角速度センサ

【課題】 小型かつ低価格でありながら、誤差の少ない信頼性の高い検出を可能にする。
【解決手段】 装置筐体30内に、2つの重錘体10A,10Bを収容し、それぞれを可撓性をもった接続部材20によって装置筐体30に接続する。各重錘体10A,10Bは所定の自由度をもって各座標軸X,Y,Zの方向に移動できる。重錘体10A,10B間は、可撓性をもった接続部材25によって相互接続する。各重錘体10A,10Bを互いに逆位相となるようにX軸方向に往復運動させた状態とし、所定の検出時において、各重錘体10A,10Bに作用したZ軸方向のコリオリ力をZ軸方向への変位として検出する。両重錘体10A,10Bに作用したZ軸方向のコリオリ力の差により角速度を求め、和により加速度を求める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は角速度センサおよび加速度検出機能をもった角速度センサに関し、特に、多軸まわりの角速度検出および多軸方向の加速度検出に適した角速度/加速度センサに関する。
【背景技術】
【0002】
自動車産業や機械産業などでは、所定軸まわりの角速度や所定軸方向の加速度を正確に検出できる角速度センサや加速度センサの需要が高まってきている。一般に、三次元空間内において自由運動をする物体には、任意の向きの加速度とともに任意の回転方向の角速度が作用する。このため、この物体の運動を正確に把握するためには、XYZ三次元座標系における各座標軸方向に関する加速度とともに、各座標軸まわりの角速度を検出する必要がある。特に、XYZ三次元直交座標系内において、物体の三次元の動きを正確に捉えるためには、X軸まわりの角速度ωx,Y軸まわりの角速度ωy,Z軸まわりの角速度ωz,X軸方向の加速度αx,Y軸方向の加速度αy,Z軸方向の加速度αzという合計6軸に関する角速度および加速度の成分を検出することが不可欠である。
【0003】
このような需要に応えるため、本願発明者は、たとえば、下記の特許文献1〜6などに、いくつかの角速度センサおよび加速度センサを提案した。これらのセンサによれば三次元の各軸まわりの角速度や各軸方向の加速度を検出することができる。ここで、角速度については、ある物体にX軸まわりの角速度ωxが作用している状態において、この物体をZ軸方向に運動させると、Y軸方向にコリオリ力Fyが作用するという原理を利用した検出が行われ、加速度については、ある物体にX軸方向の加速度αxが作用すると、同じくX軸方向に加速度に基づく力(ここでは、加速度力と呼ぶことにする)fxが作用するという原理を利用した検出が行われている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】第WO94/23272号公報
【特許文献2】特開平8−35981号公報
【特許文献3】特開平8−68636号公報
【特許文献4】特開平8−94661号公報
【特許文献5】特開平8−226931号公報
【特許文献6】特開平8−285608号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
三次元空間内で運動する物体についての角速度・加速度検出という需要は、益々高まるばかりであり、今後は特に、小型かつ低価格でありながら、誤差の少ない信頼性の高い検出が可能なセンサが望まれている。しかしながら、これまで実用化されてきた角速度センサあるいは加速度センサは、構造的にまだまだ複雑な部分が多く、信頼性を高めるためには、小型化や低価格化が困難であるという問題があった。
【0006】
そこで本発明は、小型かつ低価格でありながら、誤差の少ない信頼性の高い検出が可能な角速度センサおよび加速度検出機能をもった角速度センサを提供することを目的とする。
【課題を解決するための手段】
【0007】
(1) 本発明の第1の態様は、XYZ三次元直交座標系において定義されるX軸、Y軸、Z軸のうちの少なくとも1軸まわりの角速度を検出する角速度センサにおいて、
三次元直交座標系の空間内で運動可能な第1の重錘体および第2の重錘体と、
この2つの重錘体を収容する装置筐体と、
第1の重錘体を、装置筐体に対して、所定の自由度をもって運動可能となるように接続する可撓性をもった第1の接続部材と、
第2の重錘体を、装置筐体に対して、所定の自由度をもって運動可能となるように接続する可撓性をもった第2の接続部材と、
第1の重錘体と第2の重錘体とを接続する可撓性をもった第3の接続部材と、
少なくとも所定の検出時において、第1の重錘体がX軸の正方向の速度成分をもって運動し、第2の重錘体がX軸の負方向の速度成分をもって運動するように、第1の重錘体および第2の重錘体を装置筐体内で運動させる駆動手段と、
検出時にY軸まわりの角速度が作用していた場合に、第1の重錘体に対してZ軸方向に作用する第1のZ軸コリオリ力を検出する第1のコリオリ力検出手段と、
検出時にY軸まわりの角速度が作用していた場合に、第2の重錘体に対してZ軸方向に作用する第2のZ軸コリオリ力を検出する第2のコリオリ力検出手段と、
第1のZ軸コリオリ力と第2のZ軸コリオリ力との差に基づいて、作用したY軸まわりの角速度を求める演算手段と、
を設け、少なくともY軸まわりの角速度を検出することができるようにしたものである。
【0008】
(2) 本発明の第2の態様は、上述の第1の態様に係る角速度センサにおいて、
第1のコリオリ力検出手段が、所定の検出時にZ軸まわりの角速度が作用していた場合に、第1の重錘体に対してY軸方向に作用する第1のY軸コリオリ力を検出する機能を更に有し、
第2のコリオリ力検出手段が、この検出時にZ軸まわりの角速度が作用していた場合に、第2の重錘体に対してY軸方向に作用する第2のY軸コリオリ力を検出する機能を更に有し、
演算手段が、第1のY軸コリオリ力と第2のY軸コリオリ力との差に基づいて、作用したZ軸まわりの角速度を求める機能を更に有し、
Y軸まわりの角速度とともにZ軸まわりの角速度を検出する機能をもつようにしたものである。
【0009】
(3) 本発明の第3の態様は、上述の第1または第2の態様に係る角速度センサにおいて、
駆動手段が、第1の重錘体をX軸方向に沿って往復運動させる第1のX軸方向駆動手段と、第2の重錘体をX軸方向に沿って往復運動させる第2のX軸方向駆動手段と、を有し、第1の重錘体の往復運動と第2の重錘体の往復運動とが、周期が同一で位相が反転したものとなるようにしたものである。
【0010】
(4) 本発明の第4の態様は、上述の第1から第3の態様に係る角速度センサにおいて、
装置筐体内を、所定の境界面を境として右側領域と左側領域とに分けたときに、駆動手段による運動が行われていない状態において、
第1の重錘体と第2の重錘体とは、この境界面に関して互いに対称な構造をなし、
第1の接続部材と第2の接続部材とは、この境界面に関して互いに対称な構造をなし、
第3の接続部材は、右側領域から境界面を跨いで左側領域へと連なり、境界面に関して対称構造をなすようにしたものである。
【0011】
(5) 本発明の第5の態様は、上述の第4の態様に係る角速度センサにおいて、
第3の接続部材が、
駆動手段による運動が行われていない状態において境界面上に配置され、この境界面に関して対称構造をなす中間部材と、
中間部材と第1の重錘体とを接続する可撓性を有する橋梁構造体と、
中間部材と第2の重錘体とを接続する可撓性を有する橋梁構造体と、
を有するようにしたものである。
【0012】
(6) 本発明の第6の態様は、上述の第1から第5の態様に係る角速度センサにおいて、
第1の重錘体および第2の重錘体を、XY平面に平行な上面および下面を有する板状構造体によって構成したものである。
【0013】
(7) 本発明の第7の態様は、上述の第1から第6の態様に係る角速度センサにおいて、
検出時にX軸方向の加速度が作用していた場合に、第1の重錘体に対して加速度に起因してX軸方向に作用する第1のX軸加速度力を検出する第1の加速度力検出手段と、
検出時にX軸方向の加速度が作用していた場合に、第2の重錘体に対して加速度に起因してX軸方向に作用する第2のX軸加速度力を検出する第2の加速度力検出手段と、
を更に設け、
演算手段が、第1の加速度力と第2の加速度力との和に基づいて、作用したX軸方向の加速度を求める演算を行う機能を更に有するようにしたものである。
【0014】
(8) 本発明の第8の態様は、上述の第1から第7の態様に係る角速度センサにおいて、
検出時にY軸方向の加速度が作用していた場合に、第1の重錘体に対して加速度に起因してY軸方向に作用する第1のY軸加速度力を検出する第1の加速度力検出手段と、
検出時にY軸方向の加速度が作用していた場合に、第2の重錘体に対して加速度に起因してY軸方向に作用する第2のY軸加速度力を検出する第2の加速度力検出手段と、
を更に設け、
演算手段が、第1の加速度力と第2の加速度力との和に基づいて、作用したY軸方向の加速度を求める演算を行う機能を更に有するようにしたものである。
【0015】
(9) 本発明の第9の態様は、上述の第1から第8の態様に係る角速度センサにおいて、
検出時にZ軸方向の加速度が作用していた場合に、第1の重錘体に対して加速度に起因してZ軸方向に作用する第1のZ軸加速度力を検出する第1の加速度力検出手段と、
検出時にZ軸方向の加速度が作用していた場合に、第2の重錘体に対して加速度に起因してZ軸方向に作用する第2のZ軸加速度力を検出する第2の加速度力検出手段と、
を更に設け、
演算手段が、第1の加速度力と第2の加速度力との和に基づいて、作用したZ軸方向の加速度を求める演算を行う機能を更に有するようにしたものである。
【0016】
(10) 本発明の第10の態様は、上述の第7から第9の態様に係る角速度センサにおいて、
第1の重錘体について所定軸の方向に作用した力を検出する第1の力検出手段を、この所定軸を検出軸とする第1のコリオリ力検出手段および第1の加速度力検出手段として兼用し、
第2の重錘体について所定軸の方向に作用した力を検出する第2の力検出手段を、この所定軸を検出軸とする第2のコリオリ力検出手段および第2の加速度力検出手段として兼用し、
第1の力検出手段による力の検出値と第2の力検出手段による力の検出値との差に基づいて角速度を求め、
第1の力検出手段による力の検出値と第2の力検出手段による力の検出値との和に基づいて加速度を求めるようにしたものである。
【0017】
(11) 本発明の第11の態様は、上述の第10の態様に係る角速度センサにおいて、
第1の重錘体および第2の重錘体の運動周波数を、検出対象となる加速度の周波数に比べて十分に高く設定し、前者を高周波数、後者を低周波数とする識別が可能になるようにし、
第1の力検出手段による力の検出値の高周波数の成分と第2の力検出手段による力の検出値の高周波数の成分との差に基づいて角速度を求め、
第1の力検出手段による力の検出値の低周波数の成分と第2の力検出手段による力の検出値の低周波数の成分との和に基づいて加速度を求めるようにしたものである。
【0018】
(12) 本発明の第12の態様は、上述の第1から第11の態様に係る角速度センサにおいて、
各重錘体上に、励振用導電路を形成し、この励振用導電路が位置する空間に、この励振用導電路に対して磁束が平行にはならないような磁界を発生させる磁界発生手段を設け、
励振用導電路に電流を供給した場合に、この電流と磁界との相互作用に基づくローレンツ力によって重錘体が検出に必要な運動を行うように構成したものである。
【0019】
(13) 本発明の第13の態様は、上述の第12の態様に係る角速度センサにおいて、
各重錘体上に、更に検出用導電路を形成し、磁界発生手段が、励振用導電路および検出用導電路が位置する空間に、これら両導電路に対して磁束が平行にはならないような磁界を発生させる機能を有し、
検出用導電路に発生する誘導起電力に基づいて、重錘体に作用した力を検出できるようにしたものである。
【0020】
(14) 本発明の第14の態様は、上述の第13の態様に係る角速度センサにおいて、
XYZ三次元直交座標系のXY平面内に上面が含まれ、この上面の中央部に原点Oが定義された基板を重錘体として用い、
X軸に沿って伸び、Y軸の負の部分に交差する第1の導電路と、X軸に沿って伸び、Y軸の正の部分に交差する第2の導電路と、Y軸に沿って伸び、X軸の負の部分に交差する第3の導電路と、Y軸に沿って伸び、X軸の正の部分に交差する第4の導電路と、により励振用導電路を構成し、
X軸に沿って伸び、Y軸の負の部分に交差する第5の導電路と、X軸に沿って伸び、Y軸の正の部分に交差する第6の導電路と、Y軸に沿って伸び、X軸の負の部分に交差する第7の導電路と、Y軸に沿って伸び、X軸の正の部分に交差する第8の導電路と、により検出用導電路を構成したものである。
【0021】
(15) 本発明の第15の態様は、上述の第1から第14の態様に係る角速度センサにおいて、
XYZ三次元直交座標系のXY平面に平行な上面および下面を有する基板を重錘体として用い、装置筐体の一部に、重錘体の下面に対向する対向面を形成し、重錘体の下面に形成された導電面と対向面に形成された導電面とによって容量素子を形成し、この容量素子によってZ軸コリオリ力およびZ軸加速度力のうちの少なくとも一方を検出できるようにしたものである。
【0022】
(16) 本発明の第16の態様は、上述の第1から第15の態様に係る角速度センサにおいて、
1枚の基板上に左右の領域を定義し、この基板の所定部分を除去することにより、各領域のそれぞれにおいて、中央に位置する重錘体と、この重錘体の周囲に位置し、可撓性の橋梁構造をもった接続部材とを形成するようにし、
この基板の外周部分によってフレームを構成し、接続部材により、各重錘体がフレームに接続されるようにし、橋梁構造の可撓性の範囲内で、各重錘体がフレーム内で所定の自由度をもって運動可能となるようにしたものである。
【0023】
(17) 本発明の第17の態様は、上述の第1から第11の態様に係る角速度センサにおいて、
重錘体側に形成した駆動用変位電極と、この駆動用変位電極に対向するように装置筐体側に形成した駆動用固定電極と、によって構成される駆動用容量素子を駆動手段として用い、駆動用変位電極と駆動用固定電極との間に電圧を印加することにより生じるクーロン力によって、重錘体を運動させるようにしたものである。
【0024】
(18) 本発明の第18の態様は、上述の第17の態様に係る角速度センサにおいて、
XYZ三次元直交座標系のXY平面に平行な矩形平面を上面および下面とする基板を重錘体として用い、
この重錘体のXZ平面に平行な側面に、YZ平面に平行な電極面を有するX軸方向駆動用変位電極を形成し、この重錘体のYZ平面に平行な側面に、XZ平面に平行な電極面を有するY軸方向駆動用変位電極を形成し、
装置筐体側に、X軸方向駆動用変位電極およびY軸方向駆動用変位電極の電極面にそれぞれ対向する電極面をもったX軸方向駆動用固定電極およびY軸方向駆動用固定電極を形成し、
X軸方向駆動用変位電極およびX軸方向駆動用固定電極の間に電圧を印加することにより生じるクーロン力によって、重錘体をX軸方向に運動させ、Y軸方向駆動用変位電極およびY軸方向駆動用固定電極の間に電圧を印加することにより生じるクーロン力によって、重錘体をY軸方向に運動させるようにしたものである。
【0025】
(19) 本発明の第19の態様は、上述の第18の態様に係る角速度センサにおいて、
重錘体の各側面にそれぞれ複数の駆動用変位電極をその側面の長手方向に並べて配置し、
装置筐体側には、これら複数の駆動用変位電極の間に互い違いに挿入されるように、複数の駆動用固定電極を配置し、
隣接して配置された1枚の駆動用変位電極と1枚の駆動用固定電極とにより駆動用容量素子が形成されるようにし、同一の駆動用容量素子を形成する駆動用変位電極と駆動用固定電極との電極間隔が、同一の駆動用容量素子を形成しない駆動用変位電極と駆動用固定電極との電極間隔よりも小さくなるように設定したものである。
【0026】
(20) 本発明の第20の態様は、上述の第1から第11の態様に係る角速度センサにおいて、
重錘体側に形成した検出用変位電極と、この検出用変位電極に対向するように装置筐体側に形成した検出用固定電極と、によって構成される検出用容量素子をコリオリ力または加速度力の検出手段として用い、検出用容量素子の静電容量値によってコリオリ力または加速度力を検出するようにしたものである。
【0027】
(21) 本発明の第21の態様は、上述の第20の態様に係る角速度センサにおいて、
XYZ三次元直交座標系のXY平面に平行な矩形平面を上面および下面とする基板を重錘体として用い、
この重錘体のXZ平面に平行な側面に、YZ平面に平行な電極面を有するX軸方向検出用変位電極を形成し、この重錘体のYZ平面に平行な側面に、XZ平面に平行な電極面を有するY軸方向検出用変位電極を形成し、
装置筐体側に、X軸方向検出用変位電極およびY軸方向検出用変位電極の電極面にそれぞれ対向する電極面をもったX軸方向検出用固定電極およびY軸方向検出用固定電極を形成し、
X軸方向検出用変位電極およびX軸方向検出用固定電極によって構成される検出用容量素子の静電容量値によってX軸方向に作用するコリオリ力または加速度力を検出し、Y軸方向検出用変位電極およびY軸方向検出用固定電極によって構成される検出用容量素子の静電容量値によってY軸方向に作用するコリオリ力または加速度力を検出するようにしたものである。
【0028】
(22) 本発明の第22の態様は、上述の第21の態様に係る角速度センサにおいて、
重錘体の各側面にそれぞれ複数の検出用変位電極をその側面の長手方向に並べて配置し、
装置筐体側には、これら複数の検出用変位電極の間に互い違いに挿入されるように、複数の検出用固定電極を配置し、
隣接して配置された1枚の検出用変位電極と1枚の検出用固定電極とにより検出用容量素子が形成されるようにし、同一の検出用容量素子を形成する検出用変位電極と検出用固定電極との電極間隔が、同一の検出用容量素子を形成しない検出用変位電極と検出用固定電極との電極間隔よりも小さくなるように設定したものである。
【0029】
(23) 本発明の第23の態様は、上述の第21または第22の態様に係る角速度センサにおいて、
重錘体の下面に、Z軸方向検出用変位電極を形成し、装置筐体側に、Z軸方向検出用変位電極に対向するZ軸方向検出用固定電極を形成し、
Z軸方向検出用変位電極およびZ軸方向検出用固定電極によって構成される検出用容量素子の静電容量値によってZ軸方向に作用するコリオリ力または加速度力を検出するようにしたものである。
【0030】
(24) 本発明の第24の態様は、上述の第17から第23の態様に係る角速度センサにおいて、
重錘体を導電性材料によって構成し、この重錘体表面の特定の一部分を、駆動用変位電極または検出用変位電極として用いるようにしたものである。
【0031】
(25) 本発明の第25の態様は、上述の第1〜第24の態様に係る角速度センサにおいて、
互いに所定間隔をおいてほぼ平行に配置された2枚の基板と、この2枚の基板の外周部を互いに接続する側壁部と、によって密閉された検出動作空間を構成し、
この検出動作空間内に2つの重錘体を収容し、この重錘体が検出動作空間内で所定の自由度をもって運動可能となるように、重錘体と基板とを直接または間接的に接続部材によって接続するようにしたものである。
【0032】
(26) 本発明の第26の態様は、上述の第25の態様に係る角速度センサにおいて、
検出対象となる範囲を越えた過度に大きな角速度または加速度が作用した場合に、重錘体がいずれか一方の基板に接触してその運動が妨げられるように、重錘体と各基板との間隔を設定し、各基板を重錘体の運動を制御する制御部材として利用できるようにしたものである。
【0033】
(27) 本発明の第27の態様は、上述の第25または第26の態様に係る角速度センサにおいて、
一方の基板に配線用開口窓を形成し、検出動作空間内に、この配線用開口窓を塞ぐように導電性の配線部材を設け、
検出動作空間の内部においては、重錘体を運動させるための駆動手段と、重錘体に作用したコリオリ力または加速度力を検出する力検出手段と、を配線部材に電気的に接続し、
検出動作空間の外部においては、配線用開口窓を通して、配線部材と外部配線とを電気的に接続するようにし、
検出動作空間の密閉状態を維持したまま電気的な配線が行われるようにしたものである。
【発明の効果】
【0034】
本発明に係る角速度センサによれば、装置筐体内に2つの重錘体を収容して逆方向の運動をさせ、両者を可撓性をもった接続部材で接続し、一対の重錘体を用いた測定における差により角速度を検出し、和により加速度を検出するようにしたため、小型かつ低価格でありながら、誤差の少ない信頼性の高い検出が可能な角速度センサおよび加速度検出機能をもった角速度センサを提供することが可能になる。
【図面の簡単な説明】
【0035】
【図1】本発明の一実施形態に係る角速度センサの基本構成を示す斜視図である。
【図2】図1に示す角速度センサにおける重錘体の重心の変位を示す図である。
【図3】図1に示す角速度センサにおける第1の重錘体10Aの運動およびこれに基づいて生じるコリオリ力を示すグラフである。
【図4】図1に示す角速度センサにおける第2の重錘体10Bの運動およびこれに基づいて生じるコリオリ力を示すグラフである。
【図5】図1に示す角速度センサに用いられる検出回路の第1の部分を示すブロック図である。
【図6】図1に示す角速度センサに用いられる検出回路の第2の部分を示すブロック図である。
【図7】図1に示す角速度センサに用いられる検出回路の第3の部分を示すブロック図である。
【図8】本発明の別な一実施形態に係る角速度センサの基本構成を示す斜視図である。
【図9】図8に示す角速度センサにおける重錘体の重心の変位を示す図である。
【図10】本発明の更に別な一実施形態に係る角速度センサの動作原理を示す平面図である。
【図11】図10に示す角速度センサに用いられる検出回路の第1の部分を示すブロック図である。
【図12】図10に示す角速度センサに用いられる検出回路の第2の部分を示すブロック図である。
【図13】図10に示す角速度センサに用いられる検出回路の第3の部分を示すブロック図である。
【図14】本発明に係る角速度センサに適用する励振用導電路による駆動原理を示す斜視図である。
【図15】本発明に係る角速度センサに適用する検出用導電路による検出原理を示す第1の斜視図である。
【図16】本発明に係る角速度センサに適用する検出用導電路による検出原理を示す第2の斜視図である。
【図17】本発明に係る角速度センサに適用する容量素子による検出原理を示す側断面図である。
【図18】図1に示す実施形態をより具体化した角速度センサの平面図である。
【図19】図18に示す角速度センサの側断面図である。
【図20】図8に示す実施形態をより具体化した角速度センサの平面図である。
【図21】図10に示す実施形態をより具体化した角速度センサの平面図である。
【図22】図21に示す角速度センサを動作させるために用いる交流信号波形を示すグラフである。
【図23】大量生産に適した角速度センサを構成するために用いる基板の平断面図である。
【図24】図23に示す基板の側断面図である。
【図25】図23に示す基板の上面図である。
【図26】図23に示す基板を利用して構成した角速度センサの側断面図である。
【図27】容量素子により重錘体の駆動および力の検出を行う角速度センサの主要部分の上面図である。
【図28】図27に示す左側領域400Aに配置された構成要素のみを示す平面図である(形状の把握を容易にするため、個々の構成要素の部分についてはハッチングを施して示してあるが、このハッチングは、断面を示すものではない)。
【図29】図27に示す重錘体410の上辺近傍の拡大上面図である。
【図30】図29に示す構造体を、切断線A−A,B−B,C−Cで切断した断面を示す側断面図である。
【図31】図27に示す重錘体410の上辺近傍の別な拡大上面図である。
【図32】図27に示す角速度センサの変形例を示す拡大上面図である。
【図33】図27に示す角速度センサのベース基板を大量生産する際に用いるシリコンウエハの上面図である。
【図34】図27に示す角速度センサに用いる保護基板の上面図である。
【図35】図34に示す保護基板を図27に示す角速度センサの上に固着した状態を示す上面図である。
【図36】図35に示す角速度センサの一部分を、切断線A−Aで切断した拡大断面を示す側断面図である。
【発明を実施するための形態】
【0036】
以下、本発明を図示する実施形態に基づいて説明する。
【0037】
§1. 重錘体を往復運動させる実施形態
【0038】
<<< 1.1 センサの物理的な基本構成 >>>
はじめに、本発明の一実施形態に係る角速度センサの基本構成を図1の斜視図を参照しながら説明する。図示のように、この角速度センサは、第1の重錘体10Aと第2の重錘体10Bとを有しており、第1の重錘体10Aを用いた第1の検出系と第2の重錘体10Bを用いた第2の検出系とが用意されている。両重錘体10A,10Bは、いずれも接続部材20によって装置筐体30に接続されている。このとき、接続部材20は、第1の重錘体10Aおよび第2の重錘体10Bのそれぞれを、装置筐体30に対して、所定の自由度をもって運動可能となるように接続する機能を有する。装置筐体30は、図1では、単なる接続部材20の支持点として描かれているが、実際には、接続部材20を介して各重錘体10A,10Bを支持する機能を果たすとともに、各重錘体10A,10Bを収容する容器としても機能する。したがって、各重錘体10A,10Bは、装置筐体30の内部に、所定の自由度をもって運動可能となるように収容されることになり、振動子として機能することができる。
【0039】
ここでは、説明の便宜上、図示されているX軸,Y軸,Z軸をもったXYZ三次元直交座標系を定義し、この座標系におけるこの角速度センサの動作原理を説明することにする。上述したように、各重錘体10A,10Bは、装置筐体30内において、所定の自由度をもって運動可能となるように、接続部材20によって支持されていることになる。より具体的に説明すれば、各重錘体10A,10Bは、この直交座標系内におけるX軸,Y軸,Z軸の各座標軸方向に所定の範囲内で移動可能となるように、接続部材20によって支持されている。図1では、接続部材20をいわゆるコイル状のばねとして描いてあるが、本発明を実施する上での接続部材20は、必ずしもコイル状のばねによって構成する必要はなく、後述するような板ばね状の橋梁構造などの弾力性あるいは可撓性をもった構造体によって接続部材20を形成してもよい。また、図1の例では、第1の重錘体10Aと第2の重錘体10Bとを接続するための接続部材25が形成されているが、このように両重錘体間を直接接続する接続部材は必ずしも必要ではない。更に、図1の例では、接続部材25上の1点Jは装置筐体30には接続されていないが、この1点Jを装置筐体30に直接接続して固定するようにしてもかまわない。要するに、本発明における接続部材20は、各重錘体10A,10Bが、それぞれ独立してX軸,Y軸,Z軸の各座標軸方向に、検出に必要な所定の範囲内で移動可能となるのであれば、どのような構造で実現してもかまわない。
【0040】
本発明を実施する上で、各重錘体10A,10Bの形状は特に限定されるものではないが、実用上は、図1に示すような基板状の重錘体を用いるのが好ましい。ここでは、XYZ三次元直交座標系のXY平面に平行な上面および下面を有する同一サイズ、同一質量の基板を、第1の重錘体10Aおよび第2の重錘体10Bとして用いた例を述べることにする。両重錘体は必ずしも同一サイズ、同一質量にする必要はないが、演算を容易にするためには、同一サイズ、同一質量にするのが好ましい。また、ここでは、第1の重錘体10Aと第2の重錘体10Bとを、X軸方向に並べて配置した例を述べることにする。
【0041】
<<< 1.2 角速度検出の基本原理 >>>
本発明に係る角速度センサの特徴は、第1の重錘体10Aを用いた第1の検出系と、第2の重錘体10Bを用いた第2の検出系と、の2つの検出系を用いて、それぞれ重錘体に作用するコリオリ力を検出する点にある。後述するように、第1の重錘体10Aと第2の重錘体10Bとを、互いに逆方向の速度成分をもつように運動させると、両重錘体に作用するコリオリ力は逆向きになるため、この両コリオリ力の差分として角速度の検出が可能になる。このような差分検出は、種々の要素に基づく誤差成分を取り除いた正確な検出値を得る上で効果的である。以下、この差分検出の原理を説明する。
【0042】
いま、第1の重錘体10Aに対して、図に矢印で示されているようなX軸方向の振動Ux(A)を与え、同時に、第2の重錘体10Bに対して、図に矢印で示されているようなX軸方向の振動Ux(B)を与えた場合を考える。別言すれば、第1の重錘体10Aも第2の重錘体10Bも、X軸方向に沿って往復運動していることになる。ここで、第1の重錘体10Aの重心G(A)と、第2の重錘体10Bの重心G(B)とが、いずれもX軸上に位置していたとすると、これら重心の変位は図2に示すようなものになる。すなわち、振動Ux(A)によって、第1の重錘体10Aの重心G(A)は、位置X0(A)を中心として、X軸正方向へはX+(A)の位置まで移動し、X軸負方向へはX−(A)の位置まで移動することになる。同様に、振動Ux(B)によって、第2の重錘体10Bの重心G(B)は、位置X0(B)を中心として、X軸正方向へはX+(B)の位置まで移動し、X軸負方向へはX−(B)の位置まで移動することになる。
【0043】
さて、重錘体10A,10BがこのようにX軸方向に往復運動しているときに、この系全体(別言すれば、装置筐体30全体)に対して、Y軸まわりの角速度ωyが作用すると、Z軸方向にコリオリ力Fzが作用することになる。このコリオリ力Fzの向きは、重錘体10A,10Bの移動方向に応じて反転する。たとえば、作用しているY軸まわりの角速度ωyが一定であったとしても、重錘体がX軸正方向へ移動しているときに、Z軸正方向へのコリオリ力が作用したとすれば、重錘体がX軸負方向へ移動しているときには、Z軸負方向へのコリオリ力が作用することになる。もちろん、これとは逆に、重錘体がX軸正方向へ移動しているときに、Z軸負方向へのコリオリ力が作用し、重錘体がX軸負方向へ移動しているときには、Z軸正方向へのコリオリ力が作用する場合もある。いずれの現象が起こるかは、作用したY軸まわりの角速度ωyの回転方向(右まわりか左まわりか)に依存することになる。
【0044】
図3(a) は、第1の重錘体10AのX軸方向に関する往復運動(振動Ux(A))によるX軸方向の速度Vx(A)の時間変化を示すグラフであり、同図(b) は、第1の重錘体10Aがこのような運動を行っているときに、系全体に対してY軸まわりの角速度+ωyが作用した場合に、この角速度+ωyに起因して生じるZ軸方向へのコリオリ力Fz(以下、Z軸コリオリ力という)の時間変化を示すグラフであり、同図(c) は、第1の重錘体10Aがこのような運動を行っているときに、系全体に対してY軸まわりの角速度−ωy(角速度+ωyに対して逆まわりの角速度)が作用した場合に、この角速度−ωyに起因して生じるZ軸コリオリ力Fzの時間変化を示すグラフである。これらの各グラフの横軸は、同図(d) に示す共通の時間軸に対応したものとなっている。
【0045】
まず、第1の重錘体10AのX軸方向の速度Vx(A)の変化は、図3(a) に示すように、時刻t=t0〜t4を一周期とする正弦波グラフとなる。時刻t=t0において、重心G(A)は、X軸上の最も負側の位置X−(A)にあり、このときの速度は0である。続く時刻t=t1には、重心G(A)は、中心位置X0(A)を矢印r11で示される正の最大速度(ここでは、Vx(At1)と表すことにする)で通過し、時刻t=t2において、X軸上の最も正側の位置X+(A)に到達する。このときの速度は0である。そして、時刻t=t3には、重心G(A)は、中心位置X0(A)を矢印r12で示される負の最大速度(ここでは、Vx(At3)と表すことにする)で通過し、時刻t=t4において、X軸上の最も負側の位置X−(A)に到達する。これは、時刻t0のときの状態と同じである。
【0046】
第1の重錘体10Aがこのような往復運動を行っているときに、系全体にY軸まわりの各速度+ωyが作用すると、図3(b) に示すように、図3(a) のグラフと同位相の正弦波グラフで示されるようなZ軸コリオリ力Fz(A:+ωy)が生じることになる。すなわち、Z軸コリオリ力Fz(A:+ωy)の絶対値および極性は、速度Vx(A)の絶対値および極性に応じて決まり、時刻t=t1において矢印r13で示される正の最大値(ここでは、Fz(At1)と表すことにする)をとり、時刻t=t3において矢印r14で示される負の最大値(ここでは、Fz(At3)と表すことにする)をとることになる。一方、角速度+ωyとは逆まわりの角速度−ωyが作用していた場合には、図3(c) に示すように、図3(b) のグラフとは逆位相の正弦波グラフで示されるようなZ軸コリオリ力Fz(A:−ωy)が生じることになる。やはり、Z軸コリオリ力Fz(A:−ωy)の絶対値および極性は、速度Vx(A)の絶対値および極性に応じて決まり、時刻t=t1において矢印r15で示される負の最大値(ここでは、Fz(At1)と表すことにする)をとり、時刻t=t3において矢印r16で示される負の最大値(ここでは、Fz(At3)と表すことにする)をとることになる。
【0047】
結局、第1の重錘体10AをX軸方向に往復運動させた状態において、Y軸まわりの角速度+ωyまたは−ωyが作用した場合、これに起因して生じるZ軸コリオリ力Fzを検出すれば、作用した角速度+ωyまたは−ωyを求めることができる。たとえば、時刻t1またはt3を検出時と定義し、この検出時におけるZ軸コリオリ力Fzの大きさおよび極性を検出することができれば、作用した角速度ωyの大きさおよび極性(+ωyか、−ωyか、別言すれば、右まわりか、左まわりか)を求めることができる。このような角速度検出原理は、既に前掲の先願において開示されている。
【0048】
本発明の特徴は、第1の重錘体10Aとともに、第2の重錘体10Bを設け、両重錘体の運動の位相を逆転させるようにした点にある。図4(a) は、第2の重錘体10BのX軸方向に関する往復運動(振動Ux(B))によるX軸方向の速度Vx(B)の時間変化を示すグラフであり、同図(b) は、第2の重錘体10Bがこのような運動を行っているときに、系全体に対してY軸まわりの角速度+ωyが作用した場合に、この角速度+ωyに起因して生じるZ軸コリオリ力の時間変化を示すグラフであり、同図(c) は、第2の重錘体10Bがこのような運動を行っているときに、系全体に対してY軸まわりの角速度−ωy(角速度+ωyに対して逆まわりの角速度)が作用した場合に、この角速度−ωyに起因して生じるZ軸コリオリ力Fzの時間変化を示すグラフである。これらの各グラフの横軸は、同図(d) に示す共通の時間軸に対応したものとなっている。
【0049】
まず、第2の重錘体10BのX軸方向の速度Vx(B)の変化は、図4(a) に示すように、時刻t=t0〜t4を一周期とする正弦波グラフとなる。ここで留意すべき点は、図4(a) に示すグラフは、図3(a) に示すグラフに対して、位相が逆転している点である。すなわち、図4(a) のグラフでは、時刻t=t0において、重心G(B)は、X軸上の最も正側の位置X+(B)にあり、このときの速度は0である。続く時刻t=t1には、重心G(B)は、中心位置X0(B)を矢印r21で示される負の最大速度(ここでは、Vx(Bt1)と表すことにする)で通過し、時刻t=t2において、X軸上の最も負側の位置X−(B)に到達する。このときの速度は0である。そして、時刻t=t3には、重心G(B)は、中心位置X0(B)を矢印r22で示される正の最大速度(ここでは、Vx(Bt3)と表すことにする)で通過し、時刻t=t4において、X軸上の最も正側の位置X+(B)に到達する。これは、時刻t0のときの状態と同じである。
【0050】
第2の重錘体10Bがこのような往復運動を行っているときに、系全体にY軸まわりの各速度+ωyが作用すると、図4(b) に示すように、図4(a) のグラフと同位相の正弦波グラフで示されるようなZ軸コリオリ力Fz(B:+ωy)が生じることになる。すなわち、Z軸コリオリ力Fz(B:+ωy)の絶対値および極性は、速度Vx(B)の絶対値および極性に応じて決まり、時刻t=t1において矢印r23で示される負の最大値(ここでは、Fz(Bt1)と表すことにする)をとり、時刻t=t3において矢印r24で示される正の最大値(ここでは、Fz(Bt3)と表すことにする)をとることになる。一方、角速度+ωyとは逆まわりの角速度−ωyが作用していた場合には、図4(c) に示すように、図4(b) のグラフとは逆位相の正弦波グラフで示されるようなZ軸コリオリ力Fz(B:−ωy)が生じることになる。やはり、Z軸コリオリ力Fz(B:−ωy)の絶対値および極性は、速度Vx(B)の絶対値および極性に応じて決まり、時刻t=t1において矢印r25で示される正の最大値(ここでは、Fz(Bt1)と表すことにする)をとり、時刻t=t3において矢印r26で示される負の最大値(ここでは、Fz(Bt3)と表すことにする)をとることになる。
【0051】
さて、第1の重錘体10Aに対して作用したZ軸コリオリ力を第1のZ軸コリオリ力と呼び、第2の重錘体10Bに対して作用したZ軸コリオリ力を第2のZ軸コリオリ力と呼ぶことにすれば、これら個々のZ軸コリオリ力は、いずれもこの角速度センサに作用したY軸まわりの角速度ωyを示すものになるが、第1のZ軸コリオリ力と第2のZ軸コリオリ力との差を求めれば、Y軸まわりの角速度ωyのより正確な検出値を得ることが可能になる。その理由は、たとえば、図3(b) に示すグラフ(第1の重錘体10Aに関するグラフ)と図4(b) に示すグラフ(第2の重錘体10Bに関するグラフ)との差を求める演算結果を考えれば理解できよう。両グラフの値は、どの時点においても、常に極性が反転したものとなっているため、両者の和は理論的には0になってしまうが、両者の差をとれば、両グラフの特性を倍にした結果が得られることになる。しかも、差分演算を行うことにより、両グラフに共通して含まれていた誤差成分(たとえば、後述するような加速度成分や、温度や湿度などによる誤差成分など)が除去されることになるので、より正確な信頼性の高い検出結果を得ることができるようになる。これが、本発明に係る角速度センサにおける角速度検出の基本原理である。
【0052】
なお、第1の重錘体10Aの質量と第2の重錘体10Bの質量とが同一ではない場合には、両グラフの振幅は等しくならない。このような場合は、質量比に基づいた補正を行う必要がある。このような補正演算を省略するために、両重錘体の質量は等しくしておくのが好ましい。また、後述する具体的な検出動作を行う上では、両重錘体の形状やサイズも等しくしておくのが好ましい。
【0053】
<<< 1.3 個々の角速度および加速度の検出原理 >>>
これまで、図1に示す角速度センサについて、Y軸まわりの角速度ωyを検出する原理を述べた。その要点は、まず、第1の重錘体10Aおよび第2の重錘体10Bを、X軸方向に沿って往復運動させることである。このとき、両往復運動は、その周期は同一であるが、位相が反転したものとなるようにする。より広い概念でとらえれば、これら一対の重錘体の運動は、少なくとも所定の検出時において、第1の重錘体10AがX軸の正方向の速度成分をもって運動し、第2の重錘体10BがX軸の負方向の速度成分をもって運動していれば、必ずしも互いに位相が反転した往復運動である必要はない。ただ、実用上は、互いに位相が反転した往復運動をさせるのが最も簡単である。このように、一対の重錘体がX軸方向に運動している状態で、Y軸まわりの角速度ωyが作用すると、各重錘体にはZ軸方向にコリオリ力が作用するので、このZ軸コリオリ力を検出する。このとき、両重錘体の移動方向は逆向きなので、両重錘体に作用するZ軸コリオリ力の向きも逆向きになる(向きを示す正負の符号が逆になる)。そこで、検出した両Z軸コリオリ力の差(符号を考慮した差)を求めれば、この差が、作用したY軸まわりの角速度ωyを示す値となる。より具体的には、差の絶対値が角速度ωyの絶対値を示し、差の符号が角速度ωyの向きを示すことになる。たとえば、図3および図4に示す時刻t1における検出結果では、第1の重錘体10Aに作用したZ軸コリオリ力から第2の重錘体10Bに作用したZ軸コリオリ力を引くことにより得られた差の符号が正ならば、角速度+ωyが作用したことになり、逆にこの差の符号が負ならば、角速度−ωyが作用したことになる。
【0054】
以上は、Y軸まわりの角速度ωyの検出原理であるが、図1に示す角速度センサでは、全く同様にして、Z軸まわりの角速度ωzを検出することも可能である。すなわち、両重錘体がX軸方向に往復運動している状態において、Z軸まわりの角速度ωzが作用すると、両重錘体には、Y軸方向のコリオリ力(以下、Y軸コリオリ力と呼ぶ)が作用することになる。この場合、やはり両重錘体の移動方向は逆向きなので、両重錘体に作用するY軸コリオリ力の向きも逆向きになる。そこで、検出した両Y軸コリオリ力の差を求めれば、この差が、作用したZ軸まわりの角速度ωzを示す値となる。より具体的には、差の絶対値が角速度ωzの絶対値を示し、差の符号が角速度ωzの向きを示すことになる。
【0055】
結局、両重錘体をX軸方向に往復運動させた状態において、各重錘体に作用するZ軸コリオリ力およびY軸コリオリ力を検出すれば、Y軸まわりの角速度ωyとZ軸まわりの角速度ωzとの双方を求めることが可能である。なお、X軸まわりの角速度ωxは、両重錘体をX軸方向に往復運動させる実施形態では求めることができない。この角速度ωxの検出方法については、後に別な実施形態で説明する。
【0056】
一方、図1に示す角速度センサでは、X軸方向の加速度αx、Y軸方向の加速度αy、Z軸方向の加速度αzを検出することも可能である。すなわち、ニュートンの法則により、質量mを有する物体に加速度αが作用すると、この加速度αと同じ方向に加速度に起因した力f(ここでは、加速度力fと呼ぶことにする)が作用し、この加速度力fは、f=mαで求められる。したがって、重錘体に作用する加速度力fを検出することができれば、重錘体に作用した加速度αを求めることができる。よって、図1の角速度センサでは、各重錘体に作用するX軸方向の加速度力fx、Y軸方向の加速度力fy、Z軸方向の加速度力fzを検出すれば、各軸方向の加速度αx,αy,αzを求めることができる。
【0057】
ここで留意すべき点は、コリオリ力の向きは重錘体の運動方向によって左右されるのに対し、加速度力の向きは重錘体の運動方向とは無関係であるという点である。たとえば、この系全体に対して、X軸正方向の加速度+αxが作用していた場合、各重錘体がどのような方向に運動していようとも、重錘体には常にX軸正方向の加速度力+fxが加わることになる。すなわち、第1の重錘体10Aに加わる加速度力と第2の重錘体10Bに加わる加速度力とは、両者の運動が逆向きであっても、理論的には常に同じ向き、同じ大きさとなる。したがって、両重錘体に作用した加速度力の和を求めれば、両重錘体に作用した平均的な加速度を求めることができる。
【0058】
このように、重錘体に作用するコリオリ力に基づいて角速度を求めることができ、重錘体に作用する加速度力に基づいて加速度を求めることができるが、物理的な力としてみれば、コリオリ力と加速度力とに区別はない。これまで、重錘体に作用する力を検出するための具体的な手法については触れていないが、本実施形態では、後述するように、重錘体に生じた変位に基づいて作用した力を検出する方法を採っている。たとえば、図2に示すように、第1の重錘体10Aの重心G(A)がX軸上で振動Ux(A)に相当する運動を行っている状態において、Y軸の正または負方向への力が作用すれば、重心G(A)の位置はY軸の正または負方向へ変位することになり、振動Ux(A)の軌道はY軸の正または負方向へずれることになる。このずれ量を検出すれば、作用したY軸方向の力を求めることができる。同様に、Z軸方向の力については、Z軸方向のずれ量を検出することにより求めることができ、X軸方向の力については、X軸方向のずれ量(この場合、振動Ux(A)全体がX軸方向に移動することになり、たとえば、振動の中心位置X0(A)が変位することになる)を検出することにより求めることができる。
【0059】
各重錘体10A,10Bを、接続部材20によって、各座標軸方向に所定の自由度をもって運動可能なように支持しているのは、このように各軸方向の変位に基づいて、各軸方向に作用した力を検出することができるようにするためである。ただ、このようにして検出される力は、コリオリ力Fと加速度力fとの合成力であり、検出された力の絶対値からは、コリオリ力Fの割合や加速度力fの割合を知る手掛かりはない。上述したように、本発明では、コリオリ力Fに基づいて角速度を求め、加速度力fに基づいて加速度を求める必要があるため、コリオリ力Fと加速度力fとを区別して取り扱わねばならない。ところが、幸いにして、両者を区別した取り扱いが可能になる。以下、その理由を述べる。
【0060】
まず、第1の理由は、周波数成分に基づいて両者を区別することが可能になるためである。一般に、重錘体の運動周波数は、たとえば、数kHz程度の高い周波数に維持することが可能であるのに対し、検出対象となる加速度の周波数は、たかだか数Hz程度の低い周波数で十分である。たとえば、本発明に係る角速度センサを自動車や航空機などに搭載した場合、自動車の走行や航空機の航行によって生じる加速度は、たかだか数Hz程度の低い周波数成分だけ検出できれば十分である。もちろん、工作機械の振動検出などの用途に利用する場合は、検出対象となる加速度の周波数はより高くなるが、この場合でも、重錘体の運動周波数を更に高く設定することにより、重錘体の運動周波数と検出対象となる加速度の周波数とを区別することは可能である。
【0061】
ところで、コリオリ力Fは、図3(b) ,(c) あるいは図4(b) ,(c) のグラフにも示されているように、重錘体の運動周波数と同じ周波数をもって変化する量になる。これに対して、加速度力fは、重錘体の運動周波数とは無関係の量である。したがって、上述したように、重錘体の運動周波数を、検出対象となる加速度の周波数に比べて十分に高く設定し、前者を高周波数、後者を低周波数とする識別が可能になるようにしておけば、得られた力の検出値のうち、高周波成分をコリオリ力Fとして取り扱い、低周波成分を加速度力fとして取り扱うことが可能になる。具体的には、力の検出信号を周波数フィルタで弁別すれば、コリオリ力Fに関する信号と加速度力fに関する信号とを分離することが可能になる。これが第1の理由である。
【0062】
第2の理由は、角速度を求める際には、第1の重錘体10Aに作用したコリオリ力Fと第2の重錘体10Bに作用したコリオリ力Fとの差を求める演算が行われるのに対し、加速度を求める際には、第1の重錘体10Aに作用した加速度力fと第2の重錘体10Bに作用した加速度力fとの和を求める演算が行われるためである。たとえば、図3(b) には、角速度+ωyに起因して第1の重錘体10Aに対して生じるコリオリ力Fz(A:+ωy)のグラフが示されており、図4(b) には、角速度+ωyに起因して第2の重錘体10Bに対して生じるコリオリ力Fz(B:+ωy)のグラフが示されている。両グラフは正負が反転した状態になっており、両者の差に基づいて角速度ωyが求まることになる。たとえば、時刻t1を検出時とした場合、角速度ωyは、Fz(At1)−Fz(Bt1)なる演算によって求まる。ここで、Fz(Bt1)は負の値であり、実際には、この差の演算は、矢印r13の長さと矢印r23の長さとの和を求める演算になる。
【0063】
以上は、コリオリ力Fzのみが作用していた場合の議論であるが、もしZ軸方向の加速度fzが作用していた場合、実際に検出されるZ軸方向の力は、コリオリ力Fzと加速度力fzとの合成力となる。いま、第1の重錘体10Aに作用するZ軸方向の加速度力をfz(A)、第2の重錘体10Bに作用するZ軸方向の加速度力をfz(B)とすれば、時刻t1において、第1の重錘体10Aに作用する合成力は、Fz(At1)+fz(A)となり、第2の重錘体10Bに作用する合成力は、Fz(Bt1)+fz(B)となる。ここで、Fz(At1)とFz(Bt1)とは、絶対値が等しく符号が逆であるのに対し、fz(A)とfz(B)とは、絶対値も符号も等しくなる。したがって、両合成力の差をとれば、コリオリ力Fzの絶対値の和のみが求まり、加速度力fzは相殺されてしまう。逆に、両合成力の和をとれば、加速度力fzの絶対値の和のみが求まり、コリオリ力Fzは相殺されてしまう。
【0064】
このように、本発明では、2つの重錘体に作用した力の差に基づいて角速度が求まり、和に基づいて加速度が求まる、という基本原理があるため、差および和を求める演算によって、不要な力成分(角速度検出における加速度力の成分、加速度検出におけるコリオリ力の成分)がうまく相殺されることになる。これが第2の理由である。
【0065】
<<< 1.4 角速度および加速度の検出回路 >>>
図5〜図7は、上述した原理に基づいて、XYZの各座標軸方向の加速度αx,αy,αzと、Y軸まわりの角速度ωyおよびZ軸まわりの角速度ωzとの5軸成分を検出する検出回路の基本構成を示すブロック図である。
【0066】
図5は、第1の重錘体10Aに関する検出回路のブロック図を示す。X軸方向駆動手段40Aは、第1の重錘体10AをX軸に沿って往復運動させる手段であり、その具体的な構成例については後述する。このX軸方向駆動手段40Aの動作により、第1の重錘体10AがX軸に沿って運動している状態において、X軸方向力検出手段51A,Y軸方向力検出手段52A,Z軸方向力検出手段53Aによって、第1の重錘体10Aに対してX軸,Y軸,Z軸方向に作用した力(コリオリ力Fと加速度力f)が検出される。まず、X軸方向力検出手段51Aによって、加速度力fx(A)のみが検出される(重錘体はX軸方向に運動しているので、X軸方向のコリオリ力は生じない)。一方、Y軸方向力検出手段52Aによって、加速度力fy(A)と、Z軸まわりの角速度ωzに起因して生じるコリオリ力Fy(A:ωz)との合成力が検出される。また、Z軸方向力検出手段53Aによって、加速度力fz(A)と、Y軸まわりの角速度ωyに起因して生じるコリオリ力Fz(A:ωy)との合成力が検出される。
【0067】
Y軸方向信号分離手段61AおよびZ軸方向信号分離手段62Aは、上述したように、得られた合成力の信号を、高周波成分(コリオリ力Fの成分)と低周波成分(加速度力fの成分)とに分離する機能を果たす。これにより、加速度力fy(A)とコリオリ力Fy(A:ωz)とが分離され、加速度力fz(A)とコリオリ力Fz(A:ωy)とが分離される。加速度および角速度の各演算手段71A〜75Aは、得られた加速度力fx(A),fy(A),fz(A)とコリオリ力Fy(A:ωz),Fz(A:ωy)とに基づいて、それぞれ加速度αx(A),αy(A),αz(A),角速度ωz(A),ωy(A)を演算する機能を有する。具体的には、所定の検出時に入力された加速度力fあるいはコリオリ力Fの信号値に、所定の係数を乗じて、加速度値あるいは角速度値として出力する処理を行う。
【0068】
こうして、各演算手段71A〜75Aから出力された加速度αx(A),αy(A),αz(A),角速度ωz(A),ωy(A)の値は、もちろん、そのまま加速度検出値および角速度検出値として利用することができる。しかしながら、これらの検出値は必ずしも正確な値ではなく、実際には、種々の誤差成分が含まれている。たとえば、信号分離手段61A,62Aにおいて行われた周波数に基づく分離処理では、必ずしも加速度力とコリオリ力との厳密な分離が行われているわけではない。また、実際のセンサでは、各軸方向に作用した力を検出するために具体的な検出素子が用いられるが、これらの検出素子では、温度などの環境によって検出感度に変化が生じる可能性がある。
【0069】
本発明では、第1の重錘体10Aを用いた第1の検出系とともに、第2の重錘体10Bを用いた第2の検出系が設けられており、両検出計の検出結果を用いて、種々の誤差成分を相殺できるようにしている。図6は、第2の重錘体10Bに関する検出回路のブロック図を示す。この図6の検出回路は、図5に示す検出回路における符号Aを符号Bに書き替えたものであり、両検出回路の実体的な内容は全く同じである。したがって、ここでは、図6の検出回路の構成および動作についての説明は省略する。この図6の検出回路によって、加速度αx(B),αy(B),αz(B),角速度ωz(B),ωy(B)の値が得られることになる。
【0070】
図7に示す回路は、図5に示す検出回路によって得られた加速度αx(A),αy(A),αz(A),角速度ωy(A),ωz(A)と、図6に示す検出回路によって得られた加速度αx(B),αy(B),αz(B),角速度ωy(B),ωz(B)とに基づいて、最終的な加速度αx,αy,αz,角速度ωy,ωzを求める回路である。すなわち、各軸方向の加速度を示す値については和を求める演算が行われ、各軸まわりの角速度を示す値については差を求める演算が行われる。この演算により、種々の誤差成分が相殺され、より正確な検出値が得られることになる。
【0071】
<<< 1.5 X軸まわりの角速度ωxの検出原理 >>>
図7に示されているように、上述した角速度センサでは、3軸に関する加速度αx,αy,αzと、2軸に関する角速度ωy,ωzを検出することができるが、X軸まわりの角速度ωxについては検出することはできない。これは、重錘体の運動方向がX軸方向であるため、X軸まわりの角速度ωxに基づくコリオリ力が発生しないためである。したがって、X軸まわりの角速度ωxを検出するためには、重錘体をY軸方向またはZ軸方向に運動させた状態で、Z軸方向またはY軸方向に作用するコリオリ力を検出すればよい。
【0072】
たとえば、図8に示すように、第1の重錘体10Aに対して、図に矢印で示されているようなY軸方向の振動Uy(A)を与え、同時に、第2の重錘体10Bに対して、図に矢印で示されているようなY軸方向の振動Uy(B)を与えたとする。別言すれば、第1の重錘体10Aも第2の重錘体10Bも、Y軸方向に沿って往復運動していることになる。このとき、振動Uy(A)と振動Uy(B)とは、周期が同一で位相が反転したものとなるようにし、常に、両重錘体が逆方向に運動するようにする。ここで、第1の重錘体10Aの重心G(A)と、第2の重錘体10Bの重心G(B)とが、いずれもX軸上に位置していたとすると、これら重心の変位は図9に示すようなものになる。すなわち、振動Uy(A)によって、第1の重錘体10Aの重心G(A)は、位置Y0(A)を中心として、Y軸正方向へはY+(A)の位置まで移動し、Y軸負方向へはY−(A)の位置まで移動することになる。同様に、振動Uy(B)によって、第2の重錘体10Bの重心G(B)は、位置Y0(B)を中心として、Y軸正方向へはY+(B)の位置まで移動し、Y軸負方向へはY−(B)の位置まで移動することになる。
【0073】
この状態で、重錘体10A,10Bに作用する各Z軸コリオリ力(互いに逆符号になる)を検出し、両者の差を求めれば、X軸まわりの角速度ωxを得ることができる。もちろん、このとき、重錘体10A,10Bに作用する各Y軸コリオリ力(互いに逆符号になる)を検出し、両者の差を求めれば、Z軸まわりの角速度ωzを得ることもできるし、各軸方向の加速度αx,αy,αzを得ることもできる。
【0074】
結局、図8に示すような運動態様(各重錘体をY軸方向に振動させる態様)では、3軸に関する加速度αx,αy,αzと、2軸に関する角速度ωx,ωzを検出することができるが、Y軸まわりの角速度ωyについては検出することはできない。したがって、各軸方向に関する加速度と各軸まわりに関する角速度とのすべてを検出するためには、図1に示すような運動態様(各重錘体をX軸方向に振動させる態様)と図8に示すような運動態様とを交互に切り替えて実施すればよい。しかしながら、実用上は、X軸方向の運動態様をY軸方向の運動態様に切り替えるのは非効率的である。そこで、3軸方向の加速度と3軸まわりの角速度との6軸成分を検出するためには、次のセクションで述べるように、重錘体を回転運動させる実施形態を採るのが好ましい。
【0075】
§2. 重錘体を回転運動させる実施形態
【0076】
<<< 2.1 回転運動の形態 >>>
前述した§1では、各重錘体10A,10Bを、X軸方向またはY軸方向に沿って往復運動させる形態を述べたが、ここでは、各重錘体10A,10Bを、円軌道に沿って回転運動させる形態を、図10を参照しながら説明する。図10は、各重錘体10A,10Bの重心G(A),G(B)の運動軌跡を示すXY平面の平面図である。ここでは、説明の便宜上、X軸の正方向を図の右方向にとり、Y軸の正方向を図の上方向にとって示してあり、図の右半分には第1の重錘体10Aの運動軌跡が示され、図の左半分には第2の重錘体10Bの運動軌跡が示されている。図の右半分において、点P1(A)〜点P4(A)は、それぞれ時刻t1〜t4における重心G(A)の位置を示しており、重心G(A)は図示された円軌道に沿って時計まわりに移動している。同様に、図の左半分において、点P1(B)〜点P4(B)は、それぞれ時刻t1〜t4における重心G(B)の位置を示しており、重心G(B)は図示された円軌道に沿って時計まわりに移動している。
【0077】
このように、重錘体10A,10Bはいずれも同一周期で同一の回転方向に回転運動をしていることになるが、その位相は180°ずれたものとなっている。すなわち、時刻t1において、重心G(A)は円軌道の最上位置にある点P1(A)に位置しているのに対して、重心G(B)は円軌道の最下位置にある点P1(B)に位置している。このように両重錘体の回転運動の位相を180°ずらすと、どの瞬間においても、両重錘体の移動方向は逆向きになる。図10の各点には、それぞれその時点における重錘体の運動速度ベクトル(円軌道の接線方向を向いている)を矢印で示してある。すなわち、時刻t1では、第1の重錘体10Aは、点P1(A)においてX軸正方向に速度Vx(At1)で移動しているのに対し、第2の重錘体10Bは、点P1(B)においてX軸負方向に速度Vx(Bt1)で移動している。同様に、時刻t2では、第1の重錘体10Aは、点P2(A)においてY軸負方向に速度Vy(At2)で移動しているのに対し、第2の重錘体10Bは、点P2(B)においてY軸正方向に速度Vy(Bt2)で移動しており、時刻t3では、第1の重錘体10Aは、点P3(A)においてX軸負方向に速度Vx(At3)で移動しているのに対し、第2の重錘体10Bは、点P3(B)においてX軸正方向に速度Vx(Bt3)で移動しており、時刻t4では、第1の重錘体10Aは、点P4(A)においてY軸正方向に速度Vy(At4)で移動しているのに対し、第2の重錘体10Bは、点P4(B)においてY軸負方向に速度Vy(Bt4)で移動している。
【0078】
このような回転運動には、X軸方向についての単振動とY軸方向についての単振動とが含まれており、図1に示すように、重錘体をX軸方向に往復運動させた状態での検出動作と、図8に示すように、重錘体をY軸方向に往復運動させた状態での検出動作と、の両方を行うことが可能になる。
【0079】
たとえば、時刻t1では、上述したように、第1の重錘体10Aは、点P1(A)においてX軸正方向に速度Vx(At1)で移動し、第2の重錘体10Bは、点P1(B)においてX軸負方向に速度Vx(Bt1)で移動しており、これは図3(a) の矢印r11および図4(a) の矢印r21で示されている運動と同じである。同様に、時刻t3では、上述したように、第1の重錘体10Aは、点P3(A)においてX軸負方向に速度Vx(At3)で移動し、第2の重錘体10Bは、点P3(B)においてX軸正方向に速度Vx(Bt3)で移動しており、これは図3(a) の矢印r12および図4(a) の矢印r22で示されている運動と同じである。結局、時刻t1およびt3では、図1に示すように、重錘体をX軸方向に往復運動させた状態と等価な運動状態が得られることになり、この時刻t1およびt3を検出時とする検出を行えば、加速度αx,αy,αzおよび角速度ωy,ωzの5軸成分を検出することができる。ここでは、時刻t1およびt3を、X軸検出時と呼ぶことにする。
【0080】
これに対して、時刻t2およびt4では、図8に示すように、重錘体をY軸方向に往復運動させた状態と等価な運動状態が得られることになり、この時刻t2およびt4を検出時とする検出を行えば、加速度αx,αy,αzおよび角速度ωx,ωzの5軸成分を検出することができる。ここでは、時刻t2およびt4をY軸検出時と呼ぶことにする。
【0081】
結局、時刻t1〜t4を一周期とする検出動作を行えば、X軸検出時には、αx,αy,αz,ωy,ωzの5軸成分が検出でき、Y軸検出時には、αx,αy,αz,ωx,ωzの5軸成分が検出できることになり、一検出周期の間に、全6軸成分の検出が可能になる。
【0082】
<<< 2.2 角速度および加速度の検出回路 >>>
図11〜図13は、上述した原理に基づいて、XYZの各座標軸方向の加速度αx,αy,αzと、各座標軸まわりの角速度ωx,ωy,ωzとの6軸成分を検出する検出回路の基本構成を示すブロック図である。
【0083】
図11は、第1の重錘体10Aに関する検出回路のブロック図を示す。回転駆動手段140Aは、第1の重錘体10Aを円軌道に沿って回転運動させる手段であり、その具体的な構成例については後述する。この回転駆動手段140Aの動作により、第1の重錘体10Aが円軌道に沿って運動している状態において、X軸方向力検出手段151A,Y軸方向力検出手段152A,Z軸方向力検出手段153Aによって、第1の重錘体10Aに対してX軸,Y軸,Z軸方向に作用した力(コリオリ力Fと加速度力f)が検出される。
【0084】
まず、X軸方向力検出手段151Aによって、X軸方向に作用した力が検出されるが、X軸検出時(時刻t1,t3)には、加速度力fx(A)のみが検出され(X軸検出時には、重錘体はX軸方向に運動しているので、X軸方向のコリオリ力は生じない)、Y軸検出時(時刻t2,t4)には、加速度力fx(A)とコリオリ力Fx(A:ωz)との合成力が検出される。なお、図では、X軸検出時に検出される力を1で示し、Y軸検出時に検出される力を2で示してある。
【0085】
同様に、Y軸方向力検出手段152Aによって、Y軸方向に作用した力が検出されるが、X軸検出時(時刻t1,t3)には、加速度力fy(A)とコリオリ力Fy(A:ωz)との合成力が検出され、Y軸検出時(時刻t2,t4)には、加速度力fy(A)のみが検出される(Y軸検出時には、重錘体はY軸方向に運動しているので、Y軸方向のコリオリ力は生じない)。
【0086】
また、Z軸方向力検出手段153Aによって、Z軸方向に作用した力が検出されるが、X軸検出時(時刻t1,t3)には、加速度力fz(A)とY軸まわりの角速度に起因したコリオリ力Fz(A:ωy)との合成力が検出され、Y軸検出時(時刻t2,t4)には、加速度力fz(A)とX軸まわりの角速度に起因したコリオリ力Fz(A:ωx)との合成力が検出される。
【0087】
X軸方向信号分離手段161A,Y軸方向信号分離手段162A,Z軸方向信号分離手段163Aは、得られた合成力の信号を、高周波成分(コリオリ力Fの成分)と低周波成分(加速度力fの成分)とに分離する機能を果たす。これにより、加速度力fx(A)とコリオリ力Fx(A:ωz)とが分離され、加速度力fy(A)とコリオリ力Fy(A:ωz)とが分離され、加速度力fz(A)とコリオリ力Fz(A:ωy)またはFz(A:ωx)とが分離される。加速度および角速度の各演算手段171A〜176Aは、得られた加速度力fx(A),fy(A),fz(A)とコリオリ力Fx(A:ωz),Fy(A:ωz),Fz(A:ωy),Fz(A:ωx)とに基づいて、加速度αx(A),αy(A),αz(A),角速度ωx(A),ωy(A),ωz(A)を演算する機能を有する。具体的には、所定の検出時に入力された加速度力fあるいはコリオリ力Fの信号値に、所定の係数を乗じて、加速度値あるいは角速度値として出力する処理を行う。
【0088】
なお、角速度演算手段172Aと174Aとは、いずれも角速度ωz(A)を出力する機能を有しているので、少なくとも一方があれば足りる。ただ、両方を設けておけば、X軸検出時にもY軸検出時にも、角速度ωz(A)を得ることができる。また、角速度演算手段176Aは、X軸検出時には角速度ωy(A)を出力し、Y軸検出時には角速度ωx(A)を出力する、という交互出力動作を行うことになるので、いずれの検出時に出力された値であるかによって、出力値を区別して取り扱うようにする必要がある。
【0089】
こうして、各演算手段171A〜176Aから出力された加速度αx(A),αy(A),αz(A),角速度ωx(A),ωy(A),ωz(A)の値は、もちろん、そのまま加速度検出値および角速度検出値として利用することができる。しかしながら、これらの検出値は必ずしも正確な値ではなく、実際には、上述したように種々の誤差成分が含まれている。そこで、第1の重錘体10Aを用いた第1の検出系と、第2の重錘体10Bを用いた第2の検出系とを利用して、誤差成分を相殺する。図12は、第2の重錘体10Bに関する検出回路のブロック図を示す。この図12の検出回路は、図11に示す検出回路における符号Aを符号Bに書き替えたものであり、両検出回路の実体的な内容は全く同じである。したがって、ここでは、図12の検出回路の構成および動作についての説明は省略する。この図12の検出回路によって、加速度αx(B),αy(B),αz(B),角速度ωx(B),ωy(B),ωz(B)の値が得られることになる。
【0090】
図13に示す回路は、図11に示す検出回路によって得られた加速度αx(A),αy(A),αz(A),角速度ωx(A),ωy(A),ωz(A)と、図12に示す検出回路によって得られた加速度αx(B),αy(B),αz(B),角速度ωx(B),ωy(B),ωz(B)とに基づいて、最終的な加速度αx,αy,αz,角速度ωx,ωy,ωzを求める回路である。すなわち、各軸方向の加速度を示す値については和を求める演算が行われ、各軸まわりの角速度を示す値については差を求める演算が行われる。この演算により、種々の誤差成分が相殺され、より正確な検出値が得られることになる。
【0091】
§3. 重錘体の運動機構および力の検出機構
本発明に係る角速度センサでは、重錘体に所定の運動を行わせた状態において、この重錘体に作用する力を検出することにより、角速度および加速度の検出を行うことになる。そこで、ここでは、重錘体を運動させるための具体的な機構および重錘体に作用する力を検出するための具体的な機構を述べることにする。
【0092】
<<< 3.1 導電路を利用した基本原理 >>>
いま、図14に示すように、XY平面に平行な上面を有する基板を重錘体10として用いることにし、この重錘体10を接続部材20によって装置筐体30に接続する。そして、この重錘体10の上面に、図示のように、Y軸に沿って伸びる一対の励振用導電路Ly1,Ly2を形成する。一方、この励振用導電路Ly1,Ly2が位置する空間に、この励振用導電路Ly1,Ly2に対して磁束が平行にはならないような均一磁界を発生させる磁界発生手段100を設ける。図示の例の場合、磁界発生手段100は、Z軸方向を向いた均一な平行磁束φzを発生させる機能を有する。
【0093】
このような構成において、励振用導電路Ly1,Ly2に励振用電流Iyを流すと、この電流Iyと磁界との相互作用に基づくローレンツ力によって、重錘体10に対してX軸方向の力が作用する。したがって、励振用導電路Ly1,Ly2に対して、それぞれ同位相の交流電流Iyを供給すると、重錘体10はX軸方向に単振動することになる。よって、重錘体10上に励振用導電路Ly1,Ly2を設けておけば、重錘体10をX軸方向に往復運動させることが可能になる。なお、原理的には、励振用導電路は、Ly1またはLy2のいずれか一方のみで足りるが、安定した往復運動を行わせるためには、重錘体10の重心位置を挟んで線対称となる位置に一対の励起用導電路を設けるのが好ましい。また、重錘体10をY軸方向に往復運動させる場合には、X軸に沿って伸びる励振用導電路を用いればよいし、重錘体10をXY平面内で回転運動させる場合には、後述するように、X軸に沿って伸びる励振用導電路とY軸に沿って伸びる励振用導電路との双方を用いればよい。
【0094】
次に、図15に示すように、重錘体10の上面に、X軸に沿って伸びる一対の検出用導電路Kx1,Kx2と、Y軸に沿って伸びる一対の検出用導電路Ky1,Ky2とを形成した場合を考える。この場合も、検出用導電路Kx1,Kx2,Ky1,Ky2が位置する空間に、これらの導電路に対して磁束が平行にはならないような均一磁界を発生させる磁界発生手段100を設ける。図示の例の場合、磁界発生手段100は、Z軸方向を向いた均一な平行磁束φzを発生させる機能を有する。
【0095】
この図15に示すような構成において、重錘体10に何らかの力が作用し、重錘体10がX軸方向に速度Vxで変位した場合、Y軸に沿って伸びる検出用導電路Ky1,Ky2が磁束φzを切る運動を行うため、この検出用導電路Ky1,Ky2の両端には、フレミングの法則に基づいて、それぞれ所定の誘導起電力Eyが生じることになる。よって、この起電力Eyを検出することにより、X軸方向への変位速度Vxを求めることができる。また、図16に示すように、重錘体10に何らかの力が作用し、重錘体10がY軸方向に速度Vyで変位した場合、X軸に沿って伸びる検出用導電路Kx1,Kx2が磁束φzを切る運動を行うため、この検出用導電路Kx1,Kx2の両端には、それぞれ所定の誘導起電力Exが生じることになる。よって、この起電力Exを検出することにより、Y軸方向への変位速度Vyを求めることができる。
【0096】
なお、原理的には、検出用導電路は、Kx1またはKx2のいずれか一方と、Ky1またはKy2のいずれか一方と、を設けておけば足りるが、安定した検出動作を行うためには、重錘体10の重心位置を挟んで線対称となる位置にそれぞれ一対の検出用導電路を設けるのが好ましい。
【0097】
ところで、本発明において検出すべき量は、重錘体10に作用した力(コリオリ力および加速度力)である。ここで、この重錘体10に作用した力と、重錘体10に生じた変位との間には、所定の対応関係が定義できる。すなわち、作用した力の方向と変位の方向は一致し、力の大きさと変位の大きさは対応する(作用した力が大きくなればなるほど、変位も大きくなる)。特に、接続部材20が線形伸縮動作を行う場合には、作用した力の大きさと、変位の大きさは線形対応することになる。したがって、重錘体10の変位量を直接検出することができれば、この変位量を作用した力を示す量としてそのまま利用することができる。
【0098】
しかしながら、上述した検出用導電路に発生する誘導起電力は、重錘体10の変位量を直接示す物理量ではなく、あくまでも重錘体10の変位速度を示す物理量である。別言すれば、変位の時間微分値を示す物理量である。よって、この誘導起電力の値は、作用した力の時間微分値に対応した値ということになり、作用した力そのものを示す値にはならない。ただ、この誘導起電力の値を、作用した力を示す疑似的な値として利用しても、三次元空間内を自由運動する物体についての角速度や加速度を検出する用途における実用上は大きな問題は生じない。その理由は次のとおりである。
【0099】
まず、角速度の検出については、何ら問題は生じない。なぜなら、角速度に基づいて作用するコリオリ力は、重錘体10の運動方向が周期的に変化しているため、必ず周期的に変化することになるためである。たとえば、一定の向きに一定の角速度で回転しているシャフトに、この角速度センサを取り付けたとすると、センサの装置筐体30内で、重錘体10の運動方向は周期的に向きを変えるため、コリオリ力の向きも周期的に変わることになり、検出用導電路には常に誘導起電力が発生することになる。したがって、この誘導起電力の値を、重錘体10に作用したコリオリ力を示す値として利用し、角速度ωを演算しても何ら問題はない。
【0100】
一方、この誘導起電力の値を、重錘体10に作用した加速度力を示す値として利用し、加速度αを求める場合を考える。フレミングの法則によると、発生する誘導起電力は、導電路の移動速度に比例するので、加速度は誘導起電力の微分値に比例することになる。したがって、発生した誘導起電力から加速度αを求めるためには、誘導起電力の値を微分すればよいことになる(図5,図6,図11,図12に示されている力検出手段または加速度演算手段に、このような微分を求めるための微分回路を内蔵させておけばよい)。
【0101】
もっとも、この方法では、静的な加速度ではなく、動的な加速度(加速度の変動成分)のみしか検出することはできず、重力加速度gのような静的な加速度は、この方法では検出することができない。たとえば、重力加速度gが、重錘体10に対してY軸方向に作用していた場合、重錘体10自体はこの重力加速度gに起因した加速度力によってY軸方向に変位した状態を維持することになるが、このような定常的な変位によっては、検出用導電路に誘導起電力は生じない。このため、静的な加速度は、検出用導電路を利用する方法では検出することができない。しかしながら、自動車や航空機など、三次元空間内を自由運動する物体について測定すべき加速度は、ほとんどの場合、動的な加速度である。したがって、実用上は、上述した誘導起電力の微分値に基づいて動的加速度のみを検出する手法を採っても問題は生じない。もちろん、重力加速度gのような静的な加速度検出をも必要とする場合には、重錘体10の変位自体を検出することができる別な手法を採ればよい。
【0102】
<<< 3.2 容量素子を利用した基本原理 >>>
上述した検出用導電路を用いた方法によれば、重錘体10に作用したX軸方向の力およびY軸方向の力を検出することはできるが、Z軸方向の力を検出することはできない。なぜなら、磁界発生手段100によって発生した磁界が、Z軸方向を向いた磁束φzを有するからである。そこで、Z軸方向の力検出を行うためには、別な手段を用いなければならない。ここでは、容量素子を利用して、Z軸方向の力検出を行う方法を述べる。
【0103】
図17は、この方法で用いる重錘体10の側断面図である。ここで、重錘体10は、XY平面に平行な上面および下面を有する基板であり、接続部材20によって、装置筐体30に接続されている。また、この装置筐体30の一部には、重錘体10の下面に対向する対向面80が形成されている。更に、重錘体10の下面には、電極E1が形成され、対向面80の上面には、電極E2が形成されている。両電極E1,E2は、対向した位置に配置され、対向した一対の導電面によって容量素子が形成されている。
【0104】
一般に、容量素子の静電容量値は、その容量素子を形成する一対の電極間隔に反比例する。したがって、図17において、両電極E1,E2によって形成された容量素子の静電容量値は、これら両電極間距離に応じて定まることになる。ここで、重錘体10が図の下方(Z軸負方向)に変位すると、電極間距離は短くなり、重錘体10が図の上方(Z軸正方向)に変位すると、電極間距離は長くなる。結局、この容量素子の静電容量値を測定することができれば、重錘体10のZ軸方向の変位を検出することができ、重錘体10に作用したZ軸方向の力を間接的に検出することができる。なお、この容量素子によって検出される値は、重錘体10の変位そのものであるので、この検出値を利用して、重力加速度gのような静的加速度も求めることが可能である。
【0105】
また、ここでは、Z軸方向に作用した力の検出に容量素子を用いているが、この検出の原理は、X軸方向あるいはY軸方向に作用した力の検出にも利用することができる。更に、容量素子を構成する一対の電極間に電圧を印加するとクーロン力が発生するので、このクーロン力を利用して重錘体を運動させることも可能であり、容量素子は重錘体の駆動手段として利用することも可能である。このような利用形態の具体例は、§5の実施例で述べる。
【0106】
<<< 3.3 具体的な適用例 >>>
以上、重錘体上に導電路を形成することにより、重錘体の運動および力検出を行う原理と、容量素子を利用して力検出を行う原理とを説明したが、ここでは、これらの原理を、§1および§2で述べた実施形態に具体的に適用した例を述べる。
【0107】
図18は、図1に示す実施形態への適用例を示す平面図であり、XY平面を上方から見た状態が示されている。装置筐体30内には、XY平面に平行な上面および下面を有する基板からなる第1の重錘体10Aおよび第2の重錘体10Bが左右に並んで配置されている。これら重錘体10A,10Bは、接続部材20によって、装置筐体30に接続されている。また、両重錘体10A,10B間には、これらを相互接続する接続部材25が設けられており、この接続部材25上の1点Jは、装置筐体30に接続した状態にしてもよいし、接続せずに自由な状態にしておいてもよい。
【0108】
第1の重錘体10Aの上面には、6個の導電路が配置されている。ここで、これら導電路の配置状態を説明する便宜のために、第1の重錘体10Aの上面中央の点Oaまで座標系の原点を移動させたとすると、この第1の重錘体10Aの上面には、Y軸に沿って伸び、X軸の負の部分に交差するように配置された励振用導電路Ly1Aと、Y軸に沿って伸び、X軸の正の部分に交差するように配置された励振用導電路Ly2Aと、が設けられている。また、同じく第1の重錘体10Aの上面には、Y軸に沿って伸び、X軸の負の部分に交差するように配置された検出用導電路Ky1Aと、Y軸に沿って伸び、X軸の正の部分に交差するように配置された検出用導電路Ky2Aと、X軸に沿って伸び、Y軸の負の部分に交差するように配置された検出用導電路Kx1Aと、X軸に沿って伸び、Y軸の正の部分に交差するように配置された検出用導電路Kx2Aと、が設けられている。一方、第2の重錘体10Bの上面にも、原点Obの周囲に全く同じ構成で2本の励振用導電路Ly1B,Ly2Bと、4本の検出用導電路Ky1B,Ky2B,Kx1B,Kx2Bが設けられている。
【0109】
図19は、図18に示す角速度センサの側断面図であり、第1の重錘体10Aおよび第2の重錘体10Bの上面に、各導電路が形成された状態が示されている。また、これら各重錘体の上方には、磁石90(電磁石でもよい)が配置されている。この磁石90は、磁界発生手段100として機能し、Z軸方向を向いた平行磁束φzを発生させる機能を有する(図18の平面図では、磁石90の図示は省略されている)。第1の重錘体10Aの下面には、電極E1Aが形成されており、第2の重錘体10Bの下面には、電極E1Bが形成されている。装置筐体30の底面には、これらの電極に対向して、電極E2A,E2Bが形成されており、対向する一対の電極によって、それぞれ容量素子が形成されている。
【0110】
既に述べた原理により、図18に示す一対の励振用導電路Ly1A,Ly2Aに同一の交流電流を供給すると、第1の重錘体10AをX軸方向に往復運動させることができ、一対の励振用導電路Ly1B,Ly2Bに同一の交流電流を供給すると、第2の重錘体10BをX軸方向に往復運動させることができる。このとき、第1の重錘体10A側に供給する交流電流の位相と、第2の重錘体10B側に供給する交流電流の位相とを、互いに180°ずれた状態にしておけば、両重錘体は常に逆方向に運動することになる。
【0111】
こうして、重錘体10A,10BをX軸方向に往復運動させた状態において、各重錘体に作用した各軸方向の力は、次のようにして検出することができる。まず、第1の重錘体10Aに対してX軸方向に作用した力は、検出用導電路Ky1A,Ky2Aに発生した誘導起電力に基づいて検出することができる。また、第1の重錘体10Aに対してY軸方向に作用した力は、検出用導電路Kx1A,Kx2Aに発生した誘導起電力に基づいて検出することができる。更に、第1の重錘体10Aに対してZ軸方向に作用した力は、電極E1A,E2Aによって構成される容量素子の静電容量に基づいて検出することができる。第2の重錘体10Bに作用した各軸方向の力についても、同様の方法で検出することが可能である。
【0112】
結局、図1に示す実施形態に適用した場合、次のような方法で角速度および加速度を検出することができる。まず、Y軸まわりの角速度ωyは、両重錘体に作用したZ軸コリオリ力の差として検出されるので、両重錘体の容量素子の静電容量値の差として求めることができる。
【0113】
また、Z軸まわりの角速度ωzは、両重錘体に作用したY軸コリオリ力の差として検出されるので、検出用導電路Kx1AまたはKx2Aに発生する誘導起電力と、検出用導電路Kx1BまたはKx2Bに発生する誘導起電力との差として求めることができる。あるいは、検出用導電路Kx1Aに発生する誘導起電力と検出用導電路Kx2Aに発生する誘導起電力との和と、検出用導電路Kx1Bに発生する誘導起電力と検出用導電路Kx2Bに発生する誘導起電力との和と、の差によって求めることも可能である。
【0114】
一方、X軸方向の加速度αxは、検出用導電路Ky1AまたはKy2Aに発生する誘導起電力と、検出用導電路Ky1BまたはKy2Bに発生する誘導起電力と、の和の微分値として検出することができる。あるいは、検出用導電路Ky1Aに発生する誘導起電力と検出用導電路Ky2Aに発生する誘導起電力との和と、検出用導電路Ky1Bに発生する誘導起電力と検出用導電路Ky2Bに発生する誘導起電力との和と、の更なる和の微分値として検出することもできる。
【0115】
また、Y軸方向の加速度αyは、検出用導電路Kx1AまたはKx2Aに発生する誘導起電力と、検出用導電路Kx1BまたはKx2Bに発生する誘導起電力と、の和の微分値として検出することができる。あるいは、検出用導電路Kx1Aに発生する誘導起電力と検出用導電路Kx2Aに発生する誘導起電力との和と、検出用導電路Kx1Bに発生する誘導起電力と検出用導電路Kx2Bに発生する誘導起電力との和と、の更なる和の微分値として検出することもできる。
【0116】
更に、Z軸方向の加速度αzは、両重錘体に作用したZ軸加速度力の和として検出されるので、両重錘体の容量素子の静電容量値の和として求めることができる。
【0117】
以上、図1に示す実施形態への適用例を述べた。これに対して、図20は、図8に示す実施形態への適用例を示す平面図であり、XY平面を上方から見た状態が示されている。第1の重錘体10Aの上面には、座標系の原点を中央の点Oaまで移動させたとすれば、X軸に沿って伸び、Y軸の負の部分に交差するように配置された励振用導電路Lx1Aと、X軸に沿って伸び、Y軸の正の部分に交差するように配置された励振用導電路Lx2Aと、が設けられている。一方、検出用導電路Kx1A,Kx2A,Ky1A,Ky2Aの配置に関しては、図18に示す前述の適用例と同様である。また、第2の重錘体10Bの上面にも、全く同じ構成で2本の励振用導電路Lx1B,Lx2Bと、4本の検出用導電路Ky1B,Ky2B,Kx1B,Kx2Bが設けられている。更に、各重錘体10A,10Bの下面には、図19に示す前述の適用例と同様に電極が形成されており、装置筐体30の底面側に形成された対向電極とともに容量素子が形成されている。
【0118】
結局、図8に示す実施形態に適用した場合、次のような方法で角速度および加速度を検出することができる。まず、X軸まわりの角速度ωxは、両重錘体に作用したZ軸コリオリ力の差として検出されるので、両重錘体の容量素子の静電容量値の差として求めることができる。また、Z軸まわりの角速度ωzは、両重錘体に作用したX軸コリオリ力の差として検出されるので、検出用導電路Ky1AまたはKy2Aに発生する誘導起電力と、検出用導電路Ky1BまたはKy2Bに発生する誘導起電力との差として求めることができる。あるいは、検出用導電路Ky1Aに発生する誘導起電力と検出用導電路Ky2Aに発生する誘導起電力との和と、検出用導電路Ky1Bに発生する誘導起電力と検出用導電路Ky2Bに発生する誘導起電力との和と、の差によって求めることも可能である。
【0119】
一方、図21は、図10に示す実施形態への適用例を示す平面図であり、XY平面を上方から見た状態が示されている。第1の重錘体10Aの上面には、座標系の原点を中央の点Oaまで移動させたとすれば、X軸に沿って伸び、Y軸の負の部分に交差するように配置された励振用導電路Lx1Aと、X軸に沿って伸び、Y軸の正の部分に交差するように配置された励振用導電路Lx2Aと、Y軸に沿って伸び、X軸の負の部分に交差するように配置された励振用導電路Ly1Aと、Y軸に沿って伸び、X軸の正の部分に交差するように配置された励振用導電路Ly2Aと、が設けられている。また、同じく第1の重錘体10Aの上面には、Y軸に沿って伸び、X軸の負の部分に交差するように配置された検出用導電路Ky1Aと、Y軸に沿って伸び、X軸の正の部分に交差するように配置された検出用導電路Ky2Aと、X軸に沿って伸び、Y軸の負の部分に交差するように配置された検出用導電路Kx1Aと、X軸に沿って伸び、Y軸の正の部分に交差するように配置された検出用導電路Kx2Aと、が設けられている。一方、第2の重錘体10Bの上面にも、原点Obの周囲に全く同じ構成で4本の励振用導電路Lx1B,Lx2B,Ly1B,Ly2Bと、4本の検出用導電路Ky1B,Ky2B,Kx1B,Kx2Bとが設けられている。更に、各重錘体10A,10Bの下面には、図19に示す前述の適用例と同様に電極が形成されており、装置筐体30の底面側に形成された対向電極とともに容量素子が形成されている。
【0120】
このように、4本の励振用導電路Lx1A,Lx2A,Ly1A,Ly2Aを用いると、第1の重錘体10Aに対して回転運動をさせることが可能になる。既に述べたように、励振用導電路Ly1A,Ly2Aに同一の交流電流Iyを与えると、重錘体はX軸方向に単振動を行うことになり、この励振用導電路Ly1A,Ly2Aは、重錘体をX軸方向に沿って往復運動させるX軸方向駆動手段として機能することになる。一方、励振用導電路Lx1A,Lx2Aに同一の交流電流Ixを与えると、重錘体はY軸方向に単振動を行うことになり、この励振用導電路Lx1A,Lx2Aは、重錘体をY軸方向に沿って往復運動させるY軸方向駆動手段として機能することになる。このX軸方向駆動手段とY軸方向駆動手段とを組み合わせると、重錘体を回転運動させる回転駆動手段を構成することができる。そのためには、重錘体のX軸方向の往復運動とY軸方向の往復運動とが、周期が同一で位相が90°ずれたものとなるように設定すればよい。すなわち、図22に示すように、位相が90°ずれた正弦波信号Iy,Ixを用意し、信号Iyを励振用導電路Ly1A,Ly2Aに与えて重錘体をX軸方向に沿って往復運動させるとともに、信号Ixを励振用導電路Lx1A,Lx2Aに与えて重錘体をY軸方向に沿って往復運動させれば、第1の重錘体10Aの重心G(A)は、図10の右半分に示す円軌道に沿った回転運動を行うことになる。
【0121】
一方、図22に示す正弦波信号Iy,Ixに対して、それぞれ位相が180°ずれた信号を用意し、これらの信号を、第2の重錘体10B上の励振用導電路Lx1B,Lx2BおよびLy1B,Ly2Bに供給すれば、第2の重錘体10Bの重心G(B)は、図10の左半分に示す円軌道に沿った回転運動を行うことになる。重心G(B)の回転運動は、重心G(A)の回転運動に対して、位相が180°ずれたものになる。
【0122】
こうして、重錘体10A,10Bを回転運動させた状態において、各重錘体に作用した各軸方向の力は、次のようにして検出することができる。まず、第1の重錘体10Aに対してX軸方向に作用した力は、検出用導電路Ky1A,Ky2Aに発生した誘導起電力に基づいて検出することができる。また、第1の重錘体10Aに対してY軸方向に作用した力は、検出用導電路Kx1A,Kx2Aに発生した誘導起電力に基づいて検出することができる。更に、第1の重錘体10Aに対してZ軸方向に作用した力は、電極E1A,E2Aによって構成される容量素子の静電容量に基づいて検出することができる。第2の重錘体10Bに作用した各軸方向の力についても、同様の方法で検出することが可能である。
【0123】
結局、図10に示す実施形態に適用した場合、次のような方法で角速度および加速度を検出することができる。
【0124】
まず、X軸まわりの角速度ωxは、Y軸検出時において、両重錘体に作用したZ軸コリオリ力の差として検出されるので、両重錘体の容量素子の静電容量値の差として求めることができる。
【0125】
一方、Y軸まわりの角速度ωyは、X軸検出時において、両重錘体に作用したZ軸コリオリ力の差として検出されるので、両重錘体の容量素子の静電容量値の差として求めることができる。
【0126】
また、Z軸まわりの角速度ωzは、X軸検出時において、両重錘体に作用したY軸コリオリ力の差として検出されるので、検出用導電路Kx1AまたはKx2Aに発生する誘導起電力と、検出用導電路Kx1BまたはKx2Bに発生する誘導起電力との差として求めることができる。あるいは、検出用導電路Kx1Aに発生する誘導起電力と検出用導電路Kx2Aに発生する誘導起電力との和と、検出用導電路Kx1Bに発生する誘導起電力と検出用導電路Kx2Bに発生する誘導起電力との和と、の差によって求めることも可能である。更に、このZ軸まわりの角速度ωzは、Y軸検出時にも検出可能である。すなわち、Z軸まわりの角速度ωzは、Y軸検出時において、両重錘体に作用したX軸コリオリ力の差として検出されるので、検出用導電路Ky1AまたはKy2Aに発生する誘導起電力と、検出用導電路Ky1BまたはKy2Bに発生する誘導起電力との差として求めることができる。あるいは、検出用導電路Ky1Aに発生する誘導起電力と検出用導電路Ky2Aに発生する誘導起電力との和と、検出用導電路Ky1Bに発生する誘導起電力と検出用導電路Ky2Bに発生する誘導起電力との和と、の差によって求めることも可能である。
【0127】
一方、X軸方向の加速度αxは、検出用導電路Ky1AまたはKy2Aに発生する誘導起電力と、検出用導電路Ky1BまたはKy2Bに発生する誘導起電力と、の和の微分値として検出することができる。あるいは、検出用導電路Ky1Aに発生する誘導起電力と検出用導電路Ky2Aに発生する誘導起電力との和と、検出用導電路Ky1Bに発生する誘導起電力と検出用導電路Ky2Bに発生する誘導起電力との和と、の更なる和の微分値として検出することもできる。
【0128】
また、Y軸方向の加速度αyは、検出用導電路Kx1AまたはKx2Aに発生する誘導起電力と、検出用導電路Kx1BまたはKx2Bに発生する誘導起電力と、の和の微分値として検出することができる。あるいは、検出用導電路Kx1Aに発生する誘導起電力と検出用導電路Kx2Aに発生する誘導起電力との和と、検出用導電路Kx1Bに発生する誘導起電力と検出用導電路Kx2Bに発生する誘導起電力との和と、の更なる和の微分値として検出することもできる。
【0129】
更に、Z軸方向の加速度αzは、両重錘体に作用したZ軸コリオリ力の和として検出されるので、両重錘体の容量素子の静電容量値の和として求めることができる。
【0130】
§4. 具体的な実施例(その1)
ここでは、本発明に係る角速度センサの具体的な実施例を述べておく。まず、図23に示すような断面を有する1枚の基板200を用意する。図示の断面は、この基板200を、基板面に平行な面で切断したときに現れる断面であり、境界線W−Wによって右側領域と左側領域との2つの領域に分けられている。これらの領域の構造は、境界線W−Wを対称軸として対称となっており、各領域のそれぞれにおいて、中央に位置する重錘体210A,210Bと、この重錘体の周囲に位置し、可撓性の橋梁構造をもった接続部材220とが形成されている。また、基板200の外周部分はフレーム230を形成しており、橋梁構造をもった接続部材220により、各重錘体210A,210Bは、フレーム230に接続されている。また、重錘体210Aと210Bとの間は、接続部材220および中間部材240によって接続されている。接続部材220は、可撓性をもった橋梁構造を有しているため、各重錘体210A,210Bは、この橋梁構造の可撓性の範囲内で、フレーム230内で所定の自由度をもって運動可能となる。
【0131】
図24は、基板200を切断線X−Xに沿って切った側断面図である。図示のとおり、フレーム230の部分は、他の部分に比べて足桁が高くなっており、台座の働きを果たす。また、基板200自身は導電性の材料から構成されているが、その上面部分には、絶縁層201が形成されている。
【0132】
このような構造をもった基板は、1枚の完全な基板に対してエッチング加工などを施し、所定部分を除去することにより大量生産することができる。この実施例では、P型またはN型の不純物を高濃度にドープしたシリコン基板に、所定のマスクを用いたエッチング加工を施すことにより、図23に示すような構造をもった基板200を用意している。橋梁構造の幅をある程度まで細くすると、十分な可撓性をもった接続部材220を構成することができ、この可撓性をもった接続部材220によって、重錘体210A,210Bを三次元空間内の各軸方向に所定の許容範囲内で運動可能な状態で支持することができる。なお、この基板200の上面に形成される絶縁層201としては、この実施例では酸化シリコン膜を用いている。
【0133】
続いて、このような基板200の上面に、図25の上面図に示すように、各導電路211A,211Bと、ボンディングパッド250A,250Bを形成する。すなわち、重錘体210Aの上面には、8本の導電路211Aが形成され、重錘体210Bの上面には、8本の導電路211Bが形成される。これらの導電路は、図21に示されている各励振用導電路および各検出用導電路に相当するものである。なお、図には示されていないが、これら各導電路の両端部と、特定のボンディングパッド250A,250Bとの間には、接続部材220上を通る配線が形成されている。
【0134】
このような基板200が用意できたら、この基板200を利用して、図26の側断面図に示すような角速度センサを構成する。このセンサの外装は、ベース基板310とキャップ部320とによって構成されており、これらによって装置筐体が構成されている。ベース基板310の上面には、ガラスからなる固定基板330が固着されており、上述した基板200は、この固定基板330の上面に固着される。前述したように、基板200のフレーム230は、台座として機能するため、フレーム230より内側の部分と、固定基板330の上面との間には、所定の空隙が形成される。この空隙は、容量素子を形成するために利用される。すなわち、固定基板330の上面には、図示のとおり、電極335A,335Bが形成される。一方、基板200自身は導電性を有しているため、電極335A,335Bと、基板200の下面側の対向面とにより、それぞれ容量素子が形成されることになる。これらの容量素子は、図19に示されている容量素子に相当するものである。
【0135】
キャップ部320の内側面には、磁石340(永久磁石でも電磁石でもよい)が取り付けられており、図の垂直方向に平行な磁束を形成する。この磁石340は、図19に示されている磁石90に相当するものである。ベース基板310には、配線用の孔部が形成されており、この孔部を挿通して、配線ピン350A,350Bが設けられている(実際には、ボンディングパッド250A,250Bに対応した数だけ設けられる)。また、ボンディングパッド250A,250Bと、配線ピン350A,350Bとの間は、ボンディングワイヤ355A,355Bによって接続される。
【0136】
以上のような構成の角速度センサは、図21に示す角速度センサと同等の動作を行う機能を有し、3軸まわりの角速度と3軸方向の加速度とを検出することが可能である。すなわち、所定の配線ピンに所定の交流信号を供給することにより各重錘体210A,210Bを回転運動させることができ、その状態において、所定の配線ピン間に生じる誘導起電力または所定の配線ピン間の静電容量値を所定の検出タイミングで測定することにより、角速度および加速度の検出が可能になる。
【0137】
前述したように、基板200は、一般的な半導体プロセスにおけるエッチング加工などを利用して構成することができ、この基板200上の各導電路、ボンディングパッド、基板上の配線などは、印刷の手法を利用して形成することができるので、ここで述べた実施例に係る角速度センサは、大量生産を行う場合に好適である。
【0138】
§5. 具体的な実施例(その2)
続いて、容量素子により重錘体の駆動および力の検出を行う具体的な実施例を述べる。図27は、この実施例に係る角速度センサの主要部分の上面図である。ベース基板400は、XY平面に平行な上面および下面を有する基板であり、その上面には、図示のとおり、多数の細かな構成要素が配置されている。これらの構成要素は、図示のとおり、境界線W−Wを対称軸として左右対称に配置されており、左側領域400Aに配置された構成要素からなる系は、図1に示す角速度センサにおける重錘体10Aを用いた第1の検出系と同等の機能を果たし、右側領域400Bに配置された構成要素からなる系は、図1に示す角速度センサにおける重錘体10Bを用いた第2の検出系と同等の機能を果たす。このような2つの検出系を用いた連係動作による角速度および加速度検出の基本原理については既に前節までに述べてあるので、ここでは、左側領域400Aに配置された構成要素からなる系についての構造および簡単な動作原理のみを示す。
【0139】
図28は、ベース基板400上の左側領域400Aに配置された構成要素のみを示す平面図であり、形状の把握を容易にするため、個々の構成要素の部分についてはハッチングを施して示してある(このハッチングは、断面を示すものではない)。多数の構成要素が配置されているため、やや図面が繁雑ではあるが、基本的には、中心部に板状の重錘体(上面から見ると正方形の部分)410が配置されており、この重錘体410の上辺に突起するように4つの変位電極421〜424が形成され、下辺に突起するように4つの変位電極431〜434が形成され、左辺に突起するように4つの変位電極441〜444が形成され、右辺に突起するように4つの変位電極451〜454が形成されている。これらの各変位電極に対向するように、上辺近傍に固定電極521〜524が配置され、下辺近傍に固定電極531〜534が配置され、左辺近傍に固定電極541〜544が配置され、右辺近傍に固定電極551〜554が配置されている。
【0140】
各固定電極521〜554は、ベース基板400上に絶縁層を介して固定されている。一方、重錘体410は、その四辺の各中央部において、それぞれ可撓性の橋梁構造をもった接続部材461〜464を介して、固定部材561〜564に取り付けられており、ベース基板400の上面と重錘体410の下面との間には所定の空隙が形成されている。要するに、板状の重錘体410は、四辺の各中央部において、可撓性の橋梁構造をもった接続部材461〜464によって宙吊り状態で支持されていることになる。このため、重錘体410は、X軸,Y軸,Z軸(図の紙面に垂直な軸)のいずれの方向についても所定の自由度(接続部材461〜464の可撓性の範囲内の自由度)をもって運動することが可能である。したがって、各変位電極421〜454は、重錘体410の運動とともに変位することになる。これに対して、各固定電極521〜554は、ベース基板400上に固定されており、変位することはない。
【0141】
なお、各固定電極521〜554の外側部分(ベース基板400の外周に近い部分)は、ボンディングパッドを形成できるように、内側部分(本来の電極として機能する部分)に比べて、上面から見たときの面積が広くなっている。このような構造を採ることにより、図27の上面図に示されているように、ベース基板400の外周に沿って、各固定電極の外側部分が配列されることになり、各固定電極への配線が容易になる。なお、図28における右辺近傍に配置された固定電極551〜554については、別途、配線部材571〜574を設け、配線層で接続するようにしている。これは、右側領域400Bに形成された重錘体の左辺近傍に配置された固定電極についても同様である。また、この実施例では、重錘体410は、全体が導電性材料(具体的には、P型またはN型の不純物を高濃度でドープしたシリコン基板)から構成されており、各変位電極421〜454、各固定電極521〜554、各固定部材561〜564、各配線部材571〜574も、同じ導電性材料から構成されている。したがって、各変位電極421〜454は電気的にはいずれも等電位となり、固定部材561〜564は、各変位電極421〜454に共通した配線用の部材として機能する。実際には、この角速度センサは、固定部材561〜564を接地電位とし、各変位電極421〜454を接地レベルに維持した状態で動作させている。
【0142】
図29は、重錘体410の上辺近傍の拡大上面図である。上述したように、重錘体410の上辺には、4つの変位電極421〜424が形成されている。これらの変位電極は、重錘体410のXZ平面に平行な側面411(上面図における重錘体410の上辺に相当する側面)に形成された電極であり、その電極面(図29における各電極の左右の面)は、いずれもYZ平面に平行になっている。一方、上述したように、4つの固定電極521〜524の外側部分(図29における上方の部分)はボンディングパッドを形成する配線用の部材として機能し、内側部分(図29における下方の部分)が本来の電極として機能する。すなわち、各固定電極521〜524の内側部分の電極面(図29における各電極の下方側部分の左右の面)は、いずれもYZ平面に平行になっている。結局、各変位電極421〜424の電極面も各固定電極521〜524の電極面も、いずれもYZ平面に平行になっており、隣接して配置された変位電極と固定電極とによって容量素子が形成されることになる。すなわち、変位電極421と固定電極521とによって1つの容量素子が形成され、変位電極422と固定電極522とによって1つの容量素子が形成され、変位電極423と固定電極523とによって1つの容量素子が形成され、変位電極424と固定電極524とによって1つの容量素子が形成される。
【0143】
要するに、重錘体410の側面には、複数の変位電極がこの側面の長手方向に並べて配置され、ベース基板400(装置筐体に固定される)側には、これら複数の変位電極の間に互い違いに挿入されるように複数の固定電極が配置されており、隣接して配置された1枚の変位電極と1枚の固定電極とにより容量素子が形成されている。
【0144】
図30(a) ,(b) ,(c) は、図29に示す構造物を、それぞれ切断線A−A,B−B,C−Cに沿って切った側断面図である。図30(a) に示すように、固定電極521は、絶縁層621を介してベース基板400上に固定されており、その奥に配置されている変位電極421とともに容量素子が形成される。また、重錘体410は、ベース基板400の上方に浮いた状態になっている。図30(b) には、固定電極522の配線用の部材として機能する部分が絶縁層622を介してベース基板400上に固定された状態が示されている。この固定電極522は、変位電極422とともに容量素子を形成することになり、その奥には、接続部材461が示されている。図30(c) は、接続部材461および固定部材561の位置における側断面図であり、固定部材561が絶縁層661を介してベース基板400上に固定された状態が示されている。接続部材461は、可撓性をもった橋梁構造をなし、重錘体410が所定の自由度をもって運動することができるように支持している。
【0145】
図29に示す変位電極421,424および固定電極521,524は、重錘体410を駆動するために用いられ、ここでは駆動用変位電極および駆動用固定電極と呼ぶことにする。一方、変位電極422,423および固定電極522,523は、重錘体410に作用した力を検出するために用いられ、ここでは検出用変位電極および検出用固定電極と呼ぶことにする。いま、固定部材561を電気的な接地レベルに接続すると、重錘体410全体が接地レベルとなり、各変位電極も接地レベルとなる。この状態で、駆動用固定電極521に所定の電圧を印加すると、駆動用変位電極421と駆動用固定電極521との間にクーロン引力が作用することになり、重錘体410は図の左方向に移動することになる。逆に、駆動用固定電極524に所定の電圧を印加すると、駆動用変位電極424と駆動用固定電極524との間にクーロン引力が作用することになり、重錘体410は図の右方向に移動することになる。したがって、駆動用固定電極521への電圧印加と駆動用固定電極524への電圧印加とを交互に行えば(たとえば、交互にパルス電圧を印加する)、重錘体410はX軸方向に振動することになる。
【0146】
一方、重錘体410に対して、コリオリ力あるいは加速度力が作用して、重錘体410が図の左方向(X軸の正方向)に移動した場合、検出用変位電極422と検出用固定電極522との電極間隔は減少し、検出用変位電極423と検出用固定電極523との電極間隔は増大する。よって、前者によって構成される容量素子の静電容量値は増加し、後者によって構成される容量素子の静電容量値は減少する。したがって、両容量素子の静電容量値の差をとることにより、作用したX軸正方向の力の大きさを検出することができる。また、重錘体410を図の右方向(X軸の負方向)に移動させる力が作用した場合も、同様に両容量素子の静電容量値の差として作用した力の大きさを検出することができる。しかも、作用した力の方向は、各容量素子の静電容量値が減少するか増加するかによって判断することができる。結局、検出用変位電極422と検出用固定電極522とによって構成される容量素子と、検出用変位電極423と検出用固定電極523とによって構成される容量素子と、の静電容量値を電気的に検出することができれば、重錘体410に対してX軸方向に作用したコリオリ力あるいは加速度力を検出することが可能になる。
【0147】
以上、図29を用いて、重錘体410の上辺近傍に配置された電極を利用して、重錘体410をX軸方向に駆動する方法および重錘体410に作用したX軸方向の力を検出する方法について述べたが、重錘体410の下辺近傍に配置された電極を利用しても全く同様のことが可能である。すなわち、図28において、重錘体410の下辺近傍に配置された電極のうち、変位電極431,434および固定電極531,534を、重錘体410を駆動するための駆動用変位電極および駆動用固定電極として用いれば、X軸方向への駆動が可能になり、変位電極422,423および固定電極522,523を、重錘体410に作用した力を検出するための検出用変位電極および検出用固定電極として用いれば、X軸方向に作用した力の検出が可能になる。実際には、重錘体410の上辺近傍に配置された電極と下辺近傍に配置された電極との双方を利用して、X軸方向への駆動およびX軸方向に作用した力の検出を行うようにすると、安定した駆動および安定した検出が可能になり好ましい。
【0148】
全く同様にして、Y軸方向への駆動およびY軸方向に作用した力の検出も可能である。すなわち、重錘体410の左辺近傍に配置された電極のうち、変位電極441,444および固定電極541,544を、重錘体410を駆動するための駆動用変位電極および駆動用固定電極として用いれば、Y軸方向への駆動が可能になり、変位電極442,443および固定電極552,553を、重錘体410に作用した力を検出するための検出用変位電極および検出用固定電極として用いれば、Y軸方向に作用した力の検出が可能になる。重錘体410の右辺近傍に配置された電極も同等の機能を果たし、実用上は、左辺および右辺に配置された全電極を用いた駆動および検出を行うのが好ましい。
【0149】
また、この実施例では、Z軸方向に作用した力の検出も可能である。上述したように、この実施例では、重錘体410は導電性材料の基板で構成されているが、ベース基板400も同様の導電性材料(不純物をドープしたシリコン基板)で構成されている。したがって、重錘体410の下面およびベース基板400の上面を、それぞれ電極と考えれば、これら両電極によって容量素子が形成されることになる。しかも、重錘体410に対してZ軸方向の力が作用すると、重錘体410全体はベース基板400に対して、離れる方向または近付く方向に変位するため、この容量素子の静電容量は減少するか増加することになる。したがって、この容量素子の静電容量値を検出することにより、Z軸方向に作用した力の検出が可能になる。
【0150】
結局、この実施例に係る角速度センサでは、重錘体をX軸方向に振動させることもできるし、Y軸方向に振動させることもでき、また、両振動を組み合わせることにより、XY平面に沿った回転運動をさせることもできる。しかも、X軸,Y軸,Z軸方向に作用した力を検出することもできる。したがって、前節までに述べた角速度センサと同様に、3軸まわりの角速度ωx,ωy,ωzと、3軸まわりの加速度αx,αy,αzを検出することが可能である。
【0151】
なお、本実施例においては、同一の容量素子を形成する変位電極と固定電極との電極間隔が、同一の容量素子を形成しない変位電極と固定電極との電極間隔よりも小さくなるように設定するのが好ましい。たとえば、図31は、図29と同様に、重錘体410の上辺近傍の拡大上面図であるが、ここで、駆動用変位電極421と駆動用固定電極521との間隔d1(角速度や加速度が作用していない状態での間隔)は、駆動用変位電極421と検出用固定電極522との間隔d2よりも小さく設定されている。これは、この角速度センサの動作上、駆動用変位電極421と駆動用固定電極521とによって1つの容量素子が形成されることを配慮したためである。すなわち、変位電極421にとって、容量素子を形成するためのパートナーとなる電極は固定電極521であるため、このパートナーとなる電極521に対する距離d1を、パートナーとはならない電極522に対する距離d2よりも小さく設定することにより、効率的な動作を行わせることが可能になる。
【0152】
このような電極間距離設定は、特に、隣接配置された複数の電極によって同一の機能を分担させるような設計を行った場合に重要である。たとえば、図32に上面図を示す例は、駆動用変位電極421を、隣接配置された2つの電極421a,421bによって構成し、駆動用固定電極521を、隣接配置された2つの電極521a,521bによって構成し、検出用変位電極422を、隣接配置された2つの電極422a,422bによって構成し、検出用固定電極522を、隣接配置された2つの電極522a,522bによって構成した例である。このように、重錘体410をより効率的に運動させ、これに作用した力をより効率的に検出するためには、同等の機能を果たす電極を多数配置するのが好ましい。図32の例では、同一の機能を果たす電極を2つだけ隣接配置しているが、実用上は、より多数の電極を隣接配置するのが好ましい。
【0153】
さて、このように同一機能を果たす電極が隣接配置されている場合、上述したような電極間距離設定がなされていないと、正しい動作が期待できない。たとえば、図32において、重錘体410を左方向に移動させるためには、重錘体410を接地レベルに維持した状態で、駆動用固定電極521a,521bに所定の電圧を印加することになる。このとき、図示のように、駆動用変位電極421aは、その左側に位置する駆動用固定電極521aの方に近くなるように配置されているので、電極521aと電極421aとの間に作用するクーロン引力の方が、電極521bと電極421aとの間に作用するクーロン力よりも大きくなり、電極421aは図の左方向へと移動することができる。もし、電極421aが、電極521aと電極521bとの中間位置に配置されていると、左右から等しいクーロン引力が作用し、正しい動作を行うことができなくなる。検出用電極についても同様の理由から、容量素子を形成するパートナーとなる電極同士の距離を短く設定するようにする。
【0154】
最後に、上述した構造を有する角速度センサを大量生産するためのより具体的な工夫を述べる。まず、図27に示す角速度センサにおけるベース基板400および重錘体410は、いずれも導電性材料で構成しておくと、配線が単純になる。特に、ベース基板400および重錘体410を、導電性の半導体基板(たとえば、不純物をドープしたシリコン基板)で構成すると、一般的な半導体加工プロセスを利用することができるため、実用的な量産工程への適用が容易になる。通常、このような半導体加工プロセスでは、1枚の半導体ウエハから、多数の半導体ペレットを切り出し、これを1つの製品として利用する。たとえば、図27に示すような構造を半導体加工プロセスで量産する場合、図33に示すようなシリコンウエハ上に多数の区画を定義し(図では、1つの区間をハッチング表示している)、個々の区画をベース基板400として利用することになる。実際には、図27に示す細かな構造体のすべてをシリコンウエハ上の個々の区画上に形成し、最終的に、このシリコンウエハをダイシングして、個々の区画ごとに分離して利用することになる。
【0155】
ただ、半導体加工プロセスにおけるダイシング工程は、通常、ダイシングブレードを用いた機械的な切断工程になるため、細かな削りかすが発生する。このような削りかすが、図27に示す細かな構造体の上に堆積すると、電極間の短絡などが発生する要因になり好ましくない。このような問題に対処するためには、図34に示すような保護基板700を用いるようにするとよい。この保護基板700は、ベース基板400と同じ大きさの矩形基板であり、ここに示す例では、絶縁性の基板(たとえば、酸化シリコン、ガラスなどを用いればよい)によって保護基板700を構成している。この保護基板700には、多数の配線用開口窓701が形成されている。これらの開口窓は、図27に示す各固定電極521〜554、固定部材561〜564、配線部材571〜574に対する配線を行うために用いられ、これらの位置に合わせた貫通孔として、各配線用開口窓701が形成されている。
【0156】
図35は、図34に示す保護基板700を、図27に示す構造体の上に固定した状態を示す上面図である。ベース基板400上に形成された細かな構造体は、すべて保護基板700によって覆われて保護された状態になっているが、必要な配線は、配線用開口窓701の部分から行うことができるようになっている。ベース基板400上に保護基板700を固定するために、フレーム状の側壁部750が形成されている。この側壁部750は、ベース基板400の外周部に沿って配置された壁であり、ベース基板400と保護基板700とは、互いに所定間隔をおいて平行に配置された状態において、この側壁部750によって外周部を互いに接続された状態になる。結局、ベース基板400、側壁部750、保護基板700によって囲まれた部分として、検出動作空間が形成されることになり、重錘体410A,410Bは、この検出動作空間内に収容された状態になる。
【0157】
図36は、図35に示す角速度センサを切断線A−Aで切断した断面を拡大して示す側断面図である。ベース基板400の左端部には、側壁部750が絶縁層755上に形成された状態を示されている。絶縁層755は、このセンサの動作上、特に必要な層ではないが、絶縁層643を形成する工程で、一緒に形成される層である。もちろん、絶縁層755を形成せずに、ベース基板400上に側壁部750を直接形成するようにしてもかまわない。この図36に示す実施形態では、図30に示す実施形態に比べて、固定電極543の厚みを若干厚く設定してある。すなわち、各固定電極521〜554、固定部材561〜564、配線部材571〜574は、いずれも側壁部750と同じ厚みに設定されており、これらの上面には、保護基板700が密着した状態で接続されている。この接続には、たとえば、陽極接合や低融点ガラスを用いた接合などが可能である。このような接合を行うと、検出動作空間を密閉状態に維持することができ、また、必要に応じて、この検出動作空間内を真空状態にすることも可能になる。
【0158】
一方、重錘体410の上面は、図36に示すように、保護基板700の下面との間に所定間隔を維持した状態となる。したがって、重錘体410は、検出動作空間内で所定の自由度をもって運動可能である。特に、検出動作空間内を真空状態にした場合、重錘体410をその共振点で効率良く振動させることができる。
【0159】
この実施形態では、重錘体410の上面と保護基板700の下面との間隔、および重錘体410の下面とベース基板400の上面との間隔を、所定の寸法値に設定することにより、ベース基板400および保護基板700が、重錘体410の運動を制御する制御部材として機能するようにしている。すなわち、このセンサの検出対象となる範囲を越えた過度に大きな角速度または加速度が作用した場合、重錘体410は、この作用した角速度または加速度に応じて大きな運動を行うことになる。ところが、重錘体410が何ら制限を受けずに過度の運動を行うと、可撓性橋梁構造を有する接続部材461〜464が破損するおそれがある。そこで、重錘体410に過度の力が加わった場合、ベース基板400あるいは保護基板700に接触して、その運動が妨げられるように、重錘体410と各基板間との距離を設定するようにしている。
【0160】
なお、検出動作空間内の各固定電極521〜554、固定部材561〜564、配線部材571〜574への配線は、配線用開口窓701を通して行うことができる。たとえば、図36には、固定電極543に対して配線を行った状態が示されている。固定電極543の上面の一部分は、配線用開口窓701によって外部に露出した状態となっているので、この露出面に、この例ではアルミニウムからなるボンディングパッド702を形成し、このボンディングパッド702にボンディングワイヤ703を接続するようにしている。固定電極543は、配線用開口窓701を内側から塞ぐように配置されているため、配線用開口窓701が存在していても、検出動作空間の密閉状態はそのまま維持される。
【0161】
以上、本発明を図示する実施形態に基づいて説明したが、本発明はこれらの実施形態に限定されるものではなく、この他にも種々の態様で実施可能である。特に、本発明は、1軸まわりの角速度を検出する1軸角速度センサとしても利用できるし、3軸まわりの角速度および3軸方向の加速度を検出することができる6軸の角速度/加速度センサとしても利用できる。もちろん、2〜5軸のセンサとして利用してもかまわない。また、上述の実施形態では、励起用導電路に電流を供給することにより重錘体を運動させる例を示したが、重錘体を運動させる手法は、このような方法に限定されるものではない。更に、上述の実施形態では、検出用導電路に生じる誘導起電力または容量素子の静電容量の変化によって、重錘体に作用した力を検出する例を示したが、重錘体に作用した力を検出する手法は、このような方法に限定されるものではない。
【符号の説明】
【0162】
10:重錘体
10A:第1の重錘体
10B:第2の重錘体
20:接続部材
25:接続部材
30:装置筐体
40A,40B:X軸方向駆動手段
51A,51B:X軸方向力検出手段
52A,52B:Y軸方向力検出手段
53A,53B:Z軸方向力検出手段
61A,61B:Y軸方向信号分離手段
62A,62B:Z軸方向信号分離手段
71A,71B:加速度演算手段
72A,72B:加速度演算手段
73A,73B:角速度演算手段
74A,74B:加速度演算手段
75A,75B:角速度演算手段
80:対向面
90:磁石/電磁石
100:磁界発生手段
140A,140B:回転駆動手段
151A,151B:X軸方向力検出手段
152A,152B:Y軸方向力検出手段
153A,153B:Z軸方向力検出手段
161A,161B:X軸方向信号分離手段
162A,162B:Y軸方向信号分離手段
163A,163B:Z軸方向信号分離手段
171A,171B:加速度演算手段
172A,172B:角速度演算手段
173A,173B:加速度演算手段
174A,174B:角速度演算手段
175A,175B:加速度演算手段
176A,176B:角速度演算手段
200:基板
201:絶縁層
210A,210B:重錘体
211A,211B:導電路
220:可撓性の橋梁構造をもった接続部材
230:フレーム
240:中間部材
250A,250B:ボンディングパッド
310:ベース基板
320:キャップ部
330:固定基板
340:磁石/電磁石
350A,350B:配線ピン
355A,355B:ボンディングワイヤ
400:ベース基板
400A:左側領域
400B:右側領域
410:重錘体
411:重錘体の側面
421〜454:変位電極(駆動用変位電極および検出用変位電極)
461〜464:接続部材
421a,421b,422a,422b:変位電極(駆動用変位電極および検出用変位電極)
521〜554:固定電極(駆動用固定電極および検出用固定電極)
521a,521b,522a,522b:固定電極(駆動用固定電極および検出用固定電極)
561〜564:固定部材
571〜574:配線部材
621,622,661:絶縁層
700:保護基板
701:配線用開口窓
702:ボンディングパッド
703:ボンディングワイヤ
750:側壁部
755:絶縁層
d1,d2:電極間距離
E1,E2,E1A,E1B,E2A,E2B:電極
Fx(A:ωz):角速度ωzが作用したときに第1の重錘体10Aに対してX軸方向に作用するコリオリ力
Fx(B:ωz):角速度ωzが作用したときに第2の重錘体10Bに対してX軸方向に作用するコリオリ力
Fy(A:ωz):角速度ωzが作用したときに第1の重錘体10Aに対してY軸方向に作用するコリオリ力
Fy(B:ωz):角速度ωzが作用したときに第2の重錘体10Bに対してY軸方向に作用するコリオリ力
Fz(A:ωx):角速度ωxが作用したときに第1の重錘体10Aに対してZ軸方向に作用するコリオリ力
Fz(B:ωx):角速度ωxが作用したときに第2の重錘体10Bに対してZ軸方向に作用するコリオリ力
Fz(A:ωy):角速度ωyが作用したときに第1の重錘体10Aに対してZ軸方向に作用するコリオリ力
Fz(B:ωy):角速度ωyが作用したときに第2の重錘体10Bに対してZ軸方向に作用するコリオリ力
fx(A):加速度αxが作用したときに第1の重錘体10Aに対してX軸方向に作用する加速度力
fx(B):加速度αxが作用したときに第2の重錘体10Bに対してX軸方向に作用する加速度力
fy(A):加速度αyが作用したときに第1の重錘体10Aに対してY軸方向に作用する加速度力
fy(B):加速度αyが作用したときに第2の重錘体10Bに対してY軸方向に作用する加速度力
fz(A):加速度αzが作用したときに第1の重錘体10Aに対してZ軸方向に作用する加速度力
fz(B):加速度αzが作用したときに第2の重錘体10Bに対してZ軸方向に作用する加速度力
G(A):第1の重錘体10Aの重心
G(B):第2の重錘体10Bの重心
Ix,Iy:駆動用交流電流
J:接続点
Kx1,Kx2,Ky1,Ky2:検出用導電路
Kx1A,Kx2A,Ky1A,Ky2A:検出用導電路
Kx1B,Kx2B,Ky1B,Ky2B:検出用導電路
Lx1,Lx2:励振用導電路
Lx1A,Lx2A,Ly1A,Ly2A:励振用導電路
Lx1B,Lx2B,Ly1B,Ly2B:励振用導電路
Oa,Ob:座標系の原点
P1(A)〜P4(A):重心G(A)の位置
P1(B)〜P4(B):重心G(B)の位置
t0〜t4:時刻
Ux(A):第1の重錘体10AのX軸方向への振動
Ux(B):第2の重錘体10BのX軸方向への振動
Uy(A):第1の重錘体10AのY軸方向への振動
Uy(B):第2の重錘体10BのY軸方向への振動
Vx(A):第1の重錘体10AのX軸方向速度
Vx(B):第2の重錘体10BのX軸方向速度
W:境界線
X+(A),X0(A),X−(A):重心G(A)の位置
X+(A),X0(A),X−(A):重心G(B)の位置
Y+(A),Y0(A),Y−(A):重心G(A)の位置
Y+(A),Y0(A),Y−(A):重心G(B)の位置
αx:X軸方向の加速度
αy:Y軸方向の加速度
αz:z軸方向の加速度
ωx:X軸まわりの角速度
ωy:Y軸まわりの角速度
ωz:z軸まわりの角速度
αx(A):第1の重錘体10Aによって検出されたX軸方向の加速度
αy(A):第1の重錘体10Aによって検出されたX軸方向の加速度
αz(A):第1の重錘体10Aによって検出されたX軸方向の加速度
ωx(A):第1の重錘体10Aによって検出されたX軸まわりの角速度
ωy(A):第1の重錘体10Aによって検出されたY軸まわりの角速度
ωz(A):第1の重錘体10Aによって検出されたZ軸まわりの角速度
αx(B):第2の重錘体10Bによって検出されたX軸方向の加速度
αy(B):第2の重錘体10Bによって検出されたX軸方向の加速度
αz(B):第2の重錘体10Bによって検出されたX軸方向の加速度
ωx(B):第2の重錘体10Bによって検出されたX軸まわりの角速度
ωy(B):第2の重錘体10Bによって検出されたY軸まわりの角速度
ωz(B):第2の重錘体10Bによって検出されたZ軸まわりの角速度
φz:Z軸方向を向いた平行磁束

【特許請求の範囲】
【請求項1】
XYZ三次元直交座標系において定義されるX軸、Y軸、Z軸のうちの少なくとも1軸まわりの角速度を検出する角速度センサであって、
前記三次元直交座標系の空間内で運動可能な第1の重錘体および第2の重錘体と、
前記2つの重錘体を収容する装置筐体と、
前記第1の重錘体を、前記装置筐体に対して、所定の自由度をもって運動可能となるように接続する可撓性をもった第1の接続部材と、
前記第2の重錘体を、前記装置筐体に対して、所定の自由度をもって運動可能となるように接続する可撓性をもった第2の接続部材と、
前記第1の重錘体と前記第2の重錘体とを接続する可撓性をもった第3の接続部材と、
少なくとも所定の検出時において、前記第1の重錘体が前記X軸の正方向の速度成分をもって運動し、前記第2の重錘体が前記X軸の負方向の速度成分をもって運動するように、前記第1の重錘体および前記第2の重錘体を前記装置筐体内で運動させる駆動手段と、
前記検出時に前記Y軸まわりの角速度が作用していた場合に、前記第1の重錘体に対して前記Z軸方向に作用する第1のZ軸コリオリ力を検出する第1のコリオリ力検出手段と、
前記検出時に前記Y軸まわりの角速度が作用していた場合に、前記第2の重錘体に対して前記Z軸方向に作用する第2のZ軸コリオリ力を検出する第2のコリオリ力検出手段と、
前記第1のZ軸コリオリ力と前記第2のZ軸コリオリ力との差に基づいて、作用したY軸まわりの角速度を求める演算手段と、
を備え、少なくともY軸まわりの角速度を検出する機能をもつことを特徴とする角速度センサ。
【請求項2】
請求項1に記載の角速度センサにおいて、
第1のコリオリ力検出手段が、所定の検出時にZ軸まわりの角速度が作用していた場合に、第1の重錘体に対してY軸方向に作用する第1のY軸コリオリ力を検出する機能を更に有し、
第2のコリオリ力検出手段が、前記所定の検出時にZ軸まわりの角速度が作用していた場合に、第2の重錘体に対してY軸方向に作用する第2のY軸コリオリ力を検出する機能を更に有し、
演算手段が、前記第1のY軸コリオリ力と前記第2のY軸コリオリ力との差に基づいて、作用したZ軸まわりの角速度を求める機能を更に有し、
Y軸まわりの角速度とともにZ軸まわりの角速度を検出する機能をもつことを特徴とする角速度センサ。
【請求項3】
請求項1または2に記載の角速度センサにおいて、
駆動手段が、第1の重錘体をX軸方向に沿って往復運動させる第1のX軸方向駆動手段と、第2の重錘体をX軸方向に沿って往復運動させる第2のX軸方向駆動手段と、を有し、前記第1の重錘体の往復運動と前記第2の重錘体の往復運動とが、周期が同一で位相が反転したものとなるようにしたことを特徴とする角速度センサ。
【請求項4】
請求項1〜3のいずれかに記載の角速度センサにおいて、
装置筐体内を、所定の境界面を境として右側領域と左側領域とに分けたときに、駆動手段による運動が行われていない状態において、
第1の重錘体と第2の重錘体とは、前記境界面に関して互いに対称な構造をなし、
第1の接続部材と第2の接続部材とは、前記境界面に関して互いに対称な構造をなし、
第3の接続部材は、前記右側領域から前記境界面を跨いで前記左側領域へと連なり、前記境界面に関して対称構造をなすことを特徴とする角速度センサ。
【請求項5】
請求項4に記載の角速度センサにおいて、
第3の接続部材が、
駆動手段による運動が行われていない状態において境界面上に配置され、前記境界面に関して対称構造をなす中間部材と、
前記中間部材と第1の重錘体とを接続する可撓性を有する橋梁構造体と、
前記中間部材と第2の重錘体とを接続する可撓性を有する橋梁構造体と、
を有することを特徴とする角速度センサ。
【請求項6】
請求項1〜5のいずれかに記載の角速度センサにおいて、
第1の重錘体および第2の重錘体が、XY平面に平行な上面および下面を有する板状構造体によって構成されていることを特徴とする角速度センサ。
【請求項7】
請求項1〜6のいずれかに記載の角速度センサにおいて、
検出時にX軸方向の加速度が作用していた場合に、第1の重錘体に対して前記加速度に起因して前記X軸方向に作用する第1のX軸加速度力を検出する第1の加速度力検出手段と、
検出時にX軸方向の加速度が作用していた場合に、第2の重錘体に対して前記加速度に起因して前記X軸方向に作用する第2のX軸加速度力を検出する第2の加速度力検出手段と、
を更に設け、
演算手段が、前記第1の加速度力と前記第2の加速度力との和に基づいて、作用したX軸方向の加速度を求める演算を行う機能を更に有することを特徴とする加速度検出機能をもった角速度センサ。
【請求項8】
請求項1〜7のいずれかに記載の角速度センサにおいて、
検出時にY軸方向の加速度が作用していた場合に、第1の重錘体に対して前記加速度に起因して前記Y軸方向に作用する第1のY軸加速度力を検出する第1の加速度力検出手段と、
検出時にY軸方向の加速度が作用していた場合に、第2の重錘体に対して前記加速度に起因して前記Y軸方向に作用する第2のY軸加速度力を検出する第2の加速度力検出手段と、
を更に設け、
演算手段が、前記第1の加速度力と前記第2の加速度力との和に基づいて、作用したY軸方向の加速度を求める演算を行う機能を更に有することを特徴とする加速度検出機能をもった角速度センサ。
【請求項9】
請求項1〜8のいずれかに記載の角速度センサにおいて、
検出時にZ軸方向の加速度が作用していた場合に、第1の重錘体に対して前記加速度に起因して前記Z軸方向に作用する第1のZ軸加速度力を検出する第1の加速度力検出手段と、
検出時にZ軸方向の加速度が作用していた場合に、第2の重錘体に対して前記加速度に起因して前記Z軸方向に作用する第2のZ軸加速度力を検出する第2の加速度力検出手段と、
を更に設け、
演算手段が、前記第1の加速度力と前記第2の加速度力との和に基づいて、作用したZ軸方向の加速度を求める演算を行う機能を更に有することを特徴とする加速度検出機能をもった角速度センサ。
【請求項10】
請求項7〜9のいずれかに記載の角速度センサにおいて、
第1の重錘体について所定軸の方向に作用した力を検出する第1の力検出手段を、この所定軸を検出軸とする第1のコリオリ力検出手段および第1の加速度力検出手段として兼用し、
第2の重錘体について所定軸の方向に作用した力を検出する第2の力検出手段を、この所定軸を検出軸とする第2のコリオリ力検出手段および第2の加速度力検出手段として兼用し、
前記第1の力検出手段による力の検出値と前記第2の力検出手段による力の検出値との差に基づいて角速度を求め、
前記第1の力検出手段による力の検出値と前記第2の力検出手段による力の検出値との和に基づいて加速度を求めるようにしたことを特徴とする加速度検出機能をもった角速度センサ。
【請求項11】
請求項10に記載の角速度センサにおいて、
第1の重錘体および第2の重錘体の運動周波数を、検出対象となる加速度の周波数に比べて十分に高く設定し、前者を高周波数、後者を低周波数とする識別が可能になるようにし、
第1の力検出手段による力の検出値の前記高周波数の成分と第2の力検出手段による力の検出値の前記高周波数の成分との差に基づいて角速度を求め、
第1の力検出手段による力の検出値の前記低周波数の成分と第2の力検出手段による力の検出値の前記低周波数の成分との和に基づいて加速度を求めるようにしたことを特徴とする加速度検出機能をもった角速度センサ。
【請求項12】
請求項1〜11のいずれかに記載の角速度センサにおいて、
各重錘体上に、励振用導電路を形成し、この励振用導電路が位置する空間に、この励振用導電路に対して磁束が平行にはならないような磁界を発生させる磁界発生手段を設け、
前記励振用導電路に電流を供給した場合に、この電流と前記磁界との相互作用に基づくローレンツ力によって前記重錘体が検出に必要な運動を行うように構成したことを特徴とする角速度センサ。
【請求項13】
請求項12に記載の角速度センサにおいて、
各重錘体上に、更に検出用導電路を形成し、磁界発生手段が、励振用導電路および検出用導電路が位置する空間に、これら両導電路に対して磁束が平行にはならないような磁界を発生させる機能を有し、
前記検出用導電路に発生する誘導起電力に基づいて、重錘体に作用した力を検出できるようにしたことを特徴とする角速度センサ。
【請求項14】
請求項13に記載の角速度センサにおいて、
XYZ三次元直交座標系のXY平面内に上面が含まれ、この上面の中央部に原点Oが定義された基板を重錘体として用い、
X軸に沿って伸び、Y軸の負の部分に交差する第1の導電路と、X軸に沿って伸び、Y軸の正の部分に交差する第2の導電路と、Y軸に沿って伸び、X軸の負の部分に交差する第3の導電路と、Y軸に沿って伸び、X軸の正の部分に交差する第4の導電路と、により励振用導電路を構成し、
X軸に沿って伸び、Y軸の負の部分に交差する第5の導電路と、X軸に沿って伸び、Y軸の正の部分に交差する第6の導電路と、Y軸に沿って伸び、X軸の負の部分に交差する第7の導電路と、Y軸に沿って伸び、X軸の正の部分に交差する第8の導電路と、により検出用導電路を構成したことを特徴とする角速度センサ。
【請求項15】
請求項1〜14のいずれかに記載の角速度センサにおいて、
XYZ三次元直交座標系のXY平面に平行な上面および下面を有する基板を重錘体として用い、装置筐体の一部に、前記重錘体の下面に対向する対向面を形成し、前記重錘体の下面に形成された導電面と前記対向面に形成された導電面とによって容量素子を形成し、この容量素子によってZ軸コリオリ力およびZ軸加速度力のうちの少なくとも一方を検出できるようにしたことを特徴とする角速度センサ。
【請求項16】
請求項1〜15のいずれかに記載の角速度センサにおいて、
1枚の基板上に左右の領域を定義し、この基板の所定部分を除去することにより、各領域のそれぞれにおいて、中央に位置する重錘体と、この重錘体の周囲に位置し、可撓性の橋梁構造をもった接続部材とを形成するようにし、
前記基板の外周部分によってフレームを構成し、前記接続部材により、前記各重錘体が前記フレームに接続されるようにし、前記橋梁構造の可撓性の範囲内で、前記各重錘体が前記フレーム内で所定の自由度をもって運動可能となるようにしたことを特徴とする角速度センサ。
【請求項17】
請求項1〜11のいずれかに記載の角速度センサにおいて、
重錘体側に形成した駆動用変位電極と、この駆動用変位電極に対向するように装置筐体側に形成した駆動用固定電極と、によって構成される駆動用容量素子を駆動手段として用い、前記駆動用変位電極と前記駆動用固定電極との間に電圧を印加することにより生じるクーロン力によって、前記重錘体を運動させるようにしたことを特徴とする角速度センサ。
【請求項18】
請求項17に記載の角速度センサにおいて、
XYZ三次元直交座標系のXY平面に平行な矩形平面を上面および下面とする基板を重錘体として用い、
この重錘体のXZ平面に平行な側面に、YZ平面に平行な電極面を有するX軸方向駆動用変位電極を形成し、この重錘体のYZ平面に平行な側面に、XZ平面に平行な電極面を有するY軸方向駆動用変位電極を形成し、
装置筐体側に、前記X軸方向駆動用変位電極および前記Y軸方向駆動用変位電極の電極面にそれぞれ対向する電極面をもったX軸方向駆動用固定電極およびY軸方向駆動用固定電極を形成し、
前記X軸方向駆動用変位電極および前記X軸方向駆動用固定電極の間に電圧を印加することにより生じるクーロン力によって、前記重錘体をX軸方向に運動させ、前記Y軸方向駆動用変位電極および前記Y軸方向駆動用固定電極の間に電圧を印加することにより生じるクーロン力によって、前記重錘体をY軸方向に運動させるようにしたことを特徴とする角速度センサ。
【請求項19】
請求項18に記載の角速度センサにおいて、
重錘体の各側面にそれぞれ複数の駆動用変位電極を前記各側面の長手方向に並べて配置し、
装置筐体側には、これら複数の駆動用変位電極の間に互い違いに挿入されるように、複数の駆動用固定電極を配置し、
隣接して配置された1枚の駆動用変位電極と1枚の駆動用固定電極とにより駆動用容量素子が形成されるようにし、同一の駆動用容量素子を形成する駆動用変位電極と駆動用固定電極との電極間隔が、同一の駆動用容量素子を形成しない駆動用変位電極と駆動用固定電極との電極間隔よりも小さくなるように設定されていることを特徴とする角速度センサ。
【請求項20】
請求項1〜11のいずれかに記載の角速度センサにおいて、
重錘体側に形成した検出用変位電極と、この検出用変位電極に対向するように装置筐体側に形成した検出用固定電極と、によって構成される検出用容量素子をコリオリ力または加速度力の検出手段として用い、前記検出用容量素子の静電容量値によってコリオリ力または加速度力を検出するようにしたことを特徴とする角速度センサ。
【請求項21】
請求項20に記載の角速度センサにおいて、
XYZ三次元直交座標系のXY平面に平行な矩形平面を上面および下面とする基板を重錘体として用い、
この重錘体のXZ平面に平行な側面に、YZ平面に平行な電極面を有するX軸方向検出用変位電極を形成し、この重錘体のYZ平面に平行な側面に、XZ平面に平行な電極面を有するY軸方向検出用変位電極を形成し、
装置筐体側に、前記X軸方向検出用変位電極および前記Y軸方向検出用変位電極の電極面にそれぞれ対向する電極面をもったX軸方向検出用固定電極およびY軸方向検出用固定電極を形成し、
前記X軸方向検出用変位電極および前記X軸方向検出用固定電極によって構成される検出用容量素子の静電容量値によってX軸方向に作用するコリオリ力または加速度力を検出し、前記Y軸方向検出用変位電極および前記Y軸方向検出用固定電極によって構成される検出用容量素子の静電容量値によってY軸方向に作用するコリオリ力または加速度力を検出するようにしたことを特徴とする角速度センサ。
【請求項22】
請求項21に記載の角速度センサにおいて、
重錘体の各側面にそれぞれ複数の検出用変位電極を前記各側面の長手方向に並べて配置し、
装置筐体側には、これら複数の検出用変位電極の間に互い違いに挿入されるように、複数の検出用固定電極を配置し、
隣接して配置された1枚の検出用変位電極と1枚の検出用固定電極とにより検出用容量素子が形成されるようにし、同一の検出用容量素子を形成する検出用変位電極と検出用固定電極との電極間隔が、同一の検出用容量素子を形成しない検出用変位電極と検出用固定電極との電極間隔よりも小さくなるように設定されていることを特徴とする角速度センサ。
【請求項23】
請求項21または22に記載の角速度センサにおいて、
重錘体の下面に、Z軸方向検出用変位電極を形成し、装置筐体側に、前記Z軸方向検出用変位電極に対向するZ軸方向検出用固定電極を形成し、
前記Z軸方向検出用変位電極および前記Z軸方向検出用固定電極によって構成される検出用容量素子の静電容量値によってZ軸方向に作用するコリオリ力または加速度力を検出するようにしたことを特徴とする角速度センサ。
【請求項24】
請求項17〜23のいずれかに記載の角速度センサにおいて、
重錘体を導電性材料によって構成し、この重錘体表面の特定の一部分を、駆動用変位電極または検出用変位電極として用いるようにしたことを特徴とする角速度センサ。
【請求項25】
請求項1〜24のいずれかに記載の角速度センサにおいて、
互いに所定間隔をおいてほぼ平行に配置された2枚の基板と、この2枚の基板の外周部を互いに接続する側壁部と、によって密閉された検出動作空間を構成し、
この検出動作空間内に2つの重錘体を収容し、前記重錘体が前記検出動作空間内で所定の自由度をもって運動可能となるように、前記重錘体と前記基板とを直接または間接的に接続部材によって接続したことを特徴とする角速度センサ。
【請求項26】
請求項25に記載の角速度センサにおいて、
検出対象となる範囲を越えた過度に大きな角速度または加速度が作用した場合に、重錘体がいずれか一方の基板に接触してその運動が妨げられるように、重錘体と各基板との間隔を設定し、各基板を重錘体の運動を制御する制御部材として利用できるようにしたことを特徴とする角速度センサ。
【請求項27】
請求項25または26に記載の角速度センサにおいて、
一方の基板に配線用開口窓を形成し、検出動作空間内に、この配線用開口窓を塞ぐように導電性の配線部材を設け、
前記検出動作空間の内部においては、重錘体を運動させるための駆動手段と、重錘体に作用したコリオリ力または加速度力を検出する力検出手段と、を前記配線部材に電気的に接続し、
前記検出動作空間の外部においては、前記配線用開口窓を通して、前記配線部材と外部配線とを電気的に接続するようにし、
前記検出動作空間の密閉状態を維持したまま電気的な配線が行われるようにしたことを特徴とする角速度センサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate


【公開番号】特開2009−75135(P2009−75135A)
【公開日】平成21年4月9日(2009.4.9)
【国際特許分類】
【出願番号】特願2009−3601(P2009−3601)
【出願日】平成21年1月9日(2009.1.9)
【分割の表示】特願平10−341043の分割
【原出願日】平成10年11月13日(1998.11.13)
【出願人】(390013343)株式会社ワコー (34)
【Fターム(参考)】