説明

裏面に設けられた金属テクスチャリングによって最適化された光検出器

【課題】所定の波長付近の電磁放射の検出用の裏面照射型検出器を提供する。
【解決手段】その検出器は、透明媒体の上方に形成されて、その放射の少なくとも一部を透過させる半導体吸収層(14)と、半導体層(14)の上方のミラー(22)と、ミラー(22)と半導体層(14)との間に配置された金属パターン(20)の周期格子(18)とを含む。ミラー(22)及び格子(18)は、その放射に対して透明で、半導体層(14)の上に形成された物質層(16)の中に含まれる。ミラー(22)及び格子(18)は、d≦λ/Re(n)、λ/(16×Re(n))+m×λ/(2×Re(n))≦h≦3×λ/(8×Re(n))+m×λ/(2×Re(n))、Re(n)≦1.3×Re(n)、Re(n)≧Re(nsubstrat)を満たす。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高量子効率検出器の分野に係り、特に薄い吸収層を備えた検出器の分野に関する。
【背景技術】
【0002】
周知のように、光検出器は、光子を吸収して、その光子を電子正孔対(電流を発生させるように収集される)に変換することができる半導体層を備える。
【0003】
従って、光検出器の量子効率(光検出器によって受光された光子の数と吸収された光子の数との比として定義される)は、光検出器の質を決める基本的な特性である。その効率は半導体層の吸収性能に関係しているので、大量の半導体が高レベルの効率を得ることを可能にすることは容易に理解される。
【0004】
しかしながら、体積の減少した半導体層にも、いくつか利点がある。体積の減少した半導体層を備えた光検出器は、物質コストの削減を提供し、より高速であり、生成‐再結合ノイズに関して改善された信号対ノイズ比を有する。
【0005】
しかしながら、吸収ボリュームを減少させることによって生じる量子効率の低下は、他の欠点も伴う。
【0006】
特に、半導体吸収層の厚さが減少すると、より多くの光子を吸収せずに通過させてしまい、検出される放射に対してますます“透明”になる。
【0007】
成長基板上に堆積させた薄い半導体層の光吸収を増強するための解決策は、通常、吸収されずに半導体層を通過した放射の少なくとも一部を“回収”することができるような半導体層の裏面(つまり、入射放射を受光する表面の反対の表面)に対する配置について検討される。
【0008】
第一の解決策は、平面反射体(たとえば、金属ミラーやブラッグミラー)を半導体層の裏面に配置して、吸収されなかった光を反射して半導体層に向けて戻すことを有する。この解決策は、特定の共鳴無しで半導体層を二回通るように光を送ることによって吸収を増強する。しかしながら、この解決策は、非常に薄いか又は極端に非吸収性の層の場合、言い換えると、通過される二倍の厚さが依然として完全な吸収を可能にしない場合には不十分であり得る。
【0009】
平面ミラーが十分ではない状況において、他の解決策は、テクスチャ化された後方反射体を用いることを有し、その後方反射体は、放射をより吸収層に沿うように向けることによって量子効率の増強を最適化する機能を果たす。実際、テクスチャ化は、検出される放射が半導体層のトラップモードで結合されることを可能にする。この解決策は、単純な平面ミラーを用いたものよりも明らかに有効である。更に、これは、格子周期を介して検出器を入射光の波長に対して敏感にする格子による回折現象を用いる。これは、例えば太陽電池に応用されて、非特許文献1に示されるように、銀の溝を備えて、λ/4nSiの典型的な厚さを有するタイプの一次元回折格子を備える。
【0010】
このように、テクスチャ化が半導体吸収層の“透明性”の欠点をある程度利点に変換する機能を果たすことは特筆すべきものである。従って、半導体層のトラップモードに対する結合によって得られる量子効率利得は決して僅かなものではないので、顕著な結合がテクスチャ化によって得られるように放射の一部を通過させるために、半導体層の厚さが、意図的に“薄く”選択される。
【0011】
“薄い”半導体層とは、本発明において、対象放射の一部が吸収されずにその層を通過するように厚さの選択された半導体層のことである。例えば、半導体層の厚さtが、t≦λ/(3×Im(n))であると(λは検出される波長であり、nは半導体層の屈折率であり、Imは虚部を示す)、その半導体層は、検出される波長を通過させるので、本発明において薄いとされる。特に、これは、赤外線スペクトルにおいて1マイクロメートル以下の厚さtに等しい。
【0012】
更に、理解されるように、構造の厚さは、検出される波長に依存する。従って、このタイプの構造が赤外線において使用される場合、かなりの厚さの構造を実現する必要がある。実際、所定の金属においてこのような厚さを構造化するのは難しく、例えば、キャップリフトオフの問題、深いキャビティを充填する問題、キャビティの底部と吸収半導体層との間の厚さを正確に制御する必要がある場合の誘電体の深堀りエッチングの深度を制御する問題、高温プラズマベース法及び200℃以上の典型的な温度を必要とする金等の貴金属のエッチングの問題が挙げられる。例えば、特許文献1には、テクスチャ化後方検出器を半導体吸収層と組み合わせた検出器が開示されている。この文献では、量子井戸のスタックから形成された吸収層の後方に配置されたワッフル型結合格子を使用して、赤外線放射の範囲内の吸収を増大させることを提案している。この場合、正方形の孔を備えた周期格子の目的は、吸収されずに吸収層を通過する放射を反射する一方で、その中に放射を分散させることである。量子効率の増強が観測されるが、この増強は、量子井戸と反射体を組み合わせることによって得られるものであり、反射体を略1/4波長の厚さに構造化することを追加的に要し、これは、赤外線で動作する場合にはかなりのものとなる。
【0013】
結果として、従来技術のテクスチャ化後方反射体については、構造の厚さが、検出される波長に強く結び付いていて、これは、特に赤外線スペクトルにおいていくつかの欠点を与える。
【先行技術文献】
【特許文献】
【0014】
【特許文献1】国際公開第2005/081782号
【非特許文献】
【0015】
【非特許文献1】C.Haase、H.Stiebig、“Optical Properties of Thin‐film Silicon Solar Cells with Grating Couplers”、Progress in photovoltaics: research and applications、第14巻、p.629‐641、2006年
【発明の概要】
【発明が解決しようとする課題】
【0016】
本発明の目的は、その厚さが波長に依存しないテクスチャ化に基づいた構造を提案することによって、反射体の構造の厚さと検出される波長との間の強い結び付きの上記問題を解決することである。
【課題を解決するための手段】
【0017】
このため、本発明の対象は、所定の波長付近の電磁放射の検出用の裏面照射型検出器であって、
・ その放射の吸収用の半導体吸収層であって、その放射に対して少なくとも部分的に透明な媒体の上方に形成されていて、その放射の少なくとも一部を透過させる厚さを有する半導体吸収層と、
・ 受光した放射を反射するように半導体層の上方に配置されたミラーとを含む電磁放射の検出用の裏面照射型検出器である。
【0018】
本発明によると、検出器は、ミラーと半導体層との間に配置された金属パターンの周期格子を備え、ミラー及び周期格子は、その放射に対して少なくとも部分的に透明であって半導体層の上に形成された物質層の中に含まれる。
【0019】
ミラー及び金属パターンの周期格子は、以下の関係を満たすように更に設計される:
【数1】

ここで:
‐ Reは、実部を指称し、
‐ dは、半導体層(14)と周期格子(18)との間の距離であり、
‐ hは、ミラーと周期格子との間の距離であり、
‐ mは、正又はゼロの整数であり、
‐ λは、半導体層が吸収性を有する波長であり、
‐ nは、半導体層の屈折率であり、
‐ nは、周期格子及びミラーが中に形成されている層の屈折率であり、
‐ nsubstratは、半導体吸収層が上に形成されている媒体の屈折率である。
【0020】
言い換えると、本発明は、ミラーと、吸収層内において放射の共鳴回折を生じさせる回折格子との特定の組み合わせを備える。特に、エバネセント回折次数は、格子の近傍にエネルギーを蓄えて、格子に直接接触していない隣接の吸収層によって吸収され得る。これらの次数は、吸収層に入射する時に再び伝播性になる。また、エネルギーの一部も金属によって吸収されるが、これは、特に金、銀、アルミニウム等の貴金属が格子用に選択された場合には、少量である。一方、ミラーは、入射放射の方向に回折されたフラックスの一部を吸収層に向けて反射する。
【0021】
特に、本発明によって、略80%の量子効率を得ることができて、また、4μmの波長に対して厚さ50nmの格子を有する薄層検出器においてもこのようにすることができる。より一般的には、本発明は、赤外線の波長に関係なく、100nm以下の典型的な厚さの薄い金属パターンの周期格子を実現することを可能にする。同じ波長においてよくても500nmの厚さを要する従来技術とは対照的であり、つまり、構造の厚さに関して、5倍、更には10倍の利得がある。
【0022】
従って、特に非常に高い量子効率を達成することは別にして、本発明は、その厚さが検出される放射の波長に強く結び付くことなく、構造設計の利点を一般的な方法で享受することを可能にする。
【0023】
更に重要なのは、他の特徴部上に実質的な厚さ(例えば格子と半導体層との間の距離)の金属構造を製造することの難しさを有さないことである。
【0024】
実際、本発明は、格子の薄さに起因して単純なプレーナ技術を使用することができる。従って、本発明の構造は、例えば“リフトオフ”法によって、厚すぎる樹脂を用いずに製造するのが簡単であり、又は、吸収層が設定される波長の大きさのオーダの厚さをエッチングすることなくエッチングによって製造するのが簡単である。更に、ミラーの製造は、平坦化ステップを要しない。何故ならば、その設計は、空間層を堆積させる際に転写される構造に耐性があるからである。更に、ミラーは、完全に平坦であろうとナノ構造化されていようと、光学的には同じ挙動を示す。
【0025】
厚さが検出される波長に依存しない構造設計を有することによってもたらされる可能性は別にして、本発明は、以下のような他の実質的な利点も有する:
・ 1/5≦f≦3/4(fは格子のフィルファクタ)の場合に、一次元格子であっても、TM偏光及びTE偏光の両方に対する量子効率の増強。本発明は、両方の偏光において動作するために格子の二重周期を必要としない;
・ 吸収層を格子から離隔する距離や、格子をミラーから離隔する距離における幾何学的な変動(特に格子のフィルファクタに関して)に対するロバスト性。従って、異なる波長に対して敏感な画素のマトリクス(多重スペクトル検出)の単純化された製造が考えられる;
・ 半導体層を構造化する必要がない;
・ 層の厚さではなくて、格子の横方向寸法(この場合主に格子のピッチ)によって共鳴(つまり、吸収増強)波長を調整することも可能にするこの構造の使用。これは、異なる波長に対して敏感な画素のマトリクス(多重スペクトル検出)の形成の促進を可能にする。
【0026】
従って、本発明に係る構造は、量子効率の損失無く、従来技術よりも小さなアクティブボリュームで動作することを可能にするので、より僅かなダークノイズしか得られないことや、あまり低くない温度で動作することを可能にし、又は検出器が従来よりも高い周波数で動作することを可能にする。また、金属層の側部構造(この場合画素化された検出器)によって、スペクトル又は偏光フィルタリング機能を果たすこともできる。
【0027】
この構造は、Hg1−xCdTe(テルル化水銀カドミウム、MCT(Mercury Cadmium Telluride)と略称する)製の検出器の技術的生産についての標準的な製造方法に適合する。これは、カドミウムの割合xに応じて近赤外線から遠赤外線までの放射の検出用に設計されて、薄い金属構造設計のみを含むという利点を有していて、従来技術の、赤外線放射(特に遠赤外線)に適用するのが難しかったかなりの厚さの金属構造に基づいた解決策とは異なる。
【0028】
本発明の好ましい使用においては、半導体層は、500ナノメートル以下の厚さを有し、好ましくは50ナノメートル以上の厚さである。言い換えると、量子効率の実質的な増強は、薄い吸収層から非常に薄い吸収層に対しても得られる。
【0029】
本発明の一実施形態によると、金属パターンの周期格子は、以下の関係を満たすように設計される:
【数2】

ここで、pは格子のピッチである。
【0030】
上述のように、距離d、高さh、屈折率n、n、nsubstratに対して課される上記関係の効果は、共鳴回折現象による量子効率の増強である。しかしながら、関係する電磁気現象の複雑性によって、共鳴ピークが波長λにあることが保証されない場合がある。周期pに課される関係の効果は、波長λに対して実質的に回折する共鳴現象のピークを設定することである。特筆すべきことに、本発明の構造は、半導体吸収層によって吸収される波長範囲内における共鳴回折の位置を決める実際の自由度を有する。
【0031】
特定の実施形態によると、半導体層は、500ナノメートル以下であって、好ましくは50ナノメートル以上の厚さを有する。
【0032】
本発明の一実施形態によると、半導体層の厚さtは、t≦λ/(3×Im(n))を満たす。これは、放射が、半導体層を初めて通過したときにその半導体層によって完全に吸収されずに、格子の影響を受けることを保証する。
【0033】
本発明の一実施形態によると、ミラーと周期格子との間の距離は、λ/(4×Re(n))又はこの値の奇数倍に実質的に等しい。このようにして、吸収層内の放射の強め合う干渉が促進されて、量子効率を更に増強する。
【0034】
本発明の代替実施形態によると、周期格子は一次元であり、特に金属バーによって構成される。有利には、周期格子のフィルファクタfは、関係式1/5≦f≦3/4を満たす。
【0035】
本発明の他の代替実施形態によると、格子は二次元であり、特に孔又はパッドによって構成される。言い換えると、本発明は、90°回転に対して不変の幾何学的形状に対してTM偏光及びTE偏光において同一の方法(例えば、正方形のメッシュでの円形又は正方形の孔の格子)で、又は、90°回転に対して不変の幾何学的形状に対して両方の偏光において大きく異なる方法(例えば、矩形のメッシュでの円形又は正方形の孔の格子や、正方形のメッシュでの矩形の孔の格子等)で、その量子効率の増強効果を生じさせる。言い換えると、二次元格子の使用は、偏光応答の制御性を増大させる。
【0036】
本発明の代替実施形態によると、ミラーは金属であり、周期格子に面するミラーの一方の表面がテクスチャ化される。特に、ミラーは、関係式e≦λ/(10×Re(n))を満たす厚さeにわたってテクスチャ化される。
【0037】
より具体的には、周期格子及び/又はミラーは、低光学損失の金属(特に、銀、金、銅、又はアルミニウム)製であり、格子及びミラーを構成する金属によって吸収されるエネルギーを最小化する。
【0038】
本発明の他の代替例によると、ミラーは、放射を吸収しないという利点を有するブラッグミラーである。特に、ブラッグミラーは、少なくとも一つの1/4波長二重層を含み、例えば、厚さλ/(4×Re(nGe))のゲルマニウム層と、厚さλ/(4×Re(nZnS))の硫化亜鉛によって構成されて、ここで、nGe、nZnSは、それぞれゲルマニウムの屈折率と、硫化亜鉛の屈折率である。
【0039】
本発明の一実施形態によると、検出される放射は赤外線放射であり、周期格子の厚さは100nm以下である。
【0040】
本発明の一実施形態によると、半導体吸収層は、CdHgTe、InGaAs、及びSb、InSb、SiGe又はGeを含むIII‐IV三元半導体から成る群から選択された半導体によって構成される。
【0041】
本発明の一実施形態によると、周期格子と吸収半導体層との間の距離dはゼロであって、格子が半導体層の上に位置する。これによって、収集電極として機能する格子自体によって生成された光電荷キャリアの電気収集が可能になる。この構成によってもたらされる利点は、光検出器の速度の増加である。何故ならば、光電荷キャリアが、収集される前に長距離にわたって拡散する必要が無いからである。
【0042】
本発明の他の実施形態によると、検出器は、
・ 半導体吸収層内に形成されて、半導体吸収層の導電性とは逆の導電性を有する半導体領域と、
・ 半導体吸収層内に生成された光電荷キャリアの収集のために半導体層と接触して配置されたメタライゼーションとを含む収集ダイオードを備える。
【0043】
一代替例によると、周期格子、ミラー及びメタライゼーションは短絡している。
【0044】
他の代替例によると、周期格子及びミラーが短絡していて、メタライゼーションから電気的に絶縁されている。
【0045】
他の代替例によると、周期格子、ミラー及び半導体吸収層が短絡していて、周期格子及びミラーがメタライゼーションから電気的に絶縁されている。
【0046】
他の代替例によると、ミラー及びメタライゼーションが短絡していて、周期格子から電気的に絶縁されている。特に、周期格子及び半導体吸収層が短絡していて、メタライゼーションから電気的に絶縁されている。
【0047】
一代替例によると、メタライゼーションは、接触せずに、ミラー及び周期格子を貫通する。
【0048】
本発明は、同一の参照符号が同一の要素を指称する添付図面を参照して単に例示目的で与えられる以下の説明を読むことによって、より良く理解されるものである。
【図面の簡単な説明】
【0049】
【図1】後方にミラーを含む本発明に係る検出器の概略的な断面図である。
【図2】図1の検出器の一実施形態例の吸収曲線、透過曲線、反射曲線のグラフである。
【図3】TM偏光及びTE偏光用の検出器の実施形態例の量子効率のグラフである。
【図4】テクスチャ化後方ミラーを備えた図1の検出器の代替実施形態の概略的な断面図である。
【図5】ブラッグミラー型の後方ミラーを備えた図1の検出器の代替実施形態の概略的な断面図である。
【図6】収集ダイオードを含む本発明の検出器の概略的な平面図である。
【図7】図6の検出器のA‐A軸に沿った概略的な断面図である。
【図8】図7の検出器のB‐B軸に沿った概略的な断面図である。
【図9】本発明の一代替例に係る検出器の概略的な平面図である。
【図10】図9の検出器のC‐C軸に沿った概略的な断面図である。
【図11】図9の検出器のD‐D軸に沿った概略的な断面図である。
【図12】本発明に係る検出器の製造方法を示す概略的な断面図である。
【図13】周期パターンの周期格子と半導体吸収層との間の距離の多様な値の関数として、本発明の検出器の吸収応答を示すグラフである。
【図14】半導体吸収層の厚さの多様な値の関数として、本発明の検出器の吸収応答を示すグラフである。
【発明を実施するための形態】
【0050】
図1を参照すると、本発明に係る裏面照射型検出器10は、以下のものを含む:
・ 検出される波長範囲内の入射放射に対して透明又は部分的に透明で、屈折率nsubstratの媒体12。媒体12はこの例では基板(例えばCdZnTe製)である。代替例では、媒体は空気層であり、層14は例えば基板上に懸架される;
・ 基板12上に形成されて、放射を吸収して電子正孔対を生成する半導体吸収層14。この層14は、対象波長範囲の特定の波長λ(吸収はこの波長λに対して最大)を吸収するように選択されて、屈折率nを有する。例えば、層14は、CdHgTe、InGaAs、及びSb、InSb、SiGe又はGeを含むIII‐IV三元半導体を有する群から選択された半導体を備える。例えば、層14はHgCdTeを備え、そのCd組成指数は、波長λにおける吸収を許容する。層14の厚さtは、検出される放射の一部を通過させるように更に選択される;
・ 対象放射に対して透明又は部分的に透明で、電気絶縁性で、吸収層14上に形成されて、屈折率nの層16。
【0051】
層16は、以下のものを備える:
・ 吸収層14から距離dに配置された一次元パターンの周期格子18。ピッチpでフィルファクタfの周期格子18は、例えば、矩形断面で幅lの平行金属バー20によって構成される。格子18のフィルファクタfは、この例ではf=l/pに等しい。格子の厚さは、共鳴現象及び吸収波長に依存しないので、薄く選択されて、典型的には100ナノメートル以下である。格子18の幾何学的形状、特にピッチpは、共鳴波長を制御する機能を果たす;
・ 周期格子18の上方の距離hに配置された平面金属ミラー22。
【0052】
更に、周期格子18及びミラー22は以下の関係を満たす:
【数3】

ここで、mは正又はゼロの整数である。
【0053】
上述のように、このような構成は、半導体吸収層14の共鳴回折を起こす機能を果たし、その効果は、特に、検出器10の量子効率を実質的に増強させるものである。
【0054】
好ましくは、周期格子と半導体層14との間の距離dは、関係式d<λ/(4×Re(n))を満たす。このようにして、周期格子18近傍の局所電場が、半導体層14内により深く侵入して、量子効率を更に増強する。
【0055】
好ましくは、半導体層14の厚さは、関係式t≦λ/(3×Im(n))を満たす。ここで、Imは虚部を指称する。これは、放射が、半導体層14を初めて通過するときにその半導体14によって完全に吸収されずに、周期格子18の影響を受けることを保証する。
【0056】
好ましくは、ミラー22と周期格子18との間の距離hは、λ/(4×Re(n))、又はこの値の奇数倍に実質的に等しい。このようにして、半導体吸収層14の放射の強め合う干渉が促進されて、量子効率を更に増強する。
【0057】
好ましくは、周期格子18のフィルファクタfは、強力な回折を促進するように50%近くである。
【0058】
好ましくは、フィルファクタfは、関係式1/5≦f≦3/4を満たし、周期格子18が一次元の状況であってもTM偏光及びTE偏光の両方に対して量子効率の増強を可能にする。
【0059】
好ましくは、周期格子18及び金属ミラー22は、低光学損失の金属、例えば銀、金、銅、アルミニウム、又はこれらの合金製であり、格子18及びミラー22を構成する金属によって吸収されるエネルギーを最小化する機能を果たす。有利には、格子18及びミラー22は、例えばTiの下塗り薄膜も含み、周期格子18及びミラー22の金属のその後の堆積を促進する。
【0060】
以下、図2及び図3を参照して、中赤外線範囲(3〜5μm)の放射を吸収するための第一の実施形態に係る検出器の性能について説明する。
【0061】
本実施形態では、基板12はCdZnTe製であり、半導体吸収層14は、中赤外線の吸収用にCdHgTe製である。層14のMCTのCd組成指数は0.3に等しくて、波長λが3から5μm悪くても4μmの間にあるようにする。半導体層14の厚さは、λ/(3×Im(n))以下であり、この例では300ナノメートルの厚さである。
【0062】
周期格子18及びミラー22が形成される層16は、ZnSによって構成されて、Au製の周期格子18は、MCT層14から50ナノメートルの距離d、つまり略λ/(40×Re(n))の距離dに配置される。一方、ミラー22もAu製であり、周期格子18から500ナノメートルの距離h、つまり略λ/(4×Re(n))の距離hに配置される。
【0063】
更に、周期格子18のピッチpは1.45μm、つまり略1.25×λ/nの値であり、金属バー20の幅lは500ナノメートルに等しくて、格子18のフィルファクタfが34%に等しくなる。
【0064】
最後に、動作時に、検出器は77Kの温度に冷却される。
【0065】
図2は、あらゆる光生成電荷キャリアが収集されると仮定して、3〜5μmの波長範囲内における、この検出器の吸収応答(曲線“A”)、反射応答(曲線“R”)、及び透過応答(曲線“T”)を示す。図3は、TM偏光及びTE偏光に対する同じ範囲内での量子効率を示す。
【0066】
気付かれるように、本発明の検出器は、入射放射の偏光がどうであろうと、80%以上の最大量子効率を有する。残りのうち10%は、構造の金属素子によって吸収され、最後の10%は反射される。
【0067】
従来技術の場合のように、格子及びミラーを単純な平面金属ミラーに置換すると、そのミラーからアクティブ層14の距離がどうであろうと、その結果はわずか30%の量子効率になることに留意されたい。
【0068】
平面金属ミラー22に適合した検出器について説明してきた。代替例として、図4に示されるように、平面金属ミラー22が、例えば周期格子18のパターンと相補的なパターンを有するテクスチャ化金属ミラー32に置換される。例えば、金属バー22は、ミラー32に設けられた同じ表面の凹部に向き合う。
【0069】
代替例として、図5に示されるように、平面金属ミラー22が、例えば三つの二重層44、46、48で形成されたブラッグミラー42に置換されて、三つの二重層44、46、48の各々は、厚さλ/(4×Re(nGe))のゲルマニウム層と、厚さλ/(4×Re(nZnS))のZnS層によって構成されて、ここで、nGe、nZnSはそれぞれ、ゲルマニウムの屈折率と、硫化亜鉛の屈折率である。
【0070】
図6は、本発明に係る検出器60の概略的な平面図である。図7及び図8は、それぞれA‐A軸、B‐B軸に沿ったその検出器の概略的な断面図である。検出器60は収集ダイオード62を備える。収集ダイオード62は、PN接合を形成するように例えばp型ドープの吸収層14の導電性と逆の導電性の例えばn型ドープの半導体領域64と、例えば切頭円錐型のメタライゼーション66を備え、そのメタライゼーション66は、層16を貫通して、光電荷キャリアの収集用に半導体領域64に接触している。
【0071】
後方ミラー68は、上述の理由のために好ましくはテクスチャ化されて、例えば波形となり、メタライゼーション66用の開口70を備えて、ミラー68とメタライゼーション66との間の短絡を防止する。同様に、周期格子18も、メタライゼーション66用の開口74を備えて、その間の短絡を防止する。
【0072】
有利には、メタライゼーション66はミラー68と同じ金属で設けられて、これは、これら二つの素子が同時に製造可能であることを意味する。
【0073】
更に、メタライゼーション66、ミラー68、周期格子18、半導体層14は、それぞれコンタクト75、76、77、78を含んで、異なる電位にすることができて、特に、メタライゼーション66に対して第一の電位V、ミラー68に対して第二の電位V、格子18に対して第三の電位V、半導体層14に対して接地電位に等しい第四の電位Vである。図8に示されるように、周期格子18のパターンは互いに電気的に接続されて、同じ電位Vになるようにされている。例えば、そのパターンが上述のような平行金属バー20の場合、バー20は、コンタクト77を備えた金属フレーム79内に含まれる。
【0074】
光電荷キャリアは、以下のように収集ダイオード62を介して収集される。
【0075】
コンタクト75と78の間に印加される電位差は、半導体層14と半導体領域64の間のコンタクトによって形成された空間電荷領域における電位降下を誘起する。従って、収集ダイオード62は、僅かな逆電圧バイアスを有する。大抵は周期格子18の下で生成される光電荷キャリアは、空間電荷領域まで拡散して、メタライゼーション66を用いて収集される。
【0076】
更に、金属ミラー68、絶縁層16及び半導体層14を組み合わせて、また、金属格子18、絶縁層16及び半導体層16を組み合わせることによって、二つの金属‐絶縁体‐半導体キャパシタが形成される。従って、コンタクト76と78の間に印加される電位差と、コンタクト77と78の間に印加される電位差とは、各々で又は組み合わさって、半導体層14に生成された光電荷キャリアの分布を電界効果で変調させて、ノイズを低減し、電荷収集の効率を高める。
【0077】
例えばp型ドープ半導体層14の場合、コンタクト76と78の間及び/又はコンタクト77と78の間に上述の金属‐絶縁体‐半導体スタックのフラットバンド電圧とは異なる電位差を印加することによって、局在化した空乏層を、半導体層14内において、その半導体層14と層16との間の界面の真下に形成することができる。従って、この空乏領域は、光電荷キャリアに対してその界面をマスキングすることによって、半導体層14の中心よりもこの点においてより多くの電気不良があることに鑑み、その界面下における局所的な電子正孔再結合の可能性を低下させる。
【0078】
検出器60の好ましい電気分極構成は複数存在する:
1)ミラー68、格子18及びメタライゼーション66が短絡している、つまり電気的に接続されている構成:これら三つの素子の電位V=V=Vは、光電荷キャリアの収集に関するCdHgTe検出器の従来技術の動作に従って、収集ダイオード62のバイアス電圧V−Vを決める機能を果たす;
2)ミラー68及び格子18が短絡していてメタライゼーション66から電気的に絶縁されている構成:ミラー68及び格子18の電位V=Vは、静電ガードとして機能して、半導体層14の上部界面の電気マスキング効果の上述の利点を有し、収集ダイオード62のバイアスはV−Vである;
3)ミラー68、格子18及び半導体層14が例えば接地に短絡されていて、ミラー68及び格子18がメタライゼーション66から電気的に絶縁されている構成:これら三つの素子は同じ電位V=V=Vとされて、収集ダイオード62は、電気収集に関するCdHgTe検出器の従来技術の動作に従って、電圧バイアスV−Vを有する。このような構成の利点は、半導体層と金属部分18、68の間の近傍に発生する寄生キャパシタンスの制限である。
【0079】
図9は、本発明の一代替例に係る検出器90の概略的な平面図である。図10及び図11は、それぞれC‐C軸、D‐D軸に沿ったその検出器の概略的な断面図である。
【0080】
検出器90は、メタライゼーション66及びミラー68が単一の構成要素を形成し、アパーチャ70が存在しない点において、上述の検出器60と異なる。従って、メタライゼーション66及びミラー68は、コンタクト75によって同じ電位Vにされて、コンタクト76が省略される。
【0081】
従って、半導体層14を介する非吸収光子の漏れが防止されて、吸収の量子効率を増強する機能を果たす。実際、上記検出器60においては、メタライゼーション66とミラー68との間のギャップは、例えばリソグラフィ法によって検出器を作製するのに用いられる技術的プロセスの横方向解像度以上でなければならない。このギャップは、低コストUVリソグラフィ技術にとって、例えば1マイクロメートルであり、僅かなものでなくなり得る。検出器90のこの構成は、開口70が存在しないので実施がより単純であるという追加の利点を有する。アパーチャ70によって可能とされるコンタクト75に対してコンタクト76に異なる電位を印加することを可能にする検出器60の構成の利点は、コンタクト76によって印加される電位が、検出器90の構成とは異なり、コンタクト77を介して格子によって印加される電位よりもより空間的に均一なものであることである。
【0082】
光電荷キャリアは、検出器60に関して上述したのと同様に、検出器90の収集ダイオード62を介して収集されるが、ミラー68を介する独立的なゲート電圧を印加することができない点が異なり、光生成電荷の分布は、格子18に印加される電位のみによって決められる。検出器60と同様に、以下の構成が検出器90に適用可能である:
1)格子18及びメタライゼーション(従ってミラー68も)が短絡している構成:これら三つの素子の電位V=V=Vは、光電荷キャリアの収集に関するCdHgTe検出器の従来技術の動作に従って、収集ダイオード62のバイアス電圧V−Vを定める機能を果たす;
2)格子18及びメタライゼーション66が絶縁されている構成:格子18の電位Vは静電ガードとして機能して、半導体層14の上部界面の電気マスキング効果の上述の利点を有し、収集ダイオード62のバイアスはV−Vである;
3)格子18及び半導体層14が例えば接地に短絡されて、格子18がメタライゼーション66から電気的に絶縁されている構成:これら二つの素子は同じ電位V=Vにされて、収集ダイオード62は、電気収集に関するCdHgTe検出器の従来技術の動作に従って、V−Vにバイアスされる。このような構成の利点は、半導体層14と金属部分18、68との間の近傍に発生する寄生キャパシタンスの制限である。このキャパシタンスの制限は、検出器60の構成のよりも小さい。何故ならば、寄生キャパシタンスは、格子18とミラー68との間に存在するからである。しかしながら、格子18とミラー68との間の厚さを格子18と半導体層14との間の厚さの略10倍大きくなるように構造の寸法決めをすると、このキャパシタンスは上記1)の構成のものよりも小さくなる。
【0083】
半導体層14に生じた光電荷キャリアを収集するために収集ダイオードが設けられた実施形態について説明してきた。
【0084】
収集ダイオード62が設けられない代替例では、又は、収集ダイオード62に対する相補的な方法では、周期格子18が、半導体吸収層と接触する(d=0)ように形成されることによって、収集電極として用いられる。この構成の利点は、検出器の速度の上昇である。何故ならば、光電荷キャリアが、収集される前に長距離にわたって拡散する必要がないからである。実際、半導体吸収層14のあらゆる点が、格子18の金属パターンのうちの一つの近くにあることによって、光電荷キャリアが生成される箇所とそれが収集される箇所との間の距離が最小化される。
【0085】
周期格子が一次元である検出器について説明してきた。このような格子は、入射放射の偏光がどのようなものであれ、量子効率を増強する。しかしながら、図3に示されるように、スペクトル応答は、各偏光に対して厳密に同一ではない。偏光に敏感ではない検出器を作製するためには、又は、各偏光の応答に対する独立的な制御を得るためには、周期格子が二次元であることが有利であり、二つの直交方向に周期性を有する。例えば、周期格子18が、層16内に形成された正方形又は円形の金属パッドの形状の正方形メッシュ格子に置換されて、又は、層16内に配置されて、正方形メッシュ内の正方形又は円形開口でドリル加工された薄い金属膜に置換される。
【0086】
金属パッドの二重周期格子の場合、パッドの電位は浮遊である。図6、図7及び図8で説明された電位構成のおかげで、収集ダイオード62を介する収集に用いられる電位差と、半導体層14内の光生成電荷の分布を修正するのに用いられる電位差とを独立的に制御することができる。
【0087】
対照的に、金属開口の二重周期格子の場合には、金属格子18の電気的連続性が存在し、図6から図11で説明される手順が適用可能である。
【0088】
こうした二次元周期格子に関する寸法及び距離は、構造の幅以外については、ラインのネットワークの格子18のものと同じである。幅に関しては、p/4≦l≦pとなり、幅lは、正方形の薄いパッドの格子の場合にはパッドの幅であり、薄い金属膜の孔の格子の場合には二つの孔の間の金属空間の幅である。
【0089】
以下、本発明の検出器(例えば図4のもの)の製造方法を、図12Aから図12Gを参照して説明する。
【0090】
本製造方法は、基板12(例えばCdZeTe製)上に、対象入射放射を吸収する半導体層(例えば、厚さ300ナノメートルのMCT層等)を成長させることで始まる(図12A)。
【0091】
そして、本方法は、保護層80(例えば厚さ50ナノメートルのZnS製)を堆積させることに続く(図12B)。そして、電子又は光学樹脂層を、保護層80の上に堆積させて、電子又は紫外線リソグラフィを行って、数百ナノメートル(例えば500ナノメートル)の厚さでパターン82を分離する(図12C)。
【0092】
樹脂を現像した後に、金属84(例えばAu)の“リフトオフ”ステップを行って、周期格子を形成する(図12D)。更に、金属84の厚さは、薄く(例えば50ナノメートル)選択されて、この“リフトオフ”ステップの成功を大幅に促進する。これは、特に、“キャップ”型の欠陥の形成が防止されることを意味する。
【0093】
そして、パターン82をコーティングする金属84を残留樹脂82と共に、例えばアセトン等の溶剤で除去して、周期格子18のみを残す(図12E)。
【0094】
そして、本方法は、半導体吸収層14の屈折率よりも低い屈折率を有する物質86を用いて、厚さhにわたって周期格子18を封止することに続き、格子とミラーとの間に適切な間隔を与える。
【0095】
この物質は、例えば厚さ500ナノメートルのZnSであり得る。しかしながら、他の物質も使用可能である。そして、パターン88が、例えばカソードスパッタリングによって、周期格子18のパターン20の上方に形成される(図12F)。
【0096】
例えば厚さ10nmのTi下塗り層、続いて厚さ150nmのAu層を堆積させることによって、ミラー32を堆積させる。金は、この最後の層を通る光の透過を防止するのに十分な厚さのものである(図12G)。
【0097】
従って、ミラー32が、周期格子18と同じ周期で構造化されて、その反復パターンの形状は、層の特性、及び周期格子18上に層を堆積させる方法に依存する。特に、ミラー32のテクスチャ化パターンの厚さeは、周期格子18の厚さ以下であって、0とλ/(10×Re(n))の間であり、例えば、100nmの厚さの周期格子18に対して略100nmである。
【0098】
図2及び図3を参照して、高い量子効率を優先する実施形態について説明してきた。応用によっては、吸収ピークの幅が不十分であると考えられ得る。
【0099】
代替実施形態として、半導体層14と格子18との間の距離dを減少させて、このピークの幅を増大させることができる。
【0100】
図13は、厚さ400nmのMCT半導体層14と、1.45μmのピッチp、500nmの幅l、50nmの厚さを有し、500nmの距離hによってミラー22から離隔されている一次元周期格子18に対する距離dの多様な値の関数として、吸収応答を示す。
【0101】
この実施形態例では、距離dは、10nm(最も広いピーク)から300nm(最も狭いピーク)まで変化する。気付かれるように、dが増大すると、吸収ピークの幅が増大する。
【0102】
代替例として、又は相補的な方法において、半導体層14の厚さtを変化させることによっても吸収ピークの幅を制御することができるが、背景強度、つまり共鳴ピークの外側の吸収レベルの上昇を伴う。
【0103】
図14は、1.45μmのピッチp、500nmの幅l、50nmの厚さを有し、500nmの距離hによってミラー22から離隔され、50nmの距離dによって層14から離隔された一次元周期格子18について、半導体層14の厚さtの多様な値の関数として、吸収応答を示す。
【0104】
この実施形態例では、層14の厚さtは100nm(左側のピーク、非常に低い)から1000nm(右側のピーク)までのものである。
【0105】
図8及び図9に示される二つの場合において、良好な共鳴効率、具体的には60%以上の吸収が保たれている。
【符号の説明】
【0106】
10 裏面照射型検出器
12 基板(空気層)
14 半導体吸収層
16 絶縁層
18 周期格子
20 金属バー
22 ミラー

【特許請求の範囲】
【請求項1】
所定の波長付近の電磁放射の検出用の裏面照射型検出器であって、
前記電磁放射の吸収用の半導体吸収層(14)であって、前記電磁放射に対して少なくとも部分的に透明な媒体の上方に形成されていて、前記電磁放射の少なくとも一部を透過させる厚さを有する半導体吸収層(14)と、
受光した放射を反射するように前記半導体吸収層(14)の上方に配置されたミラー(22、32、42、68)とを含み、
前記ミラー(22、32、42、68)と前記半導体吸収層(14)との間に配置された金属パターン(20)の周期格子(18)を備え、
前記ミラー(22、32、42、68)及び前記周期格子(18)が、前記電磁放射に対して少なくとも透明な物質層(16)であって、前記半導体吸収層(14)の上に形成された物質層(16)の中に含まれていて、
前記ミラー(22、32、42、68)及び前記金属パターンの周期格子(18)が、
【数1】

を満たすように設計されていて、
Reが、実部を指称し、
dが、前記半導体吸収層(14)と前記周期格子(18)との間の距離であり、
hが、前記ミラー(22、32、42、68)と前記周期格子(18)との間の距離であり、
mが、正又はゼロの整数であり、
λが、前記半導体吸収層(14)が吸収性を示す波長であり、
が、前記半導体吸収層(14)の屈折率であり、
が、前記周期格子(18)及び前記ミラー(22、32、42,68)が中に形成されている物質層(16)の屈折率であり、
substratが、前記半導体吸収層(14)が上方に形成されている前記媒体(12)の屈折率である、電磁放射の検出用の裏面照射型検出器。
【請求項2】
前記金属パターンの周期格子(18)が、
【数2】

を満たすように設計されていて、
pが前記周期格子(18)のピッチである、請求項1に記載の電磁放射の検出用の裏面照射型検出器。
【請求項3】
前記半導体吸収層(14)が、500ナノメートル以下であって、好ましくは50ナノメートル以上の厚さを有する、請求項1又は2に記載の電磁放射の検出用の裏面照射型検出器。
【請求項4】
前記半導体吸収層(14)の厚さが、t≦λ/(3×Im(n))を満たし、tが前記半導体吸収層(14)の厚さであり、Imが虚部を指称する、請求項1から3のいずれか一項に記載の電磁放射の検出用の裏面照射型検出器。
【請求項5】
前記ミラー(22、32、42、68)と前記周期格子(18)との間の距離が、λ/(4×Re(n))又はこの値の奇数倍に実質的に等しい、請求項1から4のいずれか一項に記載の電磁放射の検出用の裏面照射型検出器。
【請求項6】
前記周期格子(18)が一次元であり、特に金属バー(20)によって構成されている、請求項1から5のいずれか一項に記載の電磁放射の検出用の裏面照射型検出器。
【請求項7】
前記周期格子(18)のフィルファクタfが1/5≦f≦3/4を満たす、請求項6に記載の電磁放射の検出用の裏面照射型検出器。
【請求項8】
前記周期格子が二次元であり、特に孔又はパッドによって構成されている、請求項1から5のいずれか一項に記載の電磁放射の検出用の裏面照射型検出器。
【請求項9】
前記ミラー(32)が金属であり、前記周期格子(18)に対向する前記ミラー(32)の一方の表面がテクスチャ化されている、請求項1から8のいずれか一項に記載の電磁放射の検出用の裏面照射型検出器。
【請求項10】
前記ミラー(32)が、e≦λ/(10×Re(n))を満たす厚さeにわたってテクスチャ化されている、請求項9に記載の電磁放射の検出用の裏面照射型検出器。
【請求項11】
前記周期格子(18)及び/又は前記ミラー(22、32、68)が、低光学損失の金属製であり、特に銀、金、銅、又はアルミニウム製である、請求項1から10のいずれか一項に記載の電磁放射の検出用の裏面照射型検出器。
【請求項12】
前記ミラー(42)がブラッグミラーである、請求項1から8のいずれか一項に記載の電磁放射の検出用の裏面照射型検出器。
【請求項13】
前記ブラッグミラー(42)が、特に厚さλ/(4×Re(nGe))のゲルマニウム層と、厚さλ/(4×Re(nZnS))の硫化亜鉛層とを備えた少なくとも一つの1/4波長二重層(44、46、48)を含み、nGeがゲルマニウムの屈折率であり、nZnSが硫化亜鉛の屈折率である、請求項12に記載の電磁放射の検出用の裏面照射型検出器。
【請求項14】
検出される放射が赤外線放射であり、前記周期格子(18)の厚さが100nm以下である、請求項1から13のいずれか一項に記載の電磁放射の検出用の裏面照射型検出器。
【請求項15】
前記半導体吸収層(14)が、CdHgTe、InGaAs、及びSb、InSb、SiGe又はGeを含むIII‐IV三元半導体を有する群から選択された半導体を備える、請求項1から14のいずれか一項に記載の電磁放射の検出用の裏面照射型検出器。
【請求項16】
前記半導体吸収層(14)と前記周期格子(18)との間の距離dがゼロであり、前記周期格子(18)が、前記半導体吸収層(14)内に生成された光電荷キャリアを収集するための電極を構成している、請求項1から15のいずれか一項に記載の電磁放射の検出用の裏面照射型検出器。
【請求項17】
収集ダイオード(62)を更に備え、該収集ダイオード(62)が、
前記半導体吸収層(14)内に形成された半導体領域(64)であって、前記半導体吸収層(14)の導電性と逆の導電性を有する半導体領域(64)と、
前記半導体吸収層(14)内に生成された光電荷キャリアを収集するために前記半導体領域(64)と接触して配置されたメタライゼーション(66)とを含む、請求項1から15のいずれか一項に記載の電磁放射の検出用の裏面照射型検出器。
【請求項18】
前記周期格子(18)、前記ミラー(68)及び前記メタライゼーション(66)が短絡している、請求項17に記載の電磁放射の検出用の裏面照射型検出器。
【請求項19】
前記周期格子(18)及び前記ミラー(68)が、短絡していて、前記メタライゼーション(66)から電気的に絶縁されている、請求項17に記載の電磁放射の検出用の裏面照射型検出器。
【請求項20】
前記周期格子(18)、前記ミラー(68)及び前記半導体吸収層(14)が短絡していて、前記周期格子(18)及び前記ミラー(68)が前記メタライゼーション(66)から電気的に絶縁されている、請求項17に記載の電磁放射の検出用の裏面照射型検出器。
【請求項21】
前記ミラー(68)及び前記メタライゼーション(66)が、短絡していて、前記周期格子(18)から電気的に絶縁されている、請求項17に記載の電磁放射の検出用の裏面照射型検出器。
【請求項22】
前記周期格子(18)及び前記半導体吸収層(14)が、短絡していて、前記メタライゼーション(66)から電気的に絶縁されている、請求項21に記載の電磁放射の検出用の裏面照射型検出器。
【請求項23】
前記メタライゼーション(66)が、接触せずに前記ミラー(68)及び前記周期格子(18)を貫通している、請求項17に記載の電磁放射の検出用の裏面照射型検出器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2012−151452(P2012−151452A)
【公開日】平成24年8月9日(2012.8.9)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−276876(P2011−276876)
【出願日】平成23年12月19日(2011.12.19)
【出願人】(502124444)コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ (383)
【Fターム(参考)】