説明

複合膜とその製造方法

【課題】 均一で欠陥や非結晶成分の極めて少ないゼオライト結晶膜からなる、高分離係数および高透過流束を有する分離膜、特に、パーベーパレーション法により、共沸混合物から所望の成分を分離するのに好適な複合膜を、高収率で簡便に提供すること及びこの複合膜を用いて共沸混合物から所望の成分を分離する方法を提供すること。
【解決手段】 ゼオライト微粒子60−90重量部、有機高分子10−40重量部からなる中空円筒状多孔質支持体の内表面あるいは外表面の少なくとも一方の表面に、多孔質支持体を形成するゼオライト微粒子と同種のゼオライト結晶膜が形成されていることを特徴とする中空円筒状複合膜。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分子ふるい機能を有するゼオライトの結晶からなる層が、中空円筒状の多孔質支持体上に形成された複合膜、その製造方法、およびその膜を用いて液体、気体、またはそれらの混合物から特定の成分をパーベーパレーション法により分離する方法に関する。
【背景技術】
【0002】
水および有機物が均一に混合した溶液から、水または有機物を選択的に分離する方法としては、蒸留による方法が広く使われている。一方、エタノール、イソプロパノール、ブタノール等は、水との混合により、一定濃度以上では共沸状態となるために、通常の蒸留法で分離することができず、ベンゼンのような有害なエントレーナーを使用した共沸蒸留法を用いる必要がある。しかしながら、共沸蒸留法は、このように有害な第3成分が必要となることに加えて、エネルギーコストも高くなるため、これに代わる分離方法が求められている。
【0003】
共沸蒸留法に代わる方法としては、圧力スイング吸着法(PSA法)が提案されている(特許文献1)。これは含水有機溶剤を親水性ゼオライトを入れた容器に注入し、昇圧過程で水分を吸着させた後に取り出し、その後減圧過程で吸着された水分を取り除き、再び含水有機溶剤を注入して水分を取り除くという工程を繰り返すことにより、所望の濃度にまで有機溶剤を濃縮するというものである。この方法は含水量が1重量%以下の有機溶剤からの脱水には有効であるが、含水量が多い有機溶剤から脱水する場合には上記の工程を繰り返し行う必要があるため、10重量%程度の含水量の有機溶剤からの脱水には有効ではない。
【0004】
このような状況から、共沸状態の含水有機溶剤からの水分の分離としてパーベーパレーションによる分離方法が注目されており、特にゼオライト膜を用いた分離膜が高い特性を示すことが知られている。その中でも親水性のA型ゼオライトの膜を用いたパーベーパレーションによる脱水では、温度75℃、エタノール90重量%の水溶液において、透過流束Q=2.15kg/mh、分離係数αが10000以上という、極めて高い分離性能が得られている(特許文献2参照)。
【0005】
中空円筒状の多孔質支持体上にゼオライト結晶からなる層を形成する製膜方法としては、多孔質支持体にゼオライトの種結晶を付与してから水熱合成により種を結晶成長させて製膜する方法(例えば、非特許文献1参照)、直接水熱合成によって結晶を成長させる方法(特許文献3)、ゼオライトの原料となるゲルを多孔質支持体上に塗布した後、スチーム処理によって製膜するドライゲル法(特許文献4)、等が挙げられる。これらの製膜法の中でも種結晶を支持体に付与してから水熱合成する、いわゆる種結晶法は欠陥の極めて少ない緻密なゼオライト結晶による膜を製膜する方法として、実用上特に有効である(特許文献2及び5)。
【0006】
しかしながら、種結晶法においては、種が成長して結晶膜となることから、種となる結晶を支持体上に均一に適切な量、付与することが重要な要素となり、種の支持体表面での分散状態が不均一であると欠陥の極めて少ないゼオライト結晶膜が得られず、高い分離性能が得られない。このため、同様の種結晶を用いた方法で製膜したA型ゼオライトであっても、特許文献1の脱水性能を再現しない報告が多くなされている(例えば、非特許文献2−4参照)。
【0007】
また工業的に実用化されている種結晶による製膜法であっても、種結晶の支持体表面への付与状態を制御することは容易ではない。例えば特許文献1では支持体に種を擦り付ける方法を用い、特許文献4では支持体を種分散液に浸漬することにより種結晶を付与させている。しかしながらこれらの方法を用いても、種の支持体への付与状態の制御は完全ではなく、水熱合成によって得られた膜に欠陥が存在したり、また種量が過剰な部分には非結晶成分が混在し分離機能が十分に発現されないなど、不良品の発生を十分に押さえることは実現されていない。
【0008】
さらに工業的に実用化されている製膜法では、アルミナ、ムライトなどの高温での焼成を必要とする高価な無機多孔質支持体を用いるため、得られるゼオライト膜も非常に高価なものとならざるを得ない。
このように、支持体表面に欠陥や非結晶成分の混在がなく、均一に製膜されたゼオライト結晶膜を、高い収率でかつ安価に得ることはこれまで容易ではなかった。
【0009】
【特許文献1】特開2000−334257号公報
【特許文献2】特開平7−185275号公報
【特許文献3】特開平6−99044号公報
【特許文献4】特開平7−89714号公報
【特許文献5】特開2004−82008号公報
【非特許文献1】Masakazu Kondo 他, ”Tubular-type pervaporation module with zeolite NaA membrane” J. Memb. Sci., 1997, 133, 133
【非特許文献2】M.P. Pina 他, ”A semi-continuous mthod for the synthesis of NaA zeolite membranes on tubular supports” J. Memb. Sci., 2004, 244, 141
【非特許文献3】F.T. de Bruijn 他, ”Influence of the support layer on the flux limitation in pervaporation” J. Memb. Sci., 2003, 223, 141
【非特許文献4】A. Huang 他, ”Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding” J. Memb. Sci., 2004, 245, 41
【発明の開示】
【発明が解決しようとする課題】
【0010】
本発明は、均一で欠陥や非結晶成分の極めて少ないゼオライト結晶膜からなる、高分離係数および高透過流束を有する分離膜、特に、パーベーパレーション法により、共沸混合物から所望の成分を分離するのに好適な複合膜を、高い収率で安価に提供することを目的とする。
また、本発明は、この複合膜を用いて混合液体、特に、共沸混合物から所望の成分を分離する方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
従来の種結晶法により支持体上にゼオライト結晶膜を形成する場合、支持体としては焼成による成形を必要とする高価な無機支持体を用い、擦りつけあるいは浸漬などの方法により、支持体表面に種を付与し、その後に水熱合成によりゼオライト結晶膜を製膜する。この際、種の付与が不均一であったり、付与量が不適切であると欠陥の極めて少ない結晶膜を得ることが出来ず、この結果、分離性能の低下や製膜収率の低下が生じると考えられる。
これに対し、本発明者らは、有機高分子とゼオライト微粒子よりなる中空円筒状の多孔質支持体を形成し、そこに新たに種を付与するという操作を行うことなく、水熱合成を施すことにより、極めて高い収率で、しかも簡便かつ安価に、結晶完全性の高いゼオライト結晶膜を有する複合膜を得られることを見出し、本発明を完成させるに至った。
すなわち、本発明は以下のとおりである。
【0012】
(1)ゼオライト微粒子60−90重量部、有機高分子10−40重量部からなる中空円筒状の多孔質支持体の内表面あるいは外表面の少なくとも一方の表面に、多孔質支持体を形成するゼオライト微粒子と同種のゼオライト緻密膜が形成されていることを特徴とする中空円筒状複合膜。
(2)ゼオライトはA型であり、有機高分子がポリスルホン、ポリエーテルスルホン、ポリビニリデンフロライドから選ばれることを特徴とする上記(1)記載の複合膜。
(3)前記中空円筒状多孔質支持体が湿式紡糸により得られる中空糸であることを特徴とする上記(1)又は(2)記載の中空円筒状複合膜。
(4)ゼオライト微粒子60−90重量部、有機高分子10−40重量部からなる中空円筒状多孔質支持体を、ゼオライトの原料を含む合成液に接触させ、水熱合成を施すことにより、中空円筒状多孔質支持体の内表面及び外表面の少なくとも一方の表面にゼオライト結晶層を形成することを特徴とする中空円筒状複合膜の製造方法。
(5)上記(1)〜(3)のいずれかに記載の複合膜を用いてパーベーパレーション法によって2種以上の液体の混合溶液から少なくとも1種の液体を分離する物質分離方法。
(6)混合溶液が水と有機物からなる上記(5)記載の物質分離方法。
【発明の効果】
【0013】
本発明は、均一で欠陥や非結晶成分の極めて少ないゼオライト結晶膜を、簡便に高い収率で安価に提供するものである。本発明の複合膜を用いると、多分野で、かつ、広範囲の用途において、分離係数および透過流束が高く、コンパクトで処理能力が高い分離用モジュールが可能となる。その結果、蒸留法に代わる、反応プロセス等から得られる混合物の経済的な分離が可能である。
特に、本発明の複合膜は、水と有機化合物とからなる共沸混合物からパーベーパレーション法によって選択的に所望の成分を分離するのに好適である。
【発明を実施するための最良の形態】
【0014】
以下に本発明を詳細に説明する。
本発明の複合膜は、有機高分子とゼオライト微粒子からなる中空円筒状の多孔質支持体の、外表面及び内表面の少なくとも一方の表面に、ゼオライト結晶層が形成された構造である。
ゼオライト結晶層は、多孔質支持体あるいは、多孔質支持体表面にゼオライト結晶の微粒子を付与したものを、ゼオライト結晶膜の原料となる合成液に接触させ、水熱合成を施すことにより形成する。多孔質支持体が有機高分子とゼオライト微粒子から形成されていることにより、欠陥の極めて少ないゼオライト結晶膜の形成が容易かつ高い収率で得られるのみならず、得られたゼオライト結晶膜を用いてパーベーパレーションによる分離を行った際の分離係数並びに透過流束も向上する。
【0015】
通常の種結晶法では、支持体に付与されたゼオライト微粒子が種として水熱合成中に成長して結晶膜に転化するものであり、水熱合成後にはゼオライト微粒子は支持体には残存していない。本発明においては、支持体に種結晶を付与する必要は無く、ゼオライト結晶が支持体表面から直接成長する。また、ゼオライト微粒子は表面に結晶膜が形成された後も支持体を構成する重要な要素であり、この構成が透過流束向上の理由となっているとも考えられる。
【0016】
多孔質支持体の原料となるゼオライト微粒子の寸法は、多孔質支持体内での均一分散性、機械的強度の観点から、0.01μm以上、10μm以上であることが好ましく、より好ましくは0.1μm以上、5μm以下である。
ゼオライト微粒子としては、A型、X型、Y型、T型、L型等を用いることができるが、A型ゼオライトが特に製膜性が高く、好ましい。また、ゼオライト微粒子はその表面に形成するゼオライト結晶膜と同じ種類のゼオライトを選択する。
【0017】
本発明に用いられる多孔質支持体の製造方法は特に限定しないが、湿式紡糸による方法が特に好ましい。米国特許第4,222,977号明細書、特開昭62−52185号公報、あるいはJ. Membr. Sci., 188(2001), 87-95には有機ポリマーと無機微粒子の混合物よりなる中空糸を湿式紡糸によって得る方法が開示されている。本発明に用いる多孔質支持体は、この方法に従い、無機微粒子としてゼオライト微粒子を用いて、湿式紡糸により得られる多孔質の中空円筒状支持体を用いることが望ましい。
【0018】
湿式紡糸以外の方法による、有機ポリマーとゼオライト微粒子とよりなる多孔質支持体も、本発明における多孔質支持体として用いることが出来る。湿式紡糸以外による有機ポリマーとゼオライト微粒子とよりなる多孔質支持体の製造方法としては、例えば特開平11−100283号公報には、射出成形により有機ポリマーとセラミック粒子よりなる多孔体を得る方法が開示されている。この方法に従ってセラミック粒子の代わりにゼオライト微粒子を添加することによって、本発明に用いる多孔質支持体を得ることも出来る。
【0019】
水熱合成時に欠陥の極めて少ないゼオライト結晶膜を形成するという観点から、ゼオライト結晶膜が形成される多孔質支持体の表面には、水熱合成を施す前の状態で、適当な量のゼオライト微粒子の表面濃度が必要とされる。具体的にはエネルギー分散型X線分光法(EDS法)測定により、入射電子線の加速電圧を12keVとして支持体表面に照射した際に発生する特性X線による解析において、Siの原子数濃度が2%から15%、より好ましくは4%から8%となるように、ゼオライト微粒子が支持体表面に存在していることが望ましい。
【0020】
多孔質支持体の原料となる有機ポリマーは、広い範囲の材質が選択できる。代表的なものとしては、ポリスルホン、ポリエーテルスルホン、ポリビニリデンフロライド、ポリエチレン、ポリプロピレン、ポリアミド、ポリイミド、ポリエステル、ポリカーボネート、ポリエーテルケトン、更にこれらのポリマーよりなるポリマーブレンド及び共重合体が挙げられる。これらのポリマーの中でも特にポリスルホン、ポリエーテルスルホン、ポリビニリデンフロライドが好ましい。
【0021】
多孔質支持体を形成する、多孔質支持体に占めるゼオライト微粒子の重量比は、上記のゼオライトを構成するSi原子の原子数濃度、及び多孔質支持体の機械的強度の観点から、60%以上90%以下であることが望ましい。
本発明の複合膜に用いられる中空円筒状の多孔質支持体の空孔率は、複合膜の透過流束の観点から10%以上、機械的強度の観点から95%以下が好ましい。より好ましくは30%以上90%以下、最も好ましくは40%以上90%以下である。
【0022】
多孔質支持体の細孔径は、パーベーパレーションによって分離する分子の移動が阻害され、透過流束が減少しない大きさが必要である。具体的には、細孔径は、透過流束の観点から、20nm以上、水熱合成時のゼオライト結晶膜を均一にするという観点から、2μm以下であることが好ましい。より好ましくは相当50nm以上、1μm以下である。
【0023】
本発明に用いられる多孔質支持体は、中空円筒状即ち、中空糸状、管状であり、さらにレンコン状、ハニカム状の形状のものも含まれる。多孔質支持体の大きさは特に限定されないが、例えば中空糸状並びに管状の場合、外径は0.5mmから10cmの範囲が好ましく、壁の厚さは、0.05mmから2cmの範囲が好ましい。
【0024】
本発明の複合膜は、多孔質支持体の表面にゼオライト結晶からなる層が形成されている。ゼオライト結晶は、粒界を形成し緻密にパッキングして、中空円筒状の多孔質支持体表面に層を形成している。
結晶層を形成するゼオライトは、支持体を構成するゼオライトと同種のものであり、A型、X型、Y型、T型、L型が挙げられる。また、これらがアルカリ金属またはアルカリ土類金属を含む場合、それを他の金属イオンで置き換えた各種ゼオライト等も用いることができる。
【0025】
ゼオライト結晶膜を形成する結晶の寸法は、分離性能と透過流束がともに低下するのを防ぐ上で、0.01μmから10μmの範囲にあることが好ましく、より好ましくは0.1μmから5μmである。
ゼオライト層の厚みは、分離性能の観点から0.5μm以上、透過流束の観点から50μm以下であることが好ましく、より好ましくは1μmから20μmである。
【0026】
本発明の複合膜におけるゼオライト結晶膜は、本発明の多孔質支持体を、ゼオライトの原料を含む合成液に接触させ、適当な条件で水熱合成を施すことにより形成される。
ゼオライトの原料となるシリカ成分としては、ケイ酸ナトリウム、水ガラス、コロイダルシリカ、アルコキシシランの加水分解物等を用いることができる。ゼオライトのアルミナ成分としては、アルミン酸ナトリウム、水酸化アルミニウム、硝酸アルミニウム、塩化アルミニウム、ベーマイト等を用いることができる。必要に応じてカルシウム酸化物成分として、水酸化カルシウム、酸化カルシウム、硝酸カルシウム、塩化カルシウム等、マグネシウム酸化物成分として、水酸化マグネシウム、酸化マグネシウム、硝酸マグネシウム、塩化マグネシウム等、バリウム酸化物成分として、硝酸バリウム、塩化バリウム、水酸化バリウム等が用いられる。
【0027】
水熱合成においては、上記のゼオライトの原料を含む合成液をオートクレーブのような密閉できる容器に入れ、ここに本発明の多孔質支持体を浸漬し、適度な温度並びに時間合成させてゼオライト結晶膜を多孔質支持体表面に形成する。この際、多孔質支持体の外表面にのみゼオライト結晶膜を形成する際には、円筒状である多孔質支持体の両端の開口部を封止するなどして合成液が内表面に接触しないようにした上で、合成液に浸漬する。また、多孔質支持体の内表面にのみゼオライト結晶膜を形成する際には、円筒状である多孔質支持体の内部に合成液を充填して、両端の開口部を封止したものに適度な温度並びに時間を与えて合成させる、あるいは多孔質支持体の内部に温度を制御した合成液を循環させるなどの方法によりゼオライト結晶膜を形成する。
【0028】
本発明の複合膜を用いたモジュールは、例えば、分離処理を行う流体の供給口と、前記流体から少なくとも一成分が分離された流体の排出口を供えたハウジング内に、少なくとも1本の本発明の複合膜を収容して構成される。ハウジング容積(V)に対する複合膜の膜面積(S)の比率(S/V)は10m/m以上であることが好ましい。
【0029】
本発明の複合膜を用いて、パーベーパレーション法によって2種以上の液体の混合溶液から少なくとも1種の液体を分離することができる。
混合溶液としては、水と有機物との混合溶液、2種以上の有機物の混合溶液が好適に用いられる。
水および有機物を含む混合溶液からパーベーパレーション法によって水を選択的に分離する場合、例えば、発酵によって得られるエタノールと水を含む混合溶液からエタノールまたは水を選択的に分離するには、従来、蒸留が一般的な分離方法であった。しかし、発酵により得られるエタノールと水の混合物は多量の水を含むために、蒸留によって分離濃縮するためには、多量のエネルギーが必要となる。
このような場合に、本発明の複合膜を用いると、ゼオライトの種類を適宜選択することにより、パーベーパレーション法によって水と有機物の混合物から、目的物のみを選択的に、しかも少ないエネルギーの使用で分離することが可能となる。
【実施例】
【0030】
以下、実施例に基づいて本発明を具体的に説明する。
実施例においては中空円筒状多孔質支持体として、有機ポリマーとゼオライト微粒子を原料として湿式紡糸により作成した中空糸を用いた。
【0031】
本発明における多孔質支持体の表面ゼオライト濃度は、HORIBA製EMAX−7000を用いた、エネルギー分散型X線分光法(EDS法)により測定した。測定においては多孔質支持体の50μm×50μmの範囲に、加速電圧12keVで電子線を照射し、放出される特性X線のスペクトルから、ゼオライト微粒子の構成元素であるSi原子の原子数濃度(atom%)を求め、これをゼオライト微粒子の表面濃度の尺度とした。
【0032】
本発明において、多孔質支持体の平均細孔径、並びに空孔率はMicromeritics社製ポアサイザ9320ポロシメータを用いた水銀圧入法によって測定した。測定においては、セル容積約6cm、ステム体積0.4cmのセルを用いて、圧力0MPa−206.8MPaの範囲で水銀を圧入した。測定に用いる多孔質支持体は、測定前に150℃のオーブン中に4時間保持して乾燥させ、デシケータ中にて室温にまで冷却した後に測定に供した。また、測定セルに充填するサンプル量は全水銀圧入容積が0.1cc−0.3ccの範囲になるように調整し、本測定においては0.1−0.5gを用いた。
【0033】
(1)多孔質支持体の平均細孔径
水銀圧入法において、圧入する際の圧力と、その圧力で水銀が浸入する細孔径の関係は、次の数式(1)のWashburnの式によって表される。
【0034】
【数1】

【0035】
上式により、圧入圧力Pと細孔径Dの関係が求められる。圧入圧力Pとそれまでに圧入された水銀量は測定により示されるので、上記の関係式から多孔質支持体の体積平均による平均細孔径を求めることができる。
【0036】
(2)多孔質支持体の空孔率
測定セル内の多孔質支持体サンプルの体積は、測定セルにサンプルと水銀を注入した状態での圧力印加前のセル内でのサンプルと水銀の体積の総和と、注入した水銀の体積の差として求められる。多孔質支持体の空孔率は測定圧力範囲の最高圧力まで水銀を圧入した際の全水銀圧入量に対応する体積に対する、その測定に用いた多孔質支持体サンプルの体積の比として求められる。
【0037】
[実施例1]
(円筒状多孔質支持体の作成)
ポリエーテルスルホン(BASF製、Ultrason E6020P)40g、に1−メチル−2−ピロリドン(和光純薬(株)製)を175g添加して混合し、更にポリビニルピロリドン(アイエスピージャパン製、PVP K-90)8gを加えて均一溶液となるまで攪拌した。この溶液に、A型ゼオライト微粒子(Sigma-Aldrich製、Molecular Sieve 4A、粒径<5μm)200gを添加し、均一なスラリーとなるまで攪拌することにより紡糸原液を用意し、これを内径0.73mm、外形2.0mmの二重紡口を用いて湿式紡糸した。このとき芯液、凝固浴液ともに40℃に保温した水を用い、エアギャップは2cmに固定して紡糸した。得られた中空糸を60℃の水に6時間浸して洗浄した後、60℃オーブンにて3時間乾燥することにより、本発明に用いる多孔質支持体を得た。得られた多孔質支持体は外形2.2mm、内径1.0mmで、水銀圧入法によって求められた平均細孔径は0.5μm、空孔率は49%であった。図1にこの多孔質支持体の表面(a図)及び断面(b図)の電子顕微鏡像を示す。また、エネルギー分散型X線分光法(EDS法)により測定した、この多孔質支持体外表面のSi原子の原子数濃度(atom%)は6.5atom%であった。
【0038】
(ゼオライト結晶膜の形成)
長さ12cmの上記の多孔質支持体を用意し、水熱合製法により多孔質支持体表面に、A型ゼオライト結晶からなる層を形成させた。合成液として、NaO:SiO:Al:HO=2:2:1:126のモル比に配合したスラリーを以下の方法で調合した。
ポリエチレン容器中で、イオン交換水50.4gにケイ酸ナトリウム(和光純薬(株)製)6.62gを添加し、50℃水浴中で10分間攪拌して均一な溶液Aを得た。更に別の容器で、イオン交換水21.34gに水酸化ナトリウム(和光純薬(株)製)0.26gを加えて均一に溶解した後、アルミン酸ナトリウム(和光純薬(株)製)6.4gを添加し室温で10分間攪拌して均一な溶液Bを得た。次に溶液Aを攪拌している状態に溶液Bを徐々に添加し、全ての溶液Bを添加した後30分間攪拌することにより、均一スラリー状の合成液を調合した。
この合成液スラリーをテフロン(登録商標)内筒付きのオートクレーブ(内容積50ml)に移し、ここに湿式紡糸によって得られた多孔質支持体10本を相互に接触しないように入れ、密閉した後、100℃で3時間15分水熱合成反応を行った。このとき多孔質支持体の内側に合成液が侵入しないように、支持体の両端をテフロン(登録商標)シールで封止した。
【0039】
反応後、多孔質支持体を取り出し、十分水洗した後、60℃で3時間乾燥させた。乾燥後の多孔質支持体の断面を電子顕微鏡により観察したところ、合成液に接触した側の表面に厚さ約5μmの結晶層が生成しており、これを広角X線回折によって解析した結果、A型ゼオライト結晶による緻密な層が形成されていることが確認された。この結晶層を形成しているA型ゼオライトの結晶の寸法は、電子顕微鏡による表面観察の結果、2〜5μmであった。図2に得られたゼオライト膜の表面(a図)及び断面(b図)の電子顕微鏡像を示す。
この水熱合成の操作を3回繰り返すことにより、外表面にゼオライト膜を有する複合膜30本を用意した。このようにして得られた複合膜の片端をトールシール(ニラコ(株)製)封止し、もう一方の端から2気圧の圧力で空気を注入し、複合膜を水に浸してリーク試験を行ったところ、30本全てにおいて空気の漏れは無く、リークのない複合膜が得られていることを確認した。
【0040】
(パーベーパレーションによる脱水試験)
得られた複合膜を8本用意し、両端をトールシール(ニラコ(株)製)で固着し、片側を密閉して、膜面積55cm、容積が25mlのモジュールを作成した。
このモジュールを用いて、パーベーパレーション法によってエタノール水溶液から水を選択的に分離する試験を行った。図3にこの試験に用いたモジュールによる分離装置の模式図を示す。モジュール5の内部にエタノール90重量%の水溶液を温度75℃、供給液速度毎分100mlで供給し、モジュール5内の多孔質支持体の内側を真空ポンプ1によって減圧して、各複合膜の外表面から中空内部に、エタノール水溶液中の水を透過させた。複合膜を透過して分離された水は真空ライン2を通過して、液体窒素によって冷却されたトラップ3に集めた。真空ライン2の間には真空計4を設置している。図中でトラップ6は真空ポンプから油が逆流した場合に、ここで捕捉獲するために設置した。
【0041】
冷却トラップ3中の水の重量を測定し、膜の単位面積、単位時間当たりの透過量を求めることにより透過流束(Q)を求めた。トラップされた水に含まれるエタノール濃度をガスクロマトグラフィーを用いて測定することにより、分離係数(α)を求めた。具体的には、供給側のエタノールと水の重量濃度をそれぞれ、X重量%、X重量%とし、トラップ中の透過側のエタノールと水の濃度をそれぞれ、Y重量%、Y重量%とすると、分離係数(α)はα=(X/X)/(Y/Y)によって計算される。
8本の複合膜より得られたモジュールを用いて、エタノール90重量%の水溶液から、75℃の温度においてパーベーパレーション法によって、水を選択的に抽出する分離実験を行ったところ、水の透過流束(Q)は6.5kg/mh、分離係数(α)は24000であった。
【0042】
[実施例2]
ポリスルホン(Aldrich製、Mn=22000)20g、A型ゼオライト微粒子(水澤化学社製シルトン−B、粒径0.8μm)65g、及びジメチルアセトアミド250gの混合物からなる紡糸原液を用意し、これを内径0.5mm、外形1.5mmの二重環状ノズルを用いて湿式紡糸した。このとき、芯液及びゲル化浴液としては水を用い、芯液流量5ml/分、原液流量20ml/分、ゲル化浴温度10℃、巻き取り速度17m/分で紡糸した。上記方法によって紡糸後乾燥することにより、外径1.8mm、内径1.0mmの複合中空糸が得られ、これを多孔質支持体として使用した。水銀圧入法によって求められたこの多孔質支持体の平均細孔径は0.4μm、空孔率は47%であった。また、エネルギー分散型X線分光法(EDS法)により測定した、この多孔質支持体外表面のSi原子の原子数濃度(atom%)は5.3atom%であった。
得られた多孔質支持体表面に実施例1と同様にしてA型ゼオライト膜を製膜し、30本の複合膜を得た。乾燥後の複合膜の断面を電子顕微鏡により観察したところ、合成液に接触した側の表面に厚さ約5μmの結晶層が生成しており、これを広角X線回折によって解析した結果、A型ゼオライト結晶による緻密な層が形成されていることが確認された。実施例1と同様にリーク試験を行ったところ、30本全ての複合膜においてリークは見られなかった。
得られた複合膜8本を用いて、実施例1と同様の方法で、膜面積45cm、容積が25mlのモジュールを作成した。エタノール90重量%の水溶液から、75℃の温度においてパーベーパレーション法によって、水を選択的に抽出する分離実験を行ったところ、水の透過流束(Q)は5.1kg/mh、分離係数(α)は19000であった。
【0043】
[比較例1]
実施例2で用いた多孔質支持体の製造方法において、A型ゼオライト微粒子を添加しないこと以外は、実施例2と同じ方法で湿式紡糸することにより、ポリスルホンのみによる多孔質中空糸を得た。乾燥後のこの中空糸の外形は1.6mm、内径は0.9mmであり、水銀圧入法によって求められたこの多孔質中空糸の平均細孔径は0.5μm、空孔率は60%であった。
このポリスルホン多孔質中空糸を平均粒径0.8μmのA型ゼオライト結晶粒子が4重量%の濃度で分散しているブタノールスラリー中に30秒間浸漬し、引上げた後60℃にて2時間乾燥し、A型ゼオライト微粒子を種結晶として、多孔質支持体表面に担持させた。この種結晶を担持させた多孔質支持体表面に、実施例1と同様の水熱合成法によりA型ゼオライトによる結晶膜を形成させた。水熱合成により得られた30本の膜についてリーク試験を行ったところ、30本中11本に明らかなリークが見られ、本発明の多孔質支持体による複合膜に比べ、製膜収率が低いことが示された。
リークの見られなかった膜8本を用いて実施例1と同様に、膜面積40cm、容積25mlのモジュールを作成した。実施例1と同様にエタノール90重量%水溶液からパーベーパレーション法によって、分離実験を行ったところ、水の透過量(Q)は7.1kg/mhであったが、分離係数(α)は90しかなかった。これは水熱合成により得られた20本の複合膜の中に、ゼオライト結晶膜に欠陥を有するものが含まれていることを示している。
【0044】
[比較例2]
実施例1の多孔質支持体に代えて、外径1.6mm、膜厚0.4mm、水銀圧入法によって求められた空孔率が37%であり、平均細孔径が0.25μmの、アルミナ多孔質支持体を用意した。
平均粒径0.8μmのA型ゼオライト結晶粒子が3重量%の濃度で分散している水スラリー中にこのアルミナ多孔質支持体を30秒間浸漬し、引上げた後60℃にて2時間乾燥し、A型ゼオライト微粒子を種結晶として、多孔質支持体表面に担持させた。この種結晶を担持させた多孔質支持体表面に、実施例1と同様の水熱合成法によりA型ゼオライトによる結晶膜を形成させた。得られた30本の膜についてリーク試験を行ったところ、30本中16本に明らかなリークが見られ、本発明の多孔質支持体による複合膜に比べ、製膜収率が著しく低いことが示された。
リークが見られなかった8本を用いて、実施例1と同様の方法で、膜面積40cm、容積25mlのモジュールを作成した。実施例1と同様にエタノール90重量%水溶液からパーベーパレーション法によって、分離実験を行ったところ、水の透過量(Q)は3.5kg/mh、分離係数(α)は3900であった。これは水熱合成により得られた20本の複合膜の中に、ゼオライト結晶膜に欠陥を有するものが含まれていることを示している。
【0045】
[比較例3]
比較例2で用いたアルミナ多孔質支持体表面に比較例2と同様の浸漬法により種結晶を担持させた後、更に表面にA型ゼオライト微粒子を擦り付けることによって、より入念に種結晶を担持させた。この種結晶を担持させた多孔質支持体表面に、実施例1と同様の水熱合成法によりA型ゼオライトによる結晶膜を形成させた。得られた30本の膜についてリーク試験を行ったところ、30本中9本に明らかなリークが見られ、本発明の多孔質支持体による複合膜に比べ、製膜収率が低いことが示された。
リークが見られなかった8本を用いて、実施例1と同様の方法で、膜面積40cm、容積25mlのモジュールを作成した。実施例1と同様にエタノール90重量%水溶液からパーベーパレーション法によって、分離実験を行ったところ、水の透過量(Q)は3.8kg/mh、分離係数(α)は5100であった。これは水熱合成により得られた20本の複合膜の中に、ゼオライト結晶膜に欠陥を有するものが含まれていることを示している。
これらの結果により、混合物から目的物を経済的に分離する方法として、本発明の複合膜を用いることにより、高い製膜収率でゼオライト膜が形成され、従来技術に比べて高い処理能力が得られることは明らかである。
【産業上の利用可能性】
【0046】
本発明の複合膜は、液体、気体、またはそれらの混合物から特定の成分のみを抽出する分離膜として好適に利用できる。特に、共沸状態となるため、従来の蒸留法では分離できなかった、エタノールと水のような系にも本発明の複合膜を利用することができる。さらに反応プロセス等から得られる混合物の経済的な分離が可能である。
【図面の簡単な説明】
【0047】
【図1】本発明の多孔質支持体の表面並びに断面の電子顕微鏡像
【図2】本発明の複合膜の表面並びに断面の電子顕微鏡像
【図3】本発明の複合膜を用いたモジュールによる分離装置の模式図。
【符号の説明】
【0048】
1 真空ポンプ
2 真空ライン
3 冷却トラップ
4 真空計
5 モジュール
6 トラップ

【特許請求の範囲】
【請求項1】
ゼオライト微粒子60−90重量部、有機高分子10−40重量部からなる中空円筒状多孔質支持体の内表面あるいは外表面の少なくとも一方の表面に、該多孔質支持体を形成するゼオライト微粒子と同種のゼオライト結晶膜が形成されていることを特徴とする中空円筒状複合膜。
【請求項2】
ゼオライトはA型であり、有機高分子がポリスルホン、ポリエーテルスルホン、ポリビニリデンフロライドから選ばれることを特徴とする請求項1記載の中空円筒状複合膜。
【請求項3】
前記中空円筒状多孔質支持体が湿式紡糸により得られる中空糸であることを特徴とする請求項1又は2記載の中空円筒状複合膜。
【請求項4】
ゼオライト微粒子60−90重量部、有機高分子10−40重量部からなる中空円筒状多孔質支持体を、ゼオライトの原料を含む合成液に接触させ、水熱合成を施すことにより、中空円筒状多孔質支持体の内表面及び外表面の少なくとも一方の表面にゼオライト結晶層を形成することを特徴とする中空円筒状複合膜の製造方法。
【請求項5】
請求項1〜3のいずれかに記載の複合膜を用いてパーベーパレーション法によって2種以上の液体の混合溶液から少なくとも1種の液体を分離する物質分離方法。
【請求項6】
混合溶液が水と有機物からなることを特徴とする請求項5記載の物質分離方法。

【図3】
image rotate

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2006−320896(P2006−320896A)
【公開日】平成18年11月30日(2006.11.30)
【国際特許分類】
【出願番号】特願2006−117632(P2006−117632)
【出願日】平成18年4月21日(2006.4.21)
【出願人】(303046314)旭化成ケミカルズ株式会社 (2,513)
【Fターム(参考)】