説明

軸受の異常検出装置および異常検出方法

【課題】連続回転運動を行なわない軸受(たとえばブレード軸受など)の異常を精度良く検出する軸受の異常検出装置および異常検出方法を提供する。
【解決手段】異常検出装置は、被支持体(例えばブレード)を支持体(たとえばロータヘッド)に回動可能に支持する軸受の異常検出装置であって、振動センサ160と、振動センサ160で検出された振動信号の周波数を分析して固有振動数を検出する周波数分析部164と、周波数分析部164によって検出された固有振動数を記憶する記憶部166と、検出された固有振動数の変化に基づいて、軸受の異常を検出する異常検出部170とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、軸受の異常検出装置および異常検出方法に関し、特に、被支持体を支持体に回動可能に支持する軸受の異常検出装置および異常検出方法に関する。
【背景技術】
【0002】
軸受の運転中の異常診断については、種々の診断方法が検討されている。たとえば、特開2005−164314号公報(特許文献1)は、転動装置における転動接触面の摩耗に至る過程を検知して、異常を判定する転動装置の異常予知方法および異常予知装置を開示している。
【0003】
この異常予知装置は、異常予知対象の転がり軸受から離隔して設置した超音波マイクロホンで転がり軸受の転動接触面で発生する超音波領域の摩擦音を検出する。検出した摩擦音信号をアンプにより増幅した後、フィルタによって超音波帯域の信号を抽出する。次いで、異常判定部で所定の異常判定基準値と比較し、抽出した摩擦音信号が大きい場合に転がり軸受の潤滑状態が異常と判定し、アラーム信号を出力する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−164314号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記の特開2005−164314号公報は、比較的高速に回転する回転軸に用いられる軸受の異常を判定するものであった。しかし、軸受は、軸の回転速度が遅いものや、被支持体の向きを変える程度の往復回動運動しか行なわない用途にも用いられる。このような用途であっても、頻繁に人が異常診断のために行くことができないような場所に長年にわたり設置されるような設備では、異常予知や診断を行なうことが好ましい。このような用途の一例として、風力発電装置のブレードの軸受が挙げられる。
【0006】
大型風車では主軸が1回転する間に、ブレードが回転角で数度の揺動(回動)を行なう。また、強風時には、過回転による発電機などの破壊を防止するため、ブレードの向きを風向きと平行な向きにして、風車の回転を止めておくことも行なわれる。
【0007】
このブレードの回転速度は非常に遅く、振動加速度による軸受の異常検出を行なおうとしても、振動加速度の大きさが小さく、異常検出を行なうことは困難である。
【0008】
また、高速回転軸についての異常検出と同様に、信号処理にて軸受に起因する振動の発生間隔を使おうとしても、軸受部分の運動が連続的な回転運動ではなく、揺動運動であるため適用することができない。また、風によるブレードの振動が外乱要因として入るため、振動加速度を検出しようとしてもノイズが多く、困難である。また、特開2005−164314号に示されるような摩擦音の測定は、風切り音の影響で困難である。
【0009】
本発明の目的は、連続回転運動を行なわない軸受(たとえばブレード用軸受など)の異常を精度良く検出する軸受の異常検出装置および異常検出方法を提供することである。
【課題を解決するための手段】
【0010】
この発明は、要約すると、被支持体を支持体に回動可能に支持する軸受の異常検出装置であって、振動センサと、振動センサで検出された振動信号の周波数を分析して固有振動数を検出する周波数分析部と、周波数分析部によって検出された固有振動数を記憶する記憶部と、検出された固有振動数の変化に基づいて、軸受の異常を検出する異常検出部とを備える。
【0011】
好ましくは、周波数分析部は、被支持体が固有振動数を検出するために好ましい力が働く条件下において、固有振動数を判定するために振動信号の周波数の分析を行なう。
【0012】
好ましくは、被支持体は、風力発電装置のブレードである。軸受は、ブレードの角度が変更可能なようにブレードを支持するための軸受である。
【0013】
より好ましくは、周波数分析部は、ブレードの風受け面が風向に対して平行になっているときに固有振動数を判定するために振動信号の周波数の分析を行なう。
【0014】
より好ましくは、異常検出部は、軸受の異常に加えて、ブレードの損傷についても判定を行なう。
【0015】
より好ましくは、異常検出部は、被支持体および支持体から離れた場所に設けられ、周波数分析部によって検出された固有振動数の初期状態からの変化率を受信するデータ処理部を含む。
【0016】
さらに好ましくは、異常検出部は、記憶部に記憶された初期固有振動数に対する周波数分析部によって検出された固有振動数の変化率を算出する変化率算出部と、変化率算出部からデータ処理部に至る送信経路上に設けられ、変化率を無線を用いて送信する送信部とを含む。
【0017】
好ましくは、振動センサは、加速度センサを含む。
好ましくは、周波数分析部は、振動信号の位相差スペクトルが位相反転することに基づいて、固有振動数を検出する。
【0018】
この発明は、他の局面では、被支持体を支持体に回動可能に支持する軸受の異常検出方法であって、振動センサで検出された振動信号の周波数を分析して固有振動数を検出するステップと、検出された固有振動数を記憶するステップと、検出された固有振動数の変化に基づいて、軸受の異常を検出するステップとを備える。
【0019】
好ましくは、固有振動数を検出するステップは、被支持体が固有振動数を検出するために好ましい力が働く条件下において、固有振動数を判定するために振動信号の周波数の分析を行なう。
【0020】
好ましくは、被支持体は、風力発電装置のブレードである。軸受は、ブレードの角度が変更可能なようにブレードを支持するための軸受である。
【0021】
より好ましくは、固有振動数を検出するステップは、ブレードの風受け面が風向に対して平行になっているときに固有振動数を判定するために振動信号の周波数の分析を行なう。
【0022】
より好ましくは、異常を検出するステップは、軸受の異常に加えて、ブレードの損傷についても判定を行なう。
【0023】
より好ましくは、異常を検出するステップは、被支持体および支持体から離れた場所において、検出された固有振動数の初期状態からの変化率を受信するステップを含む。
【0024】
さらに好ましくは、異常を検出するステップは、記憶された初期固有振動数に対する検出された固有振動数の変化率を算出するステップと、変化率を算出するステップから変化率を受信するステップに至る送信経路上において、変化率を無線を用いて送信するステップとを含む。
【0025】
好ましくは、振動センサは、加速度センサを含む。
好ましくは、固有振動数を検出するステップは、振動信号の位相差スペクトルが位相反転することに基づいて、固有振動数を検出する。
【発明の効果】
【0026】
本発明によれば、連続回転運動を行なわない軸受(たとえばブレード用軸受など)の異常を精度良く検出することができる。
【図面の簡単な説明】
【0027】
【図1】本実施の形態の軸受の異常検出装置が使用される一例である風力発電装置を説明するための図である。
【図2】風力発電装置のナセル部分を拡大して示した図である。
【図3】図2のブレード用軸受120を拡大して示した図である。
【図4】本実施の形態における軸受の異常検出方法について説明するための図である。
【図5】ブレード用軸受120をブレードおよびロータヘッドに取り付けた状態を示す部分断面図である。
【図6】図1に示したデータ処理装置80の構成を機能的に示す機能ブロック図である。
【図7】周波数分析部164の処理を説明するための図である。
【図8】ブレードの固有振動数に及ぼすブレード支持剛性の影響を数値解析した結果を示す図である。
【図9】「羽面垂直方向のブレードの傾き」変形モードを示す図である。
【図10】「羽面接線方向のブレードの傾き」変形モードを示す図である。
【図11】「羽面垂直方向の曲げ一次」変形モードを示す図である。
【図12】「羽面接線方向の曲げ一次」変形モードを示す図である。
【図13】「羽面垂直方向の曲げ二次」変形モードを示す図である。
【図14】「伸縮」変形モードを示す図である。
【図15】実施の形態2による異常診断システムの全体構成を概略的に示した図である。
【発明を実施するための形態】
【0028】
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
【0029】
[実施の形態1]
図1は、本実施の形態の軸受の異常検出装置が使用される一例である風力発電装置を説明するための図である。
【0030】
図1を参照して、風力発電装置10のタワー100の上端部には、ナセル90とロータヘッド20が設けられている。そして、ロータヘッド20には風力発電装置10の図示しない主軸の先端部分が接続されている。主軸はナセル90内部で支持され、タワー100を介して図示しない発電機へと接続されている。また、ロータヘッド20には複数のブレード30が取り付けられている。
【0031】
風力発電装置10は、風力の強さに応じてブレード30の風の方向に対する角度(以下、ピッチとする)を変化させることによって、適度な回転を得ている。また、風車の起動・停止を行なう場合にも同様に、ブレードピッチが制御される。また、主軸を1回転させる間においても、各ブレード30が数度揺動するように制御されている。このようにすることによって、風から得ることのできるエネルギーの量を調整することができる。強風時などでは、風車の回転を抑制するためにブレードの風受け面(翼面、羽面ともいう)を風の方向と平行にする。
【0032】
図2は、風力発電装置のナセル部分を拡大して示した図である。
図2を参照して、風力発電装置10は、主軸22と、ブレード30と、増速機40と、発電機50と、主軸用軸受60と、データ処理装置80とを備える。増速機40、発電機50、主軸用軸受60およびデータ処理装置80は、ナセル90に格納され、ナセル90は、タワー100によって支持される。
【0033】
主軸22は、ナセル90内に進入して増速機40の入力軸に接続され、主軸用軸受60によって回転自在に支持される。そして、主軸22は、風力を受けたブレード30により発生する回転トルクを増速機40の入力軸へ伝達する。ブレード30は、主軸22の先端に設けられ、風力を回転トルクに変換して主軸22に伝達する。
【0034】
主軸用軸受60は、ナセル90内において固設され、主軸22を回転自在に支持する。主軸用軸受60は、転がり軸受によって構成され、たとえば、自動調芯ころ軸受や円すいころ軸受、円筒ころ軸受、玉軸受等によって構成される。なお、これらの軸受は、単列のものでも複列のものでもよい。
【0035】
増速機40は、主軸22と発電機50との間に設けられ、主軸22の回転速度を増速して発電機50へ出力する。一例として、増速機40は、遊星ギヤや中間軸、高速軸等を含む歯車増速機構によって構成される。なお、特に図示しないが、この増速機40内にも、複数の軸を回転自在に支持する複数の軸受が設けられている。発電機50は、増速機40の出力軸に接続され、増速機40から受ける回転トルクによって発電する。発電機50は、たとえば、誘導発電機によって構成される。なお、この発電機50内にも、ロータを回転自在に支持する軸受が設けられている。
【0036】
ブレードピッチ可変機構は、ロータヘッド側に取り付けられたブレードピッチ変更用モータ24と、モータ24の回転軸に嵌合されたピニオンギヤによって回転されるリングギヤ26とを含む。リングギヤ26はブレード30に固定された状態に取り付けられている。
【0037】
ブレードピッチ可変機構は、複数のブレード30を揺動(回動)させ、ブレード30のピッチを変更(調整)する。ここで、この複数のブレード30の基端部には、ブレード用軸受120が設けられており、ブレード30はブレード用軸受120によってそれぞれ支持され、ブレード用軸受120の回転軸を中心として回転する。
【0038】
発電機50に負荷がかかっている場合には、風の方向とブレード30の風受け面とがなす角度が角度θ(≠0)となるようにブレード30のピッチが設定される。すると、ブレード30の風受け面は、風からのエネルギーを受ける。そして複数のブレード30は、ロータヘッド20に接続された主軸22を軸とし、ロータヘッド20と共にタワー100に対して回転する。この回転軸の回転は発電機へと伝達され、発電が行われる。
【0039】
また強風時などには、風の方向とブレード30の風受け面とが平行となるようにブレード30のピッチが変更される。このように、風の方向とブレード30のピッチとが平行となる状態(フェザリング)では、ブレード30の風受け面は風からエネルギーをほとんど受けなくなる。このようにすることによって、ブレード30およびロータヘッド20の回転速度の異常上昇による風力発電装置10の破損を防止することができる。
【0040】
図3は、図2のブレード用軸受120を拡大して示した図である。
図3を参照してブレード用軸受120は、外輪122と、内輪124と、内輪の転走面と外輪の転走面との間に与圧をもって挟持された転動体126と、保持器128と、グリース等の潤滑剤をシールするシール部材130,132とを含む。
【0041】
外輪122にはブレードを取り付けるためのボルト貫通孔142が設けられ、内輪124にはロータヘッドを取り付けるためのボルト貫通孔140が設けられている。
【0042】
大型の風力発電装置の場合には、たとえば、ブレード用軸受120の外形は約2.6m、重量は約2200kgにもなる。
【0043】
図4は、本実施の形態における軸受の異常検出方法について説明するための図である。
図4を参照して、揺動運動するブレード用軸受120は、低速で回動するため、損傷モードは摩耗によるものと予想される。そのため、摩耗の大きさを検知することが求められている。
【0044】
図5は、ブレード用軸受120をブレードおよびロータヘッドに取り付けた状態を示す部分断面図である。
【0045】
図5を参照して、ブレード30はボルト150およびナット152によって外輪122に固定される。ロータヘッド20はボルト154およびナット156によって内輪124に固定される。そして、内輪124の内側に振動センサ160を取り付ける。振動センサ160は、ブレード用軸受120のロータヘッド側ハウジングに設置してもよい。
【0046】
図4、図5を参照して、ブレード用軸受120は、4点接触の玉軸受を複数用いた構造が一般的である。また、ブレード用軸受120は、僅かな予圧を付して用いられる。ブレード用軸受の摩耗の進展は、この予圧の低下につながる。軸受の予圧が低下すると、ブレード用軸受120がブレード30を支持する剛性が低下する。つまり、摩耗はブレード30の支持部剛性の低下を招く。その結果、ブレード30の曲げや並進変位などの軸受剛性が関係する固有振動数f0が低下する。
【0047】
そこで、本実施の形態では、振動センサ160によりブレード30の固有振動数を検出し、この固有振動数の変化により、ブレード用軸受120の摩耗の進展を検知する。なお、固有振動モードが複数ある場合は、それらの変化を全て記録し、固有振動数の変化を検出する。その結果、ブレード用軸受120の摩耗が検出できることに加え、ブレード30自体のクラック発生なども検出可能となる。
【0048】
振動センサ160は、ブレード用軸受120に固設される。そして、振動センサ160は、ブレード30の振動を検出し、その検出値をナセル内のデータ処理装置へ出力する。振動センサ160は、たとえば、圧電素子を用いた加速度センサによって構成される。
【0049】
図6は、図1に示したデータ処理装置80の構成を機能的に示す機能ブロック図である。図1のデータ処理装置80は、ナセル90内に設けられ、後に説明するブレード30の振動の検出値を振動センサ160から受ける。そして、データ処理装置80は、主軸用軸受60の振動波形を用いて主軸用軸受60の異常検出するための処理を行なう。
【0050】
図6を参照して、データ処理装置80は、ハイパスフィルタ(以下、「HPF(High Pass Filter)」と称する。)162と、周波数分析部164と、記憶部166と、異常検出部170の一部である変化率算出部172および送信部174とを含む。異常検出部170は、さらに送信部174から無線でデータを受信するデータ処理部300を含む。
【0051】
周波数分析部164は、HPF162を通過した振動センサ160の出力を周波数分析する。
【0052】
図7は、周波数分析部164の処理を説明するための図である。
図6、図7を参照して、周波数分析部164は、振動センサ160で検出された信号のノイズ成分がHPF162で除去されたのちに、高速フーリエ変換によりフーリエスペクトルを求める。フーリエスペクトルにおいては、固有振動数はピーク値で示される。その際、固有振動数の箇所では、スペクトルの位相が反転するため、位相差スペクトルは0をクロスする。好ましくは、周波数分析部164はこの位相反転に基づいて固有振動数を検出する。周波数分析部164は、たとえば、竣工時の軸受がまだ摩耗していない状態で固有振動数を記憶部166に記録する。そして、この値を固有振動数の初期値として用いる。変化率算出部172は、固有振動数の初期値を記憶部から読出し、新たに周波数分析部164で検出された固有振動数と比較し、固有振動数の初期値からの変化率(たとえば%で表示される)を求める。この変化率は固有振動数とともに送信部174からデータ処理部300に無線などの方法により送信される。
【0053】
データ処理部300では、別途求めておいた限界の軸受摩耗状態における固有振動数の変化率を閾値とし、各固有振動数の初期値に対する変化率が先の閾値を超えた場合に、異常であると検出する。このような異常検出装置は、加速度センサと信号処理のみで実現でき、安価で検出装置の耐久性も高い。
【0054】
なお、フーリエ変換時には、市販のFFTアナライザと同様に、アンチエイリアスフィルタを通った波形に対しHanning窓関数を乗じ、スペクトルへ反映する。
【0055】
またHPFは必須のものではない。
なお、図6で示した各機能ブロックは、デジタル信号処理を用いソフトウエアによって実現することも可能である。
【0056】
図8は、ブレードの固有振動数に及ぼすブレード支持剛性の影響を数値解析した結果を示す図である。図8に示した結果は、ブレード用軸受の転動体が接触する位置で1本の羽(ブレード)を拘束し、その時の固有値を計算したものである。
【0057】
図8に、6箇所×2列で拘束した場合と、3箇所×2列で拘束した場合との固有値解析の結果を示す。図8では、6箇所×2列で拘束した場合は強い拘束での固有値(Hz)と示され、3箇所×2列で拘束した場合は弱い拘束での固有値(Hz)と示されている。
【0058】
これらの結果は、ブレード用軸受の摩耗によるすきまの増加によるものとは厳密には拘束条件が異なるが、ブレードを支持する部分の支持剛性の変化を再現できることから、ブレード全体の固有値の変化傾向は同じになる。
【0059】
以下、変形モードのイメージを図示して説明する。
図9は、「羽面垂直方向のブレードの傾き」変形モードを示す図である。
【0060】
図8、図9を参照して、羽面垂直方向のブレードの傾き変形モードの場合は、強い拘束での固有値(固有振動数)は2.7Hz、弱い拘束での固有値は2.36Hzであり、固有値変化率は13%であった。
【0061】
図10は、「羽面接線方向のブレードの傾き」変形モードを示す図である。
図8、図10を参照して、羽面接線方向のブレードの傾き変形モードの場合は、強い拘束での固有値(固有振動数)は3.22Hz、弱い拘束での固有値は2.66Hzであり、固有値変化率は17%であった。
【0062】
図11は、「羽面垂直方向の曲げ一次」変形モードを示す図である。
図8、図11を参照して、羽面垂直方向の曲げ一次変形モードの場合は、強い拘束での固有値(固有振動数)は9.50Hz、弱い拘束での固有値は8.44Hzであり、固有値変化率は7.0%であった。
【0063】
図12は、「羽面接線方向の曲げ一次」変形モードを示す図である。
図8、図12を参照して、羽面接線方向の曲げ一次変形モードの場合は、強い拘束での固有値(固有振動数)は16.2Hz、弱い拘束での固有値は15.1Hzであり、固有値変化率は6.8%であった。
【0064】
図13は、「羽面垂直方向の曲げ二次」変形モードを示す図である。
図8、図13を参照して、羽面垂直方向の曲げ二次変形モードの場合は、強い拘束での固有値(固有振動数)は21.4Hz、弱い拘束での固有値は20.4Hzであり、固有値変化率は4.7%であった。
【0065】
図14は、「伸縮」変形モードを示す図である。
図8、図14を参照して、伸縮変形モードの場合は、強い拘束での固有値(固有振動数)は33.7Hz、弱い拘束での固有値は24.0Hzであり、固有値変化率は29%であった。
【0066】
なお、図9〜図14において、矢印はブレードが振動する方向を示し、破線は変形前の形状を示し、実線は振動中のある瞬間の形状を示す。
【0067】
図8からわかるように、羽の曲げの固有値モードにおける支持部の剛性変化による固有値の変化は小さい。これは羽自体の特性が強く影響するためである。他方、羽の傾きおよび伸縮の変形パターンでは、固有値の変化率が大きい。これらの変形モードでは、支持部の剛性の影響が強いためである。
【0068】
したがって、羽の傾き変形および伸縮変形パターンの固有値の変化を観測すると、特に支持部の剛性変化を検出しやすいので好ましい。なかでも、羽面接線方向の傾き変形の方が羽面垂直方向の傾き変形よりも変化率が大きい。通常の風車運転中でも風力や遠心力が加振力として働くのでこのような固有振動数は検出することはできる。しかし、振動の振幅を大きくするには何らかのより大きな加振力が加わった瞬間の方が観測しやすい。羽面接線方向の傾き変形が発生しやすい条件として、羽面を風の方向と平行にした状態が挙げられる。このような状態は、強風時に風車の運転を停止させる場合などに見られる。強風時は加振力も大きい。そこで、たとえば、風速がしきい値を超えた場合にブレードを回転させて風の方向と羽面とを平行にし、固有振動数を観測する。そしてこの固有振動数の経年の変化を観測し続ければブレード用軸受の摩耗劣化を検出するのに好ましい。
【0069】
また、羽の傾き変形の固有値があまり変化していないのに、羽の曲げ変形の固有値が大きく変化した場合には、ブレード自体のクラックなどの損傷であると判断することもできる。
【0070】
以上説明したように、本実施の形態によれば、揺動軸受の摩耗の進展による異常を検知できる。また、ブレード自体のクラックなどの異常も併せて検知できる。
【0071】
なお、本実施の形態は、風力発電装置のブレード用軸受の異常検出を例にあげて説明した。しかし、棒状の形状物を支持し、その形状物の向きを棒状形状の軸を中心に回動させるような用途の軸受であれば、本願発明は種々の軸受にも適用できる。
【0072】
[実施の形態2]
ナセル90(図1)は、高所に設置されるので、上述した異常診断装置は、その装置自体のメンテナンス性を考慮すると、本来的にはナセル90から離れた場所に設置するのが望ましい。しかしながら、振動センサ160を用いて測定されるブレード用軸受120の振動波形そのものを遠隔地へ転送することは、転送速度の高い送信手段が必要であり、コスト増を招く。また、上述のようにナセル90が高所に設置されていることを考慮すると、ナセル90から外部への通信手段には、無線通信を用いることが望ましい。
【0073】
そこで、この実施の形態2では、周波数分析処理で求めた固有振動数については、ナセル90内に設けられるデータ処理装置において算出され、算出された固有振動数およびその変化率の各データが無線によってナセル90から外部へ送信される。そして、ナセル90から無線送信されたデータは、インターネットに接続された通信サーバによって受信され、インターネットを介して診断サーバに送信されてブレード用軸受120の異常診断が実施される。
【0074】
図15は、実施の形態2による異常診断システムの全体構成を概略的に示した図である。
【0075】
図15を参照して、異常診断システムは、風力発電装置10と、通信サーバ310と、インターネット320と、軸受状態診断サーバ330とを備える。
【0076】
風力発電装置10の構成は、図1、図2で説明したとおりである。なお、図15の通信サーバ310、インターネット320および軸受状態診断サーバ330が図6のデータ処理部300に対応する。
【0077】
図6の送信部174は、算出された固有振動数およびその変化率を無線により通信サーバ310へ出力する。
【0078】
通信サーバ310は、インターネット320に接続される。そして、通信サーバ310は、風力発電装置10から無線により送信されたデータを受信し、インターネット320を介してその受信したデータを軸受状態診断サーバ330へ出力する。軸受状態診断サーバ330は、インターネット320に接続される。そして、軸受状態診断サーバ330は、通信サーバ310からインターネット320を介してデータを受信し、風力発電装置10において算出された固有振動数およびその変化率に基づいて、風力発電装置10に設けられるブレード用軸受120(図2)の異常診断を行なう。
【0079】
なお、上記においては、ナセル90と通信サーバ310との間は無線通信が行なわれるものとしたが、ナセル90と通信サーバ310との間を有線で接続することも可能である。この場合は、配線が必要となるものの、無線通信装置を別途設ける必要がなくなり、かつ、一般的には有線の方が多くの情報を伝達可能であるので、ナセル90内においてメイン基板上に処理を集約することができる。
【0080】
また、上述した異常診断システムは、既存の発電監視システムとは独立して構成することが望ましい。このように構成することによって、既存のシステムに変更を加えることなく、異常診断システムの導入コストを抑制することができる。
【0081】
以上のように、この実施の形態2によれば、風力発電装置10に設けられる軸受の異常
診断を、遠隔地に設けられる軸受状態診断サーバ330において実施するので、メンテナンス負荷およびコストを低減することができる。
【0082】
また、ナセル90は高所に設置されるので作業環境が劣悪であるが、無線通信部280および通信サーバ310を設けることによりナセル90からの信号出力を無線化したので、ナセル90における配線工事を最小限に抑えることができ、ナセル90を支持するタワー100内の配線工事も不要となる。
【0083】
最後に、再び各図を参照して、本願実施の形態について総括する。図1、図6を参照して、本実施の形態の異常検出装置は、被支持体(例えばブレード30)を支持体(たとえばロータヘッド20)に回動可能に支持する軸受の異常検出装置であって、振動センサ160と、振動センサ160で検出された振動信号の周波数を分析して固有振動数を検出する周波数分析部164と、周波数分析部164によって検出された固有振動数を記憶する記憶部166と、検出された固有振動数の変化に基づいて、軸受の異常を検出する異常検出部170とを備える。
【0084】
好ましくは、周波数分析部164は、被支持体が固有振動数を検出するために好ましい力が働く条件下(たとえば、風車回転時や強風時の回転停止時など)において、固有振動数を判定するために振動信号の周波数の分析を行なう。
【0085】
図1、図2に示すように、好ましくは、被支持体は、風力発電装置10のブレード30である。軸受は、ブレード30の角度が変更可能なようにブレードを支持するためのブレード用軸受120である。
【0086】
図8で説明した固有値の変化率は、羽面接線方向傾き変形モードの固有値の変化率が大きいので、より好ましくは、周波数分析部164は、ブレード30の風受け面が風向に対して平行になっているときに固有振動数を判定するために振動信号の周波数の分析を行なう。
【0087】
また、羽面接線方向傾き変形以外の曲げ一次、二次変形で固有値の変化があった場合には、ブレードに損傷が発生したと考えられるので、より好ましくは、異常検出部170は、ブレード用軸受120の異常に加えて、ブレード30の損傷についても判定を行なう。
【0088】
図6、図15に示すように、より好ましくは、異常検出部170は、被支持体および支持体から離れた場所に設けられ、周波数分析部によって検出された固有振動数の初期状態からの変化率を受信するデータ処理部300を含む。
【0089】
図6に示すように、さらに好ましくは、異常検出部170は、記憶部166に記憶された初期固有振動数に対する周波数分析部によって検出された固有振動数の変化率を算出する変化率算出部172と、変化率算出部172からデータ処理部300に至る送信経路上に設けられ、変化率を無線を用いて送信する送信部174とを含む。
【0090】
好ましくは、振動センサは、加速度センサを含む。
図7に示すように、好ましくは、周波数分析部は、振動信号の位相差スペクトルが位相反転することに基づいて、固有振動数を検出する。
【0091】
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0092】
10 風力発電装置、20 ロータヘッド、22 主軸、24 ブレードピッチ変更用モータ、26 リングギヤ、30 ブレード、40 増速機、50 発電機、60 主軸用軸受、80 データ処理装置、90 ナセル、100 タワー、120 ブレード用軸受、122 外輪、124 内輪、126 転動体、128 保持器、130,132 シール部材、140,142 ボルト貫通孔、150,154 ボルト、152,156 ナット、160 振動センサ、164 周波数分析部、166 記憶部、170 異常検出部、172 変化率算出部、174 送信部、280 無線通信部、300 データ処理部、310 通信サーバ、320 インターネット、330 軸受状態診断サーバ。

【特許請求の範囲】
【請求項1】
被支持体を支持体に回動可能に支持する軸受の異常検出装置であって、
振動センサと、
前記振動センサで検出された振動信号の周波数を分析して固有振動数を検出する周波数分析部と、
前記周波数分析部によって検出された固有振動数を記憶する記憶部と、
前記検出された固有振動数の変化に基づいて、前記軸受の異常を検出する異常検出部とを備える、軸受の異常検出装置。
【請求項2】
前記周波数分析部は、前記被支持体が前記固有振動数を検出するために好ましい力が働く条件下において、前記固有振動数を判定するために前記振動信号の周波数の分析を行なう、請求項1に記載の軸受の異常検出装置。
【請求項3】
前記被支持体は、風力発電装置のブレードであり、
前記軸受は、前記ブレードの角度が変更可能なように前記ブレードを支持するための軸受である、請求項1または2に記載の軸受の異常検出装置。
【請求項4】
前記周波数分析部は、前記ブレードの風受け面が風向に対して平行になっているときに前記固有振動数を判定するために前記振動信号の周波数の分析を行なう、請求項3に記載の軸受の異常検出装置。
【請求項5】
前記異常検出部は、前記軸受の異常に加えて、前記ブレードの損傷についても判定を行なう、請求項3または4に記載の軸受の異常検出装置。
【請求項6】
前記異常検出部は、
前記被支持体および前記支持体から離れた場所に設けられ、前記周波数分析部によって検出された固有振動数の初期状態からの変化率を受信するデータ処理部を含む、請求項3〜5のいずれか1項に記載の軸受の異常検出装置。
【請求項7】
前記異常検出部は、
前記記憶部に記憶された初期固有振動数に対する前記周波数分析部によって検出された固有振動数の変化率を算出する変化率算出部と、
前記変化率算出部から前記データ処理部に至る送信経路上に設けられ、前記変化率を無線を用いて送信する送信部とを含む、請求項6に記載の軸受の異常検出装置。
【請求項8】
前記振動センサは、加速度センサを含む、請求項1〜7のいずれか1項に記載の軸受の異常検出装置。
【請求項9】
前記周波数分析部は、前記振動信号の位相差スペクトルが位相反転することに基づいて、前記固有振動数を検出する、請求項1〜8のいずれか1項に記載の軸受の異常検出装置。
【請求項10】
被支持体を支持体に回動可能に支持する軸受の異常検出方法であって、
振動センサで検出された振動信号の周波数を分析して固有振動数を検出するステップと、
前記検出された固有振動数を記憶するステップと、
前記検出された固有振動数の変化に基づいて、前記軸受の異常を検出するステップとを備える、軸受の異常検出方法。
【請求項11】
前記固有振動数を検出するステップは、前記被支持体が前記固有振動数を検出するために好ましい力が働く条件下において、前記固有振動数を判定するために前記振動信号の周波数の分析を行なう、請求項10に記載の軸受の異常検出方法。
【請求項12】
前記被支持体は、風力発電装置のブレードであり、
前記軸受は、前記ブレードの角度が変更可能なように前記ブレードを支持するための軸受である、請求項10または11に記載の軸受の異常検出方法。
【請求項13】
前記固有振動数を検出するステップは、前記ブレードの風受け面が風向に対して平行になっているときに前記固有振動数を判定するために前記振動信号の周波数の分析を行なう、請求項12に記載の軸受の異常検出方法。
【請求項14】
前記異常を検出するステップは、前記軸受の異常に加えて、前記ブレードの損傷についても判定を行なう、請求項12または13に記載の軸受の異常検出方法。
【請求項15】
前記異常を検出するステップは、
前記被支持体および前記支持体から離れた場所において、前記検出された固有振動数の初期状態からの変化率を受信するステップを含む、請求項12〜14のいずれか1項に記載の軸受の異常検出方法。
【請求項16】
前記異常を検出するステップは、
記憶された初期固有振動数に対する前記検出された固有振動数の変化率を算出するステップと、
前記変化率を算出するステップから前記変化率を受信するステップに至る送信経路上において、前記変化率を無線を用いて送信するステップとを含む、請求項15に記載の軸受の異常検出方法。
【請求項17】
前記振動センサは、加速度センサを含む、請求項10〜16のいずれか1項に記載の軸受の異常検出方法。
【請求項18】
前記固有振動数を検出するステップは、前記振動信号の位相差スペクトルが位相反転することに基づいて、前記固有振動数を検出する、請求項10〜17のいずれか1項に記載の軸受の異常検出方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2011−185632(P2011−185632A)
【公開日】平成23年9月22日(2011.9.22)
【国際特許分類】
【出願番号】特願2010−48763(P2010−48763)
【出願日】平成22年3月5日(2010.3.5)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】