説明

超音波測定器

【課題】配管の大掛かりな加工を行うことなしに配管内を流れる流体に含まれる気泡の量や割合を測定することができ、更には高い測定精度を実現することができる超音波測定器を提供する。
【解決手段】超音波測定器1は、流体Xに対して超音波信号Uを送信するとともに、流体Xから得られる超音波信号の反射信号を受信して受信信号S2を出力するトランスデューサ13と、受信信号S2を変換して得られる受信信号S3に含まれる信号であって流体Xに含まれる気泡Bに起因する反射信号Rを受信して得られる信号の数を求めて流体に含まれる気泡Bの量を測定する第1測定部(フィルタ部24〜気泡量演算部26)とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波を用いて流体に含まれる気泡の量や割合等を測定する超音波測定器に関する。
【背景技術】
【0002】
配管内を流れる流体の流速や流量を測定する測定器の1つとして、超音波を用いた超音波測定器が知られている。かかる超音波測定器は、配管に対する穴あけ等の加工をすることなしに、超音波の送受信を行うトランスデューサを配管の外表面に取り付けるだけで測定を行うことができるという利点がある。この超音波測定器の代表的なものに伝播時間差方式を用いたもの、或いは反射相関法を用いたものがある。
【0003】
伝播時間差方式の超音波測定器は、配管内を流れる流体に対して斜め方向に超音波信号を送受信し、流体の流れに沿う向きに超音波信号を送受信した場合の伝播時間と、流体の流れに逆らう向きに超音波信号を送受信した場合の伝播時間との差を求めることで、配管内を流れる流体の流速等を測定するものである。これに対し、反射相関法を用いた超音波測定器は、配管内を流れる流体に対して斜め方向に超音波信号を複数回に亘って送信するとともに流体に含まれる気泡や微小粒子(パーティクル)からの反射信号を複数回に亘って受信し、受信信号の相関から流速等を測定するものである。
【0004】
以下の特許文献1には、伝播時間差方式による流速等の測定、及び反射相関法を用いた流速等の測定の何れの測定も可能であって、配管を流れる流体を介した超音波信号を受信して得られる受信信号の強度又は相関値に応じて、伝播時間差方式による流速等の測定と反射相関法を用いた流速等の測定とを切り替える超音波測定器が開示されている。また、以下の非特許文献1には、超音波を用いてボイド率(流体の単位断面積あたりに含まれる気泡の面積割合)を測定する技術が開示されている。更に、以下の非特許文献2には、楔状に加工された光ファイバ先端部を配管に形成された穴に挿入し、気泡が光ファイバの先端を通る際に反射光量が変化することを利用して、気泡径や気泡速度を検出する技術が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2005−181268号公報
【非特許文献】
【0006】
【非特許文献1】“超音波を用いた気泡検出”,[ONLINE],大阪大学,[平成21年3月2日検索],インターネット<URL: http://www.m-osaka.com/jp/seeds/handai/it/02.pdf>
【非特許文献2】“気液二相流計測システム”,[ONLINE],日本カノマックス株式会社,[平成21年3月2日検索],インターネット<URL: http://www.kanomax.co.jp/fvoid.html>
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、上記の特許文献1に開示された超音波測定器は、配管を流れる流体の流速や流量を測定することはできるものの、上記の非特許文献1,2に開示された技術のようにボイド率を測定することはできない。逆に、上記の非特許文献1は、ボイド率の測定が可能である点を開示するものの、配管を流れる流体の流速や流量の測定については何ら開示しておらず、これらの測定が可能であるか否かは不明である。
【0008】
ここで、上記の非特許文献2に開示された技術では、配管を流れる流体に含まれる気泡の径とともに速度を測定することが可能である。しかしながら、非特許文献2においては、楔状に加工された光ファイバの先端部に気泡を接触させる必要があることから、配管を加工して光ファイバを介挿させる穴を形成する必要がある。配管の加工は流体を一時的に停止させて行う必要があり、また加工によって生じた加工屑を配管内から除去する作業も必要となることから、作業が大掛かりになるという問題がある。
【0009】
また、上記の非特許文献1,2に開示された技術以外にも、導電率の変化や電気的な容量の変化を測定することによってボイド率を測定することも可能である。しかしながら、かかる測定方法では、微小な気泡を検出することが困難であるため、測定精度がさほど高くないという問題がある。尚、上記の非特許文献2に開示された技術でも、流体に含まれる気泡の量が少ない場合にはボイド率を精確に測定することは困難である。
【0010】
本発明は上記事情に鑑みてなされたものであり、配管の大掛かりな加工を行うことなしに配管内を流れる流体に含まれる気泡の量や割合を測定することができ、更には高い測定精度を実現することができる超音波測定器を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記課題を解決するために、本発明の超音波測定器は、流体(X)に対して超音波信号(U)を送信するとともに、前記流体から得られる前記超音波信号の反射信号を受信して受信信号(S2)を出力する送受信部(13、13a、13b)を備える超音波測定器(1、2)において、前記受信信号に含まれる信号であって前記流体に含まれる気泡に起因する反射信号(R)を受信して得られる信号の数を求めて前記流体に含まれる気泡の量を測定する第1測定部(24〜26)を備えることを特徴としている。
この発明によると、流体に対する超音波信号が送受信部から送信されるとともに流体からの反射信号が送受信部で受信され、第1測定部において受信信号に含まれる信号であって流体に含まれる気泡に起因する反射信号を受信して得られる信号の数が求められて流体に含まれる気泡の量が測定される。
また、本発明の超音波測定器は、前記流体に対する前記超音波信号の送信を所定の時間間隔(T)をもって少なくとも2回行って得られる各々の受信信号(S11、S12)を、前記超音波信号が送信された時間を基準とした時間位置に応じて複数の区分(SE1〜SE5)に分割して区分毎の相関処理を行う相関処理部(22)と、前記相関処理部の処理結果を用いて前記流体の流速分布を測定し、前記流体が流れる配管(TB)の断面積と前記流体の流速分布とを用いて前記流体の流量を測定する第2測定部(23)とを備えることを特徴としている。
また、本発明の超音波測定器は、前記第1測定部が、前記相関処理部で行われる相関処理によって前記区分毎に得られる相関係数が所定の閾値よりも大であるものの数を計数することで、前記流体に含まれる気泡に起因する反射信号を受信して得られる信号の数を求めることを特徴としている。
また、本発明の超音波測定器は、前記第1測定部が、前記流体内における前記超音波信号及び前記反射信号の減衰を考慮して前記受信信号の強度を補正する補正部(31)と、前記相関係数が前記所定の閾値よりも大である場合に、前記気泡の前記超音波信号に対する反射係数と前記気泡の径との関係を示すテーブルと、前記補正部で補正された前記受信信号とを用いて前記気泡の径を求め、前記信号の数を演算して前記気泡の量を求める気泡量算出部(26、32)とを備えることを特徴としている。
また、本発明の超音波測定器は、前記送受信部が、前記流体に対して複数波長の超音波信号を送信するとともに、前記受信信号を波長毎に出力するものであり、前記気泡量算出部が、前記超音波信号の波長毎のテーブルを用いて前記気泡の量を求めることを特徴としている。
また、本発明の超音波測定器は、前記第2測定部で測定される前記流体の流量と前記第1測定部で測定される前記気泡の量とを用いて前記流体に含まれる前記気泡の割合を測定する第3測定部(27)を備えることを特徴としている。
また、本発明の超音波測定器は、前記第1測定部が、前記受信信号の振幅が所定の閾値よりも大であるものの数を計数することで、前記流体に含まれる気泡に起因する反射信号を受信して得られる信号の数を求め、前記受信信号の振幅の大きさから前記気泡の径を推定して前記気泡の量を測定することを特徴としている。
【発明の効果】
【0012】
本発明によれば、流体に対する超音波信号を送受信部から送信するとともに流体からの反射信号を送受信部で受信し、受信信号に含まれる信号であって流体に含まれる気泡に起因する反射信号を受信して得られる信号の数を求めて流体に含まれる気泡の量を第1測定部で測定している。このため、配管の大掛かりな加工を行うことなしに配管内を流れる流体に含まれる気泡の量や割合を測定することができ、更には高い測定精度を実現することができるという効果がある。
【図面の簡単な説明】
【0013】
【図1】本発明の第1実施形態による超音波測定器の要部構成を示すブロック図である。
【図2】流体X内における超音波信号Uの透過領域の一例を示す断面図である。
【図3】本発明の第1実施形態による超音波測定器の動作を示すフローチャートである。
【図4】本発明の第1実施形態による超音波測定器の動作を説明するためのタイミングチャートである。
【図5】本発明の第2実施形態による超音波測定器の要部構成を示すブロック図である。
【図6】小球の反射係数(Stenzelの反射係数)の一例を示す図である。
【図7】本発明の第3実施形態による超音波測定器の構成の一部のみを示す図である。
【発明を実施するための形態】
【0014】
以下、図面を参照して本発明の実施形態による超音波測定器について詳細に説明する。
【0015】
〔第1実施形態〕
図1は、本発明の第1実施形態による超音波測定器の要部構成を示すブロック図である。図1に示す通り、本実施形態の超音波測定器1は、制御部11、送信回路12、トランスデューサ13(送受信部)、アンプ14、A/D(アナログ/ディジタル)変換器15、及び信号処理装置16を備えており、超音波信号Uを用いて配管TB内を流れる流体Xの流速や流量、及び流体Xに含まれる気泡Bの量(体積)や割合(流体Xに含まれる気泡の体積割合)を測定する。
【0016】
尚、本実施形態の超音波測定器1は、反射相関法を用いて流体Xの流速や流量、及び流体Xに含まれる気泡Bの量や割合を測定するものであるとする。つまり、配管TB内を流れる流体Xに対して斜め方向に超音波信号Uを複数回に亘って送信するとともに流体Xに含まれる気泡Bや微小粒子(パーティクル)からの反射信号Rを複数回に亘って受信し、受信信号S3に対する相関処理を行って配管TB内を流れる流体Xの流速や流量、及び流体Xに含まれる気泡Bの量や割合を測定するものであるとする。
【0017】
制御部11は、送信回路12及びA/D変換器15に対してトリガ信号Trを出力して、流体Xに対する超音波信号Uの送信制御及びアンプ14から出力される受信信号のサンプリング制御を行う。送信回路12は、制御部11から出力されるトリガ信号Trに基づいて、流体Xに送信すべき超音波信号Uを発生させるための駆動信号S1を出力する。ここで、駆動信号S1は、所定の時間間隔(例えば、数百μsec程度)をもったパルス状(バースト状)の信号である。
【0018】
トランスデューサ13は、流体Xが流れる配管TBの外表面に取り付けられており、送信回路12から出力される駆動信号S1に基づいて配管TB内を流れる流体Xに対して超音波信号Uを送信するとともに、流体Xから得られる超音波信号Uの反射信号Rを受信して受信信号S2を出力する。尚、トランスデューサ13は、配管TBに対する穴あけ等の加工をすることなく取り付けが可能である。
【0019】
ここで、トランスデューサ13は、配管TB内を流れる流体Xに対して斜め方向に超音波信号Uを送信する。具体的には、図1に示す通り、配管TB内を流れる流体Xの流れ方向に直交してトランスデューサ13を通る配管TBの径方向(第1径方向D1)に対して角度θをもって超音波信号Uを送信する。これにより、トランスデューサ13からの超音波信号Uは、図1中の経路PTに沿って流体X内を進むことになる。
【0020】
トランスデューサ13から送信された超音波信号Uは、図1中の経路PTに沿って流体X内を進むにつれて僅かに広がるが、その広がりはさほど大きくない。このため、図2に示す通り、流体Xの流れ方向に見た場合には、流体X内において超音波信号Uが透過する透過領域Qは配管TBの中心軸を含んで第1径方向D1に沿う略長方形形状(或いは、略台形形状)の領域になる。図2は、流体X内における超音波信号Uの透過領域の一例を示す断面図である。尚、図2を参照すると、第1径方向D1に直交する径方向(第2径方向D2)についての透過領域Qの幅が狭く、第2径方向D2については超音波信号Uが透過しない領域の方が大きいことが分かる。
【0021】
アンプ14は、トランスデューサ13から出力される受信信号S2を所定の増幅率で増幅する。A/D変換器15は、制御部11から出力されるトリガ信号Trに基づいてサンプリング処理を行い、アンプ14から出力される受信信号(アナログ信号)を受信信号S3(ディジタル信号)に変換する。尚、トリガ信号TrによってA/D変換器15のサンプリング制御が行われることで、トランスデューサ13から超音波信号Uが送信された直後に発生するノイズ等の除去が可能である。
【0022】
信号処理装置16は、メモリ21、相関処理部22、流速流量演算部23(第2測定部)、フィルタ部24(第1測定部)、カウンタ25(第1測定部)、気泡量演算部26(第1測定部、気泡量算出部)、及び気泡割合算出部27(第3測定部)を備えており、A/D変換器15から出力される受信信号S3を用いて流体Xの流速や流量、及び流体Xに含まれる気泡Bの量や割合を測定する。尚、流体Xの流速及び流量については、流体Xの流速のみを測定しても良く、これらの双方を測定しても良い。また、流体Xに含まれる気泡Bの量及び割合については、気泡Bの量のみを測定しても良く、これらの双方を測定しても良い。
【0023】
メモリ21は、A/D変換器15から出力される受信信号S3を記憶する。尚、超音波信号Uは数十〜数百回程度に亘って繰り返し送信されるため、メモリ21には超音波信号Uが送信される度にA/D変換器15から出力される受信信号S3が順次記憶される。相関処理部22は、メモリ21に記憶された受信信号を順次読み出して相関処理を行う。具体的に、相関処理部22は、所定の時間間隔(例えば、数百μsec)をもって行われた流体Xに対する複数回の超音波信号Uの送信によって得られる複数の受信信号をメモリ21から読み出す。そして読み出した受信信号を時間位置に応じて複数の区分に分割し、区分毎の相関処理を行う。尚、相関処理部22で行われる相関処理の詳細については後述する。
【0024】
流速流量演算部23は、相関処理部22で行われる相関処理の処理結果を用いて、第1径方向D1における流体Xの流速分布を測定する。具体的には、相関が最大となる時間間隔を上記の区分毎に求め、各々の時間間隔から区分毎の流体Xの流速を求める。かかる処理によって、流体Xの流速分布が測定される。流速流量演算部23は、測定された流体Xの流速分布と配管TBの断面積(流速を測定した位置近傍での管路TBの断面積)とを用いて流体Xの流量を測定する。
【0025】
フィルタ部24は、相関処理部22で行われる相関処理によって区分毎に得られる相関係数のうち、値が予め設定された閾値(相関係数の最大値が「1」である場合には、例えば、「0.7」)よりも大きいもののみを出力する。このフィルタ部24は、受信信号S2,S3に含まれる信号であって、流体Xに含まれる気泡Bに起因する反射信号Rを受信して得られる信号の数を求めるためのフィルタである。つまり、本実施形態では、上記の閾値よりも値が大きな相関係数が得られた場合には、その信号は、流体Xに含まれる気泡Bに起因する反射信号を受信して得られる信号であるとみなしている。
【0026】
カウンタ25は、フィルタ部24から出力される、相関係数が閾値を超えた回数を計数することで、図2に示す超音波信号Uの透過領域Qに含まれる気泡Bの数を計数する。気泡量演算部26は、カウンタ25で計数された気泡Bの数から、流体Xに含まれる気泡Bの量を演算する。具体的には、流体Xに含まれる気泡Bの径がほぼ同じであるとし、気泡Bの体積とカウンタ25で計数された気泡Bの数とを乗算して気泡Bの量を演算する。気泡割合算出部27は、流速流量演算部23で測定された流体Xの流量と、気泡量演算部26で求められた気泡の量とを用いて気泡の割合を算出する。
【0027】
次に、上記構成における超音波測定器1の動作について説明する。図3は、本発明の第1実施形態による超音波測定器の動作を示すフローチャートである。また、図4は、本発明の第1実施形態による超音波測定器の動作を説明するためのタイミングチャートである。以下、これらの図3及び図4参照しつつ、超音波測定器1の動作について詳細に説明する。
【0028】
配管TB内を流れる流体Xに対する測定が開始されると、まず第1回目の超音波信号を送信して受信信号をメモリ21に記憶する動作が行われる(ステップS11)。具体的には、まず制御部11からトリガ信号Trが出力されて送信回路12及びA/D変換器15に入力され、送信回路12においてトリガ信号Trに基づいた駆動信号S1が生成される。この駆動信号S1はトランスデューサ13に入力され、これによりトランスデューサ13が駆動されて超音波信号Uが送信される。尚、ここで送信された超音波信号Uは、図4に示す時刻t1における超音波信号U1であるとする。
【0029】
トランスデューサ13から送信された超音波信号U1は、図4に示す時刻t1から時間ΔTだけ経過した時刻t2になると、配管TB内を流れる流体X内に入射する。これと同時に、先に制御部11から出力されたトリガ信号Trに基づいてA/D変換器15でサンプリングが開始され、これにより受信期間T1が開始される。この受信期間T1においては、A/D変換器15から出力される受信信号S3(トランスデューサ13から出力される受信信号S2がアンプ14で増幅されてA/D変換器15でディジタル信号に変換された信号)がメモリ21に順次記憶される。
【0030】
流体X内に入射した超音波信号U1は、図1及び図2に示す経路PTに沿って流体Xを伝播する。ここで、経路PT上に気泡Bが存在すると、超音波信号U1の一部が気泡Bによって反射されて反射信号Rが生ずる。この反射信号Rは、経路PTを逆向きに辿ってトランスデューサ13で受信される。これにより、トランスデューサ13から出力される受信信号S2には、気泡Bに起因する反射信号Rを受信して得られる信号が含まれることになる。このため、A/D変換器15から出力される受信信号S3にも気泡Bに起因する反射信号Rを受信して得られる信号が含まれることになる。超音波信号U1が配管TB内を流れる流体X内に入射してから、経路PTを往復するのに要する時間が経過すると受信期間T1が終了する。
【0031】
以上の動作が終了し、超音波信号U1が送信された時刻(時刻t1)から所定の時間間隔T(例えば、数百μsec)が経過すると、制御部11からトリガ信号Trが出力されて、第2回目の超音波信号を送信して受信信号をメモリ21に記憶する動作が行われる(ステップS12)。尚、ここで送信された超音波信号Uは、図4に示す時刻t3における超音波信号U2であるとする。超音波信号U2が送信された時刻t3から時間ΔTだけ経過した時刻t4になると、超音波信号U2が配管TB内を流れる流体X内に入射し、これと同時に受信期間T2が開始される。そして、上述の動作と同様の動作が行われて、受信期間T2で受信された受信信号がメモリ21に記憶される。
【0032】
以上の動作が終了すると、ステップS11,S12でメモリ21に記憶された受信信号が相関処理部22に読み出される。そして、相関処理部22において、読み出された各々の受信信号が複数の区分に分割され、区分毎の相関処理が実施される(ステップS13)。ここで、受信期間T1でメモリ21に記憶された受信信号が図4に示す受信信号S11であり、受信期間T2でメモリ21に記憶された受信信号が図4に示す受信信号S12であるとする。
【0033】
相関処理部22は、メモリ21から読み出したこれらの受信信号S11,S12を、超音波信号U1,U2が送信された時刻t1,t3(或いは、受信期間T1,T2の先頭時刻)を基準とした時間位置に応じて複数の区分に分割する。具体的には、図4に示す通り、受信信号S11,S12を先頭から一定の時間間隔で区分SE1〜SE5に分割する。尚、図4においては、理解を容易にするために5つの区分SE1〜SE5に分割する例を図示しているが、分割数は必要となる測定精度に応じて数十〜数百程度に設定される。
【0034】
以上の分割が終了すると、相関処理部22は、区分SE1における受信信号S11,S12の相関処理、区分SE2における受信信号S11,S12の相関処理、…、区分SE5における受信信号S11,S12の相関処理を順次行う。相関処理部22の処理が終了すると、流速流量演算部23において相関処理の結果を用いた流体Xの流速分布及び流量の測定が行われる(ステップS14)。具体的には、上記の区分SE1〜SE5毎に相関が最大となる時間間隔が求められ、各々の時間間隔から区分SE1〜SE5毎の流体Xの流速が求められ、これによって流体Xの流速分布が測定される。また、測定された流体Xの流速分布と配管TBの断面積(流速を測定した位置近傍での管路TBの断面積)とを用いて流体Xの流量が測定される。
【0035】
以上の流体Xの流速及び流量の測定と並行して、相関処理部22で行われた相関処理によって区分SE1〜SE5毎に得られる相関係数を用いた気泡の数の測定が行われる(ステップS15)。具体的には、相関処理部22から出力される区分SE1〜SE5毎に得られる相関係数がフィルタ部24に入力されて、値が予め設定された閾値よりも大きいもののみが出力される。フィルタ部24から出力される、相関係数が閾値を超えた回数はカウンタ25に入力されて数が計数される。
【0036】
カウンタ25の計数値は気泡量演算部26に入力され、この計数値から流体Xに含まれる気泡Bの量が演算される(ステップS16)。具体的には、流体Xに含まれる気泡Bの径がほぼ同じであるとし、気泡Bの体積とカウンタ25で計数された気泡Bの数とが乗算されて気泡Bの量が演算される。気泡量演算部26の演算結果は、流速流量演算部23で測定された流体Xの流量とともに気泡割合算出部27に入力される。そして、気泡割合算出部27において、流速流量演算部23で測定された流体Xの流量と気泡量演算部26で求められた気泡の量とを用いて気泡の割合が算出される(ステップS17)。具体的には、気泡の量が流量で除算されて気泡の割合が算出される。
【0037】
以上説明した通り、本実施形態では、超音波信号Uを流体Xに対して送信して得られる反射信号を受信した受信信号S2,S3を用いて流体Xの流速及び流量を測定するとともに、受信信号S2,S3に含まれる信号であって流体Xに含まれる気泡Bに起因する反射信号Rを受信して得られる信号の数を求めて流体Xに含まれる気泡の量を測定している。このため、配管TBの大掛かりな加工を行うことなしに配管TB内を流れる流体Xの流速や流量、及び流体Xに含まれる気泡Bの量や割合をともに測定することができる。
【0038】
更に、本実施形態では、超音波信号Uを2回送信して得られる受信信号の相関処理を行って流体Xの流速や流量、及び流体Xに含まれる気泡Bの量や割合を測定しているため、ノイズの影響を受けにくいという利点がある。これにより、測定誤差の変動も少なく、流体Xに対してppm(parts per million)オーダーで含まれる極めて少量の気泡の量を測定することが可能である。
【0039】
尚、以上の説明では、超音波信号Uを2回送信して得られた2つの受信信号のみから流体Xの流速及び流量、並びに流体Xに含まれる気泡の量及び割合を測定する例について説明した。しかしながら、図3に示す処理を数十〜百回程度繰り返して流体Xの流速及び流量、並びに流体Xに含まれる気泡の量及び割合を測定することにより、定常的な流体Xの流速及び流量、並びに流体Xに含まれる気泡の量及び割合を測定することが可能である。また、上記実施形態では、単純に気泡の数を用いて気泡の量を求める例について説明したが、気泡が存在すると判定された区分(相関係数が閾値よりも大きな区分)の位置情報を用いることで、配管TB内における気泡の分布を求めることも可能である。
【0040】
〔第2実施形態〕
図5は、本発明の第2実施形態による超音波測定器の要部構成を示すブロック図である。図5に示す通り、本実施形態の超音波測定器2は、図1に示す信号処理装置16に代えて信号処理装置30を備えており、流体Xに含まれる気泡Bの径を考慮して気泡Bの量を求めることで第1実施形態の超音波測定器1よりも気泡Bの測定精度を向上させるものである。
【0041】
信号処理装置30は、図1に示す信号処理装置16が備えるメモリ21〜気泡割合算出部27に加えて強度補正部31(第1測定部、補正部)及び気泡径演算部32(第1測定部、気泡量算出部)を備える。強度補正部31は、メモリ21に記憶される受信信号の信号強度を、流体Xに対して送信される超音波信号U及び流体X内で生ずる反射信号Rの減衰を考慮して補正する。ここで、流体X内を伝播する超音波信号U及び反射信号Rの減衰量は距離の関数で表すことができる。強度補正部31は予め測定して得られている超音波信号U及び反射信号Rの減衰量を示す関数を用いてメモリ21に記憶された受信信号の信号強度を補正する。
【0042】
気泡径演算部32は、強度補正部31で信号強度が補正された受信信号を用いて、流体Xに含まれる気泡Bの径を求める。ここで、流体Xに含まれる気泡Bに起因する反射信号Rの強度は、気泡Bに照射される超音波信号Uの強度と図6に示す反射係数zから求められる。図6は、小球の反射係数(Stenzelの反射係数)の一例を示す図である。図6中の横軸に示した変数Rは剛体球の半径であり、変数kは波数(波長をλとするとk=2π/λ)である。本実施形態では、気泡Bの半径が変数Rで表され、超音波信号Uの波数が変数kで表され、超音波信号Uの波長が変数λで表される。尚、図6においては縦軸に反射係数zの絶対値をとってあり、縦軸及び横軸ともに常用対数表示である。
【0043】
図6を参照すると、波数kと半径Rとの積(kR)の値が「1」以下の領域においては、反射係数zの絶対値が積(kR)の値にほぼ比例する。よって、超音波信号Uの強度と反射信号Rの強度とから反射係数zを求めれば、図6に示すグラフを用いて気泡Bの半径(径)を求めることができる。尚、積(kR)の値が「1」よりも大きくなると、反射係数zの値はほぼ一定になる。このため、測定対象となる気泡Bの大きさに応じて超音波信号Uの波長を適切に選択しておく必要がある。
【0044】
気泡径演算部32は、図6に示す積(kR)の値が「1」以下の領域における反射係数zと気泡Bの半径(径)との関係を示すテーブルと、強度補正部31で信号強度が補正された受信信号と、超音波信号Uの強度とを用いて気泡Bの径を求める。尚、気泡径演算部32による気泡Bの算出は、気泡が存在すると判定された区分(相関係数が閾値よりも大きな区分)においてのみ行われる。
【0045】
前述した第1実施形態では、気泡量演算部26において、流体Xに含まれる気泡Bの径がほぼ同じであるとし、気泡Bの体積とカウンタ25で計数された気泡Bの数とが乗算されて気泡Bの量が演算されていた。これに対し、本実施形態では、気泡径演算部32で求められた気泡B毎の径(体積)が気泡量演算部26で加算され、加算値と気泡Bの数とが乗算されて気泡Bの量が演算される。このため、第1実施形態よりも、流体Xに含まれる気泡Bの量及び割合を高い精度で測定することができる。
【0046】
〔第3実施形態〕
図7は、本発明の第3実施形態による超音波測定器の構成の一部のみを示す図である。図7に示す通り、本実施形態の超音波測定器は、図5に示す超音波測定器2とほぼ同様の構成であるが、2つのトランスデューサ13a,13b(送受信部)を備えており、第2実施形態による超音波測定器2よりも広い範囲で気泡Bの径を測定可能にするとともに、気泡Bの測定精度を向上させるものである。
【0047】
トランスデューサ13a,13bは、互いに波長が異なる超音波信号U11,U12をそれぞれ送信し、超音波信号U11,U12の経路PT11,PT12上に存在する気泡Bに起因する反射信号R11,R12をそれぞれ受信する。本実施形態の超音波測定器は、反射信号R11,R12を受信して得られた受信信号を用いて第2実施形態と同様の処理によって気泡Bの径を求めた上で、気泡Bの量及び割合を測定する。
【0048】
ここで、本実施形態では、超音波信号U11,U12の波長に応じたテーブル(反射係数zと気泡Bの半径(径)との関係を示すテーブル)を用いて気泡Bの径を求める。図6に示す通り、反射係数zの絶対値が積(kR)の値にほぼ比例する領域は、超音波信号の波長が固定である場合(1つである場合)には気泡Bの半径によって制限され、これによって気泡Bの径を測定する範囲もある程度制限されてしまう。
【0049】
これに対し、本実施形態では、波長が異なる超音波信号U11,U12を送信して、これら超音波信号U11,U12の波長に応じたテーブルを用いることにより、第2実施形態よりも広い範囲で気泡Bの径を測定することができ、これにより第2実施形態によりも気泡Bの量及び割合を高い精度で測定することができる。尚、PVDF(ポリフッ化ビニリデン)からなる高分子圧電素子のように複数の超音波信号を送信可能な素子を用いる場合には、図7に示す様に複数のトランスデューサ13a,13bを設ける必要は必ずしも無い。
【0050】
以上、本発明の実施形態による超音波測定器について説明したが、本発明は上述した実施形態に制限されることなく、本発明の範囲内で自由に変更が可能である。例えば、上記実施形態では、複数の受信信号を用いて相関処理を行って気泡Bの数を計数する例について説明したが、相関処理を行わずに1つの受信信号の時間区分(図4中に示す区分SE1〜SE5と同様の区分)毎の振幅が所定の閾値より大であるものの計数から気泡Bの数を測定するとともに、振幅の大きさから気泡Bの径を推定しても良い。
【0051】
また、上記実施形態では、反射相関法を用いて流体の流速や流量を求める超音波測定器を例に挙げて説明したが、本発明はドップラー法を用いて流体の流速や流量を求める超音波測定器にも適用可能である。ここで、ドップラー法とは、流体に含まれる気泡等の速さに応じた周波数偏移量(ドップラシフト量)に基づいて流体の流速や流量を求める方法をいう。
【0052】
更に、上記実施形態では、図2に示す通り、第1径方向D1のみに超音波信号Uを送信して流量等及び気泡量等を測定する例について説明したが、第1径方向D1に加えて第2径方向D2にも超音波信号を送信して流量等及び気泡量等を測定してもよい。これにより、測定精度をより向上させることができる。また更に、上記実施形態では、配管TB内を流れる流体Xの流速や流量、及び流体Xに含まれる気泡Bの量や割合をともに測定する例について説明した。しかしながら、流体Xに含まれる気泡Bの量のみを測定する場合には、流体Xの流速や流量を測定する必要は必ずしも無い。
【符号の説明】
【0053】
1,2 超音波測定器
13 トランスデューサ
13a,13b トランスデューサ
22 相関処理部
23 流速流量演算部
24 フィルタ部
25 カウンタ
26 気泡量演算部
27 気泡割合算出部
31 強度補正部
32 気泡径演算部
R 反射信号
S2,S3 受信信号
S11,S12 受信信号
SE1〜SE5 区分
T 時間間隔
TB 配管
U 超音波信号
X 流体

【特許請求の範囲】
【請求項1】
流体に対して超音波信号を送信するとともに、前記流体から得られる前記超音波信号の反射信号を受信して受信信号を出力する送受信部を備える超音波測定器において、
前記受信信号に含まれる信号であって前記流体に含まれる気泡に起因する反射信号を受信して得られる信号の数を求めて前記流体に含まれる気泡の量を測定する第1測定部を備えることを特徴とする超音波測定器。
【請求項2】
前記流体に対する前記超音波信号の送信を所定の時間間隔をもって少なくとも2回行って得られる各々の受信信号を、前記超音波信号が送信された時間を基準とした時間位置に応じて複数の区分に分割して区分毎の相関処理を行う相関処理部と、
前記相関処理部の処理結果を用いて前記流体の流速分布を測定し、前記流体が流れる配管の断面積と前記流体の流速分布とを用いて前記流体の流量を測定する第2測定部と
を備えることを特徴とする請求項1記載の超音波測定器。
【請求項3】
前記第1測定部は、前記相関処理部で行われる相関処理によって前記区分毎に得られる相関係数が所定の閾値よりも大であるものの数を計数することで、前記流体に含まれる気泡に起因する反射信号を受信して得られる信号の数を求めることを特徴とする請求項2記載の超音波測定器。
【請求項4】
前記第1測定部は、前記流体内における前記超音波信号及び前記反射信号の減衰を考慮して前記受信信号の強度を補正する補正部と、
前記相関係数が前記所定の閾値よりも大である場合に、前記気泡の前記超音波信号に対する反射係数と前記気泡の径との関係を示すテーブルと、前記補正部で補正された前記受信信号とを用いて前記気泡の径を求め、前記信号の数を演算して前記気泡の量を求める気泡量算出部と
を備えることを特徴とする請求項3記載の超音波測定器。
【請求項5】
前記送受信部は、前記流体に対して複数波長の超音波信号を送信するとともに、前記受信信号を波長毎に出力するものであり、
前記気泡量算出部は、前記超音波信号の波長毎のテーブルを用いて前記気泡の量を求める
ことを特徴とする請求項4記載の超音波測定器。
【請求項6】
前記第2測定部で測定される前記流体の流量と前記第1測定部で測定される前記気泡の量とを用いて前記流体に含まれる前記気泡の割合を測定する第3測定部を備えることを特徴とする請求項2から請求項5の何れか一項に記載の超音波測定器。
【請求項7】
前記第1測定部は、前記受信信号の振幅が所定の閾値よりも大であるものの数を計数することで、前記流体に含まれる気泡に起因する反射信号を受信して得られる信号の数を求め、前記受信信号の振幅の大きさから前記気泡の径を推定して前記気泡の量を測定することを特徴とする請求項1記載の超音波測定器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−216872(P2010−216872A)
【公開日】平成22年9月30日(2010.9.30)
【国際特許分類】
【出願番号】特願2009−61625(P2009−61625)
【出願日】平成21年3月13日(2009.3.13)
【出願人】(000006507)横河電機株式会社 (4,443)
【Fターム(参考)】