary kiln reactor)、移動床反応器(mobile bed reactor)または流動床反応器(fluidized bed reactor)を使用することができる。
【0029】
このカーボンナノチューブの製造方法によれば、直径が5〜20nmであり、アスペクト比が100〜10,000であるカーボンナノチューブを高収率で得ることができる。
さらに、本発明は、高分子複合材料中の導電性および強度向上フィラー、金属複合材料中の熱伝導性および強度向上フィラー、燃料電池の触媒担体、有機単位反応触媒の担体材料、メタンガスおよび水素ガスの貯蔵物質、リチウム二次電池の電極材料、リチウム二次電池の導電体、高容量電気二重層コンデンサ用電極材料、ディスプレイ用電界放出材料または膜材料として、カーボンナノチューブを使用する方法を提供する。
【発明の効果】
【0030】
新規な触媒組成物およびそれを用いたカーボンナノチューブの製造方法によって、低い触媒収率、水素ガスを用いて触媒を予め還元すること、触媒組成物の不均一分散などの欠点を解決した。本発明では、担体材料を含む触媒組成物は、均一分散した触媒組成物を得るために、共沈プロセスを経て調製される。さらに、触媒組成物の調製過程で、水素還元過程は導入されない。そして、本願発明者らは、i)FeおよびAlからなる主触媒、ii)Mgからなる不活性担体、iii)Co、Ni、Cr、Mn、Mo、W、V、SnまたはCuから選ばれる少なくとも1種の任意の共触媒を含む多成分金属触媒組成物を開発した。さらに、本発明によれば、直径が5〜20nmであり、アスペクト比が100〜10,000である薄型多層カーボンナノチューブを高収率で得ることができる。
【図面の簡単な説明】
【0031】
【図1】図1は、本発明の共沈法を用いる触媒組成物の調製ダイアグラムを示す。
【図2】図2は、FeおよびAlのモル分率の変化に伴う実施例1で得られた触媒組成物の触媒収率を示す。
【図3】図3は、実施例1で製造されたカーボンナノチューブのHR−TEM(透過型電子顕微鏡)写真を示す。
【図4】図4は、実施例1で製造されたカーボンナノチューブのFE−SEM(走査型電子顕微鏡)写真を示す。
【発明を実施するための形態】
【0032】
本発明は、以下の式(1)で表されるカーボンナノチューブ製造用触媒組成物に関する。
【0033】
【数6】

【0034】
ここで、Feは、鉄、その酸化物またはその誘導体からなる触媒金属を示し;Alは、アルミニウム、その酸化物またはその誘導体からなる触媒金属を示し;
Mgは、マグネシウム、その酸化物またはその誘導体からなる不活性担体を示し;
Mは、Co、Ni、Cr、Mn、Mo、W、V、SnまたはCuから選ばれる少なくとも1種の遷移金属、その酸化物またはその誘導体を示す。
【0035】
x、yおよびzは、それぞれ、[FeとAlの和]、MおよびMgのモル分率を示し、以下の式(2)を満たす。
【0036】
【数7】

【0037】
aおよびbは、それぞれ、FeおよびAlのモル分率を示し、以下の式 (3)を満たす。
【0038】
【数8】

【0039】
さらに、前記[FeとAlの和]、MおよびMgのモル分率は、好ましくは下記式(4)を満たす。
【0040】
【数9】

【0041】
FeおよびAlのモル分率は、下記式(5)を満たすことが好ましい。
【0042】
【数10】

【0043】
本発明の触媒組成物の特徴の一つは、均一分散した触媒組成物を提供することができる点である。均一分散した触媒組成物を得るためには、多成分金属塩溶液の混合溶液に共沈剤を添加する。その多成分金属塩は、沈殿時に触媒組成物を形成する。共沈剤溶液は、多成分金属塩の混合溶液に一滴ずつ添加する。
【0044】
本発明は、i)触媒組成物([Fea:Alb]x:My:Mgz)を得るための多成分金属塩をイオン交換水に溶解し、ii)共沈剤溶液を添加することによって、多成分触媒組成物を共沈または配位沈殿し、iii)濾過し、得られた共沈した触媒組成物を80〜230℃のオーブンで乾燥し、iv)乾燥した触媒組成物を粉砕し、v)400〜1200℃で熱酸化することで、粉砕した触媒組成物をか焼し、そして、vi)熱酸化後のか焼した触媒組成物をさらに乾燥粉砕することからなるカーボンナノチューブ製造用触媒組成物調製プロセスを提供する。
【0045】
前記金属塩としては、硝酸塩、硫酸塩、アルコキシド、炭酸塩または塩化物が好ましい。
前記共沈剤溶液としては、金属成分を含まない塩基性水溶液を使用することができる。さらに、共沈剤としては、炭酸水素アンモニウム(NHHCO)が好ましい。
【0046】
カーボンナノチューブを製造するために、上記か焼した触媒組成物を竪型または横型固定床石英炉に置くことができる。その後、500〜900℃で炭素数1〜4の飽和または不飽和炭化水素ガスを供給する。これにより、カーボンナノチューブを、高収率で、触媒表面上に製造することができる。カーボンナノチューブの製造には、様々な種類の反応器を用いることができる。例えば、竪型固定床反応器、横型固定床反応器、ロータリーキルン反応器、移動床反応器または流動床反応器を使用することができる。
【0047】
カーボンナノチューブの製造方法では、触媒組成物の供給と、カーボンナノチューブの回収を連続または不連続プロセスで行うことができる。カーボンナノチューブの製造のために、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、ブテンまたはブタジエン等の炭素源ガスを供給する必要がある。もちろん、水素ガスや不活性ガスを炭素源ガスとともに供給することができる。この反応は、0.1〜2barの圧力、500〜900℃の温度下で行うことができる。しかしながら、ガス状炭化水素が自己分解しないように、また、適切な速度で炭素の蒸着が起こるように、この反応条件を調整する必要がある。好ましい反応温度は、500〜800℃である。
【0048】
なお、か焼粉の形状が好ましい。
カーボンナノチューブの製造終了後、カーボンナノチューブ中の触媒成分を、物理的または化学的方法で取り除くことができる。このために、得られたカーボンナノチューブを、酸や塩基で処理したり、高温で熱処理することができる。
【0049】
本発明の製造方法によれば、直径が5〜20nmであるカーボンナノチューブを従来の方法に比べ、3〜5倍の高収率で製造することができる。さらに、本発明で得られるカーボンナノチューブは、その中に残っている触媒成分がかなり少ないので、カーボンナノチューブ中の触媒を付加的に除去しなくてもよい。また一方、カーボンナノチューブの表面に官能基を導入したり、不純物である炭素材料を焼成するために、得られるカーボンナノチューブを物理的または化学的処理することができる。
【0050】
本発明で得られるカーボンナノチューブは、高分子複合材料中の導電性および強度向上フィラー、金属複合材料中の熱伝導性および強度向上フィラー、燃料電池の触媒担体、有機単位反応触媒の担体材料、メタンガスおよび水素ガスの貯蔵物質、リチウム二次電池の電極材料、リチウム二次電池の導電体、高容量電気二重層コンデンサ用電極材料、ディスプレイ用電界放出材料または膜材料として使用することができる。
【0051】
本発明の極めて優れた効果は、高収率で、直径が5〜20nmであり、アスペクト比が100〜10,000である多層カーボンナノチューブを提供できることである。さらに、本発明の触媒組成物は、i)主触媒がFeおよびAlであり、ii)不活性担体がMgであり、iii)Co、Ni、Cr、Mn、Mo、W、V、SnまたはCuから選ばれる少なくとも1種の任意の共触媒を含む。それゆえ、30分などの短時間で、3〜5倍のより高収率で、高純度の多層カーボンナノチューブを製造することが可能である。
【0052】
さらに、本発明の他の極めて優れた効果は、水素還元過程を必要としない、触媒組成物調製の簡単なプロセスを提供できることである。本発明の触媒組成物の簡単な調製過程や高い触媒収率のために、カーボンナノチューブの製造コストを抑えることができる。さらに、カーボンナノチューブの製造コストを抑えることができるため、カーボンナノチューブを経済的に、様々な分野に適用することができる。
【0053】
本発明は、以下の実施例および比較例によって、より具体的に説明することができる。しかしながら、本発明は、以下の実施例に制限されない。
[実施例]
<実施例1>FeおよびAlのモル分率の変化に伴う触媒組成物の調製
遷移金属Mを含まない、Fe、AlおよびMgからなる触媒組成物を調製した。(Fe+Al)/Mgのモル分率を7/3に固定する。それゆえ、この触媒組成物には、遷移金属は存在しない。FeおよびAlのモル量の変化に伴う触媒組成物を調製した後、これらの触媒組成物を用いてカーボンナノチューブを製造した。それぞれの触媒組成物に対して触媒収率を測定した。
【0054】
触媒組成物は、以下の方法で調製した。イオン交換水中に所定量のFe(NO・9HO、 Al(NO・9HOおよび Mg(NO・6HOを含む溶液を調製した。一方、イオン交換水中に所定量の炭酸水素アンモニウムを含む他の溶液を共沈剤溶液として調製した。室温で、60分間、攪拌しながら多成分金属塩溶液に炭酸水素アンモニウム溶液を一滴ずつ加えることで、触媒組成物の沈殿物を得た。得られた沈殿した触媒組成物を、濾紙を用いて濾過した。それから、得られた濾過ケーキを120℃で24時間、オーブンで乾燥し、続いて、乾燥型高速回転ミル(dry type of high speed rotary mill)を用いて該ケーキを粉砕した。そして、粉砕した触媒組成物を熱酸化のために、600℃で4時間、空気中でか焼した。最後に、得られた触媒組成物を乾燥型高速回転ミルで再び粉砕した。
【0055】
実験規模の固定床反応器内で得られた触媒組成物を用いてカーボンナノチューブを製造した。所定量の触媒組成物を石英炉反応器(quartz furnace reactor)の中央部分に置いた。その反応器を窒素雰囲気下で所望温度に加熱した。カーボンナノチューブを製造するために、体積比4:1のエチレンと水素の混合ガスを供給し、流した。1時間合成後、多層カーボンナノチューブを製造した。得られたカーボンナノチューブの量を測定した。カーボンナノチューブの構造と形状をFE−SEMとHR−TEM分析を用いて分析した。触媒収率は、以下の式で算出した。
【0056】
触媒収率=100×(Mtotal−Mcat)/(Mcat
ここで、Mtotalは、カーボンナノチューブと触媒の重量の和を意味し、Mcatは、触媒の重量を意味する。
【0057】
表1は、実施例1で調製した触媒組成物を用いたカーボンナノチューブの製造を示す。表1に示すように、a+b=10の場合に、FeおよびAlのモル分率の範囲が、Feが2.0≦a≦5.5であり、Alが4.5≦b≦8.0であると、高い触媒収率でカーボンナノチューブを製造することができた。
【0058】
【表1】

【0059】
<比較例1>FeおよびAlのモル分率の変化に伴う触媒組成物の調製
遷移金属Mを含まない、Fe、AlおよびMgからなる触媒組成物を調製した。(Fe+Al)/Mgのモル分率を7/3に固定する。それゆえ、この触媒組成物には、遷移金属は存在しない。FeおよびAlのモル量の変化に伴う触媒組成物を調製した後、これらの触媒組成物を用いてカーボンナノチューブを製造した。それぞれの触媒組成物に対して触媒収率を測定した。
【0060】
触媒組成物を調製する他の条件は、実施例1と同様である。さらに、カーボンナノチューブの製造条件も実施例1と同様である。もちろん、触媒収率は実施例1と同様に測定した。
【0061】
表2は、比較例1で調製した触媒組成物を用いたカーボンナノチューブの製造を示す。表2に示すように、a+b=10の場合に、FeおよびAlのモル分率の範囲が、Feが2.0≦a≦5.5であり、Alが4.5≦b≦8.0を外れると、カーボンナノチューブを高い触媒収率で製造することができなかった。
【0062】
さらに、触媒組成物中にFeが含まれないと、触媒収率は、0%を示す。それゆえ、Al単独では、触媒金属として働かないことを意味する。言い換えると、Feの触媒収率は、Alと組み合わせることで、かなり高められるため、Alは、Feの共触媒としての役割を果たしている。
【0063】
【表2】

【0064】
<実施例2>カーボンナノチューブ製造用触媒組成物
Fe、Al、M(遷移金属)およびMgを含む触媒組成物をカーボンナノチューブ製造のために調製した。[Fe+Al]、MおよびMgのモル分率は6:1:3であり、FeとAlのモル分率は3.2:6.8である。さらに、触媒組成物として様々な種類の遷移金属(M)を用いた。カーボンナノチューブを製造した後で、それぞれの触媒組成物の触媒収率を測定した。
【0065】
触媒組成物は、以下の方法で調製した。イオン交換水中に、所定量のFe(NO・9HO、 Al(NO・9HOおよび Mg(NO・6HOを含み、ならびに、所定量のCr(NO・9HO、Mn(NO・4HO、(NHMo24・HO、Co(NO・9HO またはCu(NO・3HOから選ばれる1つの化合物を含む溶液を調製した。一方、イオン交換水中に所定量の炭酸水素アンモニウムを含む他の溶液を共沈剤溶液として調製した。室温で、60分間、攪拌しながら多成分金属塩溶液に炭酸水素アンモニウム溶液を一滴ずつ加えることで、触媒組成物の沈殿物を得た。得られた沈殿した触媒組成物を、濾紙を用いて濾過した。それから、得られた濾過ケーキを120℃で24時間、オーブンで乾燥し、続いて、乾燥型高速回転ミルを用いて該ケーキを粉砕した。そして、粉砕した触媒組成物を熱酸化のために、600℃で4時間、空気中でか焼した。最後に、得られた触媒組成物を乾燥型高速回転ミルで再び粉砕した。
【0066】
実験規模の固定床反応器内で得られた触媒組成物を用いてカーボンナノチューブを製造した。所定量の触媒組成物を石英炉反応器の中央部分に置いた。その反応器を窒素雰囲気下で所望温度に加熱した。カーボンナノチューブを製造するために、体積比1:4の水素とエチレン、プロパン、またはエタンから選ばれる1種の炭素源との混合ガスを供給し、流した。30分または60分合成後、多層カーボンナノチューブを製造した。このカーボンナノチューブの量を測定した。カーボンナノチューブの構造と形状をFE−SEMとHR−TEM分析を用いて分析した。触媒収率は、以下の式で算出した。
【0067】
触媒収率=100×(Mtotal−Mcat)/(Mcat
ここで、Mtotalは、カーボンナノチューブと触媒の重量の和を意味し、Mcatは、触媒の重量を意味する。
【0068】
表3は、実施例2で調製した触媒組成物を用いたカーボンナノチューブの製造を示す。表3に示すように、a+b=10の場合に、FeおよびAlのモル分率の範囲が、Feが2.0≦a≦5.5であり、Alが4.5≦b≦8.0であると、遷移金属Mが存在するか存在しないかにかかわらず、カーボンナノチューブを高い触媒収率で製造することができた。しかしながら、触媒組成物に遷移金属Mを加えると、遷移金属Mを含まない触媒組成物に比べ、触媒収率が10〜50%の範囲で高められた。さらに、本発明の触媒組成物は、エタンやプロパンなどの他の炭素源を用いると、高収率のカーボンナノチューブを提供することができる。
【0069】
【表3】

【0070】
<比較例2>カーボンナノチューブ製造用触媒組成物
不活性担体として、Al(OH)、アルミナまたはマグネシアを用いた。それゆえ、主触媒としてFeまたはFe+Alを有し、不活性担体としてアルミナまたはMgO粉末を有する触媒組成物を調製した。そして、これらの触媒組成物を用いて、カーボンナノチューブを製造した。
【0071】
さらに、Mg成分が含まれていない触媒組成物を調製した。または、触媒収率を測定するために遷移金属Mを過剰に含む触媒組成物を調製した。
【0072】
実験規模の固定床反応器内で、得られた触媒組成物を用いてカーボンナノチューブを製造した。所定量の触媒組成物を石英炉反応器の中央部分に置いた。その反応器を窒素雰囲気下で所望温度に加熱した。カーボンナノチューブを製造するために、体積比4:1のエチレンと水素との混合ガスを供給し、流した。30分合成後、多層カーボンナノチューブを製造した。このカーボンナノチューブの量を測定した。カーボンナノチューブの構造と形状をFE−SEMとHR−TEM分析を用いて分析した。触媒収率は、以下の式で算出した。
【0073】
触媒収率=100×(Mtotal−Mcat)/(Mcat
ここで、Mtotalは、カーボンナノチューブと触媒の重量の和を意味し、Mcatは、触媒の重量を意味する。
【0074】
表4は、比較例2で調製した触媒組成物を用いたカーボンナノチューブの製造の結果を示す。表4に示すように、アルミナやMgOのような従来の不活性担体を用いた触媒組成物は、かなり低い(200%未満の)触媒収率を示す。さらに、Mg成分を含んでいない触媒組成物や、過剰量の遷移金属Mを含んでいる触媒組成物もまた、本発明の触媒組成物の触媒収率に比べ低い触媒収率を示す。遷移金属Mを過剰量使用すると、触媒収率は10000%以上を示すが、本発明の触媒組成物の収率の半分以下である。
【0075】
【表4】


【特許請求の範囲】
【請求項1】
下記式(1)で表されるカーボンナノチューブの製造用触媒組成物。
【数1】

ここで、Feは、鉄、その酸化物またはその誘導体からなる触媒金属を示し;Alは、アルミニウム、その酸化物またはその誘導体からなる触媒金属を示し;
Mgは、マグネシウム、その酸化物またはその誘導体からなる不活性担体を示し;
Mは、Co、Ni、Cr、Mn、Mo、W、V、SnまたはCuから選ばれる少なくとも1種の遷移金属、その酸化物またはその誘導体を示す。
x、yおよびzは、それぞれ、[FeとAlの和]、MおよびMgのモル分率を示し、以下の式(2)を満たす。
【数2】

aおよびbは、それぞれ、FeおよびAlのモル分率を示し、以下の式 (3)を満たす。
【数3】

【請求項2】
前記[FeとAlの和]、MおよびMgのモル分率が、下記式(4)を満たし、FeおよびAlのモル分率が、下記式(5)を満たすことを特徴とする請求項1に記載のカーボンナノチューブ製造用触媒組成物。
【数4】

【数5】

【請求項3】
下記工程(i)〜(v)を含んでなるカーボンナノチューブ製造用触媒組成物の調製プロセス。
(i)触媒組成物([Fe:Al]:M:Mg)を得るための多成分金属塩をイオン交換水に溶解する工程
(ii)共沈剤溶液を添加することによって、多成分触媒組成物を共沈または配位沈殿する工程
(iii)得られた共沈した触媒組成物を濾過し、その後乾燥し、ついで粉砕する工程
(iv)400〜1200℃で熱酸化することで、粉砕した触媒組成物をか焼する工程
(v)熱酸化後のか焼した触媒組成物をさらに乾燥粉砕する工程
【請求項4】
前記金属塩が、硝酸塩、硫酸塩、アルコキシド、炭酸塩または塩化物であることを特徴とする請求項3に記載のカーボンナノチューブ製造用触媒組成物の調製プロセス。
【請求項5】
前記共沈剤溶液が、金属成分を含まない塩基性水溶液であることを特徴とする請求項3に記載のカーボンナノチューブ製造用触媒組成物の調製プロセス。
【請求項6】
前記金属成分を含まない塩基性水溶液が、炭酸水素アンモニウム(NHHCO)であることを特徴とする請求項5に記載のカーボンナノチューブ製造用触媒組成物の調製プロセス。
【請求項7】
下記工程(I)〜(III)を含んでなるカーボンナノチューブ製造プロセス。
(I)請求項1に記載のカーボンナノチューブ製造用触媒組成物を調製する工程
(II)500〜900℃で、水素と炭素数1〜4の飽和または不飽和炭化水素から選ばれる少なくとも1種の炭素源との混合ガスを反応容器に供給する工程
(III)熱CVD法によって、触媒組成物表面上に、供給した炭素源を蒸着させることで、カーボンナノチューブを成長させ、製造する工程
【請求項8】
前記反応容器が、竪型固定床反応器、横型固定床反応器、ロータリーキルン反応器、移動床反応器または流動床反応器であることを特徴とする請求項7に記載のカーボンナノチューブ製造プロセス。
【請求項9】
請求項7に記載のプロセスで製造した、直径が5〜20nmであり、アスペクト比が100〜10,000であるカーボンナノチューブ。
【請求項10】
高分子複合材料中の導電性および強度向上フィラー、金属複合材料中の熱伝導性および強度向上フィラー、燃料電池の触媒担体、有機単位反応触媒の担体材料、メタンガスおよび水素ガスの貯蔵物質、リチウム二次電池の電極材料、リチウム二次電池の導電体、高容量電気二重層コンデンサ用電極材料、ディスプレイ用電界放出材料または膜材料として、請求項9に記載のカーボンナノチューブを使用する方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−188337(P2010−188337A)
【公開日】平成22年9月2日(2010.9.2)
【国際特許分類】
【出願番号】特願2009−272504(P2009−272504)
【出願日】平成21年11月30日(2009.11.30)
【出願人】(597088708)錦湖石油化學 株式會▲社▼ (7)
【氏名又は名称原語表記】KOREA KUMHO PETROCHEMICAL CO.,LTD.
【住所又は居所原語表記】#57,Sinmunno 1−ga, Jongno−gu,Seoul KOREA
【Fターム(参考)】