説明

軽量気泡コンクリートパネルの製造方法

【課題】 ALC特有の気泡の成長を妨げることなく、最上部鉄筋の上側における発泡巣の生成を抑制する。
【解決手段】 このALCパネルの製造方法では、補強鉄筋11が配設された型枠10内で原料スラリー2を発泡させ、原料スラリー2の上面が補強鉄筋11の最上部鉄筋3を20mm越えてから発泡終了高さより10mm低い位置に達するまでの最適期間から選ばれる30mm以上の範囲の一部期間を少なくとも含む揺動期間に、型枠10を揺動し、該揺動により原料スラリー2の凝結を遅らせて、最上部鉄筋3の上側における発泡巣の生成を抑制する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、鉄筋が配設された型枠内で原料スラリーを発泡させて、軽量気泡コンクリートパネル(以下ALCパネルという)を製造する方法に関する。
【背景技術】
【0002】
一般に、ALCパネルの製造にあたっては、鉄筋が格子状に組まれてなる補強鉄筋を型枠内に配設し、石灰質原料と珪酸質原料との混合物にアルミニウム粉末、界面活性剤水溶液等を加えた原料スラリーを前記型枠内に打設し、アルミニウム粉末を発泡させて気泡を形成し、原料スラリーを体積膨張させつつ硬化させる。そして、発泡が終了した半硬化体を脱型し、所定厚さにスライスした後にオートクレープ養生させ、本硬化したパネルの小口表層部を切除して、所要寸法のALCパネルを完成する。
【0003】
ところで、原料スラリーの発泡過程では、スラリー上面が補強鉄筋のうちの最上部の鉄筋を通過するときに、この鉄筋に気泡が当って潰れ、気泡から出たガスが最上部鉄筋の上側に集合して発泡巣(粗大空洞部)を形成する。図7(a)に示すように、この発泡巣4は最上部鉄筋3の上面から約70mm〜80mmの高さまで成長し、ALCパネル51の切断面51aの強度に悪影響を与える。また、ALCパネル51を鉄筋3の延伸方向に切断すると、図7(b)に示すように、発泡巣4が小口面51bに露出し、ALCパネル51の外観を低下させ、商品価値を下げる。
【0004】
従来、この種の発泡巣の生成を抑えるために、以下のような方法が提案されている。
特許文献1:棒状振動体を最上部鉄筋近くの原料スラリー中に挿入して回転または水平移動させ、スラリーの粘度を低下させ、余分なガスを上方へ逃がす方法。
特許文献2:水または水溶液を最上部鉄筋近くの原料スラリー中に注入し、スラリーの粘度上昇を遅らせ、余分なガスを上方へ逃がす方法。
特許文献3:空気を原料スラリーの表面に吹き付け、スラリーの表層部を波動させて撹拌し、スラリーを均一に体積膨張させる方法。
【0005】
特許文献4:打設直後の原料スラリーに棒状バイブレーターで振動を与え、スラリーの混練中に巻き込まれた粗大気泡をスラリー上面から脱泡する方法。
特許文献5:原料スラリー中の発泡剤が発泡を開始する前の段階で、鉄筋を振動させ、スラリーの打設時に混入した気泡を排出する方法。
特許文献6:発泡剤が少量部分発泡している発泡初期段階で、型枠の底板を振動させ、スラリーの打設時に巻き込まれた気泡を脱泡する方法。
【0006】
【特許文献1】特開平8−72035号公報
【特許文献2】特開平7−277854号公報
【特許文献3】特開平9−110548号公報
【特許文献4】特開昭58−20767号公報
【特許文献5】特開昭2001−232622号公報
【特許文献6】特開昭60−141683号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
ところが、従来方法によると次のような問題点があった。
特許文献1:棒状振動体をスラリー中に挿入するため、振動によりALC特有の気泡が潰れ、潰れた気泡が最上部鉄筋の上側に新たな粗大気泡を形成する。
特許文献2:注水チューブをスラリー中に挿入するため、チューブによって正常な気泡が潰れ、チューブの周辺に粗大気泡が発生する。
特許文献3:空気による撹拌作用はスラリー表層部に限られるため、より深い位置の最上部鉄筋の上側で発泡巣の成長を抑制できない。
【0008】
特許文献4:スラリーの混練中に巻き込まれた粗大気泡はスラリー打設直後の振動により脱泡できるが、スラリー自体が生成した粗大気泡は粘度が高くなった段階のスラリーに振動を与えても脱泡することが困難である。
特許文献5:同様、凝結が進み粘度が高くなった段階のスラリーに鉄筋を介して振動を与えても粗大気泡を排出することは困難である。
特許文献6:型枠の底板に与えた振動は最上部鉄筋付近で大幅に減衰するため、スラリー上面が最上部鉄筋を越えた後に生成する発泡巣の成長を抑えることができない。
【0009】
本発明の目的は、上記課題を解決し、ALC特有の気泡の成長を妨げることなく、最上部鉄筋の上側における発泡巣の生成を効果的に抑制できるALCパネルの製造方法を提供することにある。
【課題を解決するための手段】
【0010】
上記の課題を解決するために、本発明のALCパネルの製造方法は、補強鉄筋が配設された型枠内で原料スラリーを発泡させ、原料スラリーの上面が補強鉄筋の最上部鉄筋を越えた後における一部期間を少なくとも含む揺動期間に、型枠を揺動し、該揺動により原料スラリーの凝結を遅らせて、最上部鉄筋の上側における発泡巣の生成を抑制することを特徴とする。このように型枠を揺動すると、原料スラリーを液状化させてその凝結を遅らせることができるので、液状化したスラリー中に気泡を分布させて最上部鉄筋と接触しにくくすることができ、もって最上部鉄筋の上側における発泡巣の生成を抑制することができる。
【0011】
[1]型枠の揺動距離
ここで、型枠の揺動距離は、特に限定されないが、型枠の揺動方向長さの0.3%〜10%であるのが好ましい。型枠の大きさは、特に限定されないが、例えば、実際の製造設備で使用する標準的な型枠は長さが6000mm程度、幅が1500mm程度のものである。この型枠を長さ方向へ揺動する場合の距離は、0.3%で18mm程度、10%で600mm程度である。幅方向へ揺動する場合の距離は、0.3%で4.5mm程度、10%で150mm程度である。
【0012】
型枠の揺動距離が揺動方向長さの0.3%〜10%であると、型枠内で原料スラリーの全体が大きく揺れ、スラリーの凝結が遅れ、気泡がスラリー中に均一に分布しやすくなる。揺動距離が0.3%未満になると、スラリーの移動距離が不足し、凝結が進行し、気泡の流動性が低下し、発泡巣が生成しやすくなる傾向がある。揺動距離が10%を超えると、凝結を遅らせる効果は変わらないが、揺動設備が大規模になる。小型の揺動設備で凝結を効果的に遅らせることができる点で、型枠の揺動距離は1%〜5%であるのがより好ましい。
【0013】
[2]型枠の揺動方向
型枠の揺動方向は、特定の方向に限定されず、原料スラリーが型枠内で動けばよく、型枠の長さ方向、幅方向、斜め方向、上下方向のいずれでもよく、水平面内で回転してもよい。
【0014】
[3]型枠の揺動加速度
型枠の揺動加速度は、特に限定されないが、0.001m/s〜0.2m/sであるのが好ましい。一般に、型枠内に打設された原料スラリーは珪石、セメント、生石灰等の粒子同士の摩擦力により混合に抵抗している状態にある。この状態で、型枠を揺動してスラリーを揺らすと、粒子間の接触が切れ、水がスラリー中に均一に分布するので、スラリーを液状化させ、スラリーの凝結速度を自然発泡時のそれよりも遅らせることができる。しかし、型枠の揺動加速度が0.001m/s未満であると、スラリーが型枠の揺動に追従し、粒子同士が接触を保ち、凝結が進行してスラリーの粘度が低下しにくくなる傾向となる。
【0015】
一方、原料スラリーはアルミニウム粉末とアルカリ物質との反応に伴ってALC特有の気泡を発生する。この気泡は衝撃や振動に対し非常に脆いため、気泡の成長過程ではスラリーに与える衝撃を極力低く抑えたい。型枠の揺動加速度が0.2m/sを超えると、衝撃によって正常な気泡が破壊されやすくなる。スラリー粘度を低下させかつ破泡を確実に防止できる点で、型枠の揺動加速度は0.01m/s〜0.1m/sであるのがより好ましい。
【0016】
[4]型枠の揺動期間
型枠の揺動期間は、原料スラリーの上面が補強鉄筋の最上部鉄筋を越えた後における一部期間のみでもよいし、この一部期間に加えてその前、後又は前後の所定期間を含んでもよい。
この一部期間は、原料スラリーの上面が補強鉄筋のうちの最上部鉄筋を20mm越えてから発泡終了高さより10mm低い位置に達するまでの期間(本明細書では同期間で揺動による発泡巣抑制作用が最もよく奏されることから「最適期間」という。)から選ばれる少なくとも30mmの範囲の期間であることが好ましい。この最適期間は、原料スラリーが自然発泡するときに発泡巣が成長する期間に対応するものであり、この期間に揺動させることが最も効果的であることから規定している。次に、始期と終期に分けて詳述する。
【0017】
[4−1]最適期間の始期について
発泡巣の生成時期は原料スラリーの配合や発泡終了高さによって相違するが、通常、図1(a)に示すように、原料スラリー2の上面が最上部鉄筋3を超えた後に、その鉄筋3と衝突して潰れた気泡が鉄筋3の真上に発泡巣4を生成し始める。ただし、スラリー2の上面が最上部鉄筋3を20mm越える前の発泡過程では、スラリー2の粘度が低く、スラリー2と共に上昇してくる内部気泡は鉄筋3と接触しても破泡することがないため、発泡巣4が発生しにくい。よって、この段階では、型枠を揺動しても発泡巣抑制の意味が薄い。従って、最適期間の始期は、スラリー2の上面が最上部鉄筋3を20mm越える頃である。
【0018】
[4−2]最適期間の終期について
発泡巣は原料スラリーの凝結の進行、つまりスラリー粘度の上昇に伴って成長する。図1(b)に示すように、スラリー2の上面がさらに上昇すると、最上部鉄筋3周辺のスラリー粘度が上昇し、破泡が進行し、発泡巣4が成長を続ける。図1(c)に示すように、スラリー2の上面が発泡終了高さ(H)に近づく頃には、最上部鉄筋3周辺のスラリー粘度が相当高くなるため、破泡が昂進し、発泡巣4が最上部鉄筋3の上に大きな空隙4aとして形成される。これ以降、スラリー2は比較的長い時間をかけて僅かに上昇し、発泡を終了する。発泡終了間際に型枠を揺動しても、最上部鉄筋3周辺のスラリー粘度は低下しにくいため発泡巣抑制の意味が薄い。従って、最適期間の終期は、スラリー2の上面が発泡終了高さ(H)より10mm低い位置に達する頃である。
【0019】
[4−3]最適期間から選ばれる一部期間の範囲について
上記の最適期間のうちから適宜選ばれる一部期間において型枠を揺動すれば、発泡巣抑制効果が得られるが、その一部期間の範囲(スラリー上面の進行でみた範囲)は30mm以上であることが好ましく、50mm以上であることがより好ましい。30mm未満の期間でのみ型枠を揺動させると、発泡巣を抑制できる部分のみならず抑制できない部分が生じる傾向となる。一方、同範囲の上限は、スラリーの発泡終了高さが最上部鉄筋からどの程度上位になるかによって制限され、例えば140mm上位になる場合には同範囲を110mmまでで設定できるが、例えば70mm上位になる場合には同範囲は40mmまでとなる。
【0020】
[5]連続的揺動と間欠的揺動
上記一部期間において、型枠を休まず連続的に揺動してもよく、休止時間を設定して間欠的に揺動してもよい。但し、間欠的揺動の場合、該揺動の合計時間は一部期間の50%以上とし、かつ該揺動の一回の休止時間は2分以下とすることが望ましい。この合計揺動時間が50%未満になると、連続的に揺動した場合と比較し、スラリーの凝結が進み、液状化が進行しにい傾向となる。また、2分を超えて型枠の揺動を休止させると、スラリーの凝結が進み、粘度上昇を抑えにくい傾向となる。
【発明の効果】
【0021】
本発明のALCパネルの製造方法によれば、原料スラリーの上面が最上部鉄筋を越えた後における一部期間を少なくとも含む揺動期間に型枠を揺動するので、該揺動により原料スラリーが液状化して凝結が遅れ、気泡の流動性が高まる。このため、気泡がスラリー中に均一に分布し、最上部鉄筋と接触しにくくなる。従って、ALC特有の気泡を潰すことなく、発泡巣の生成をタイミングよく抑制でき、外観と強度共に優れた商品価値の高いALCパネルを製造することができる。
【発明を実施するための最良の形態】
【0022】
本発明の実施形態のALCパネルの製造方法は、図2に示すように、補強鉄筋11が配設された型枠10内で原料スラリー2を発泡させ、原料スラリー2の上面が補強鉄筋11の最上部鉄筋3を20mm越えてから発泡終了高さより10mm低い位置に達するまでの最適期間から選ばれる30mm以上の範囲の一部期間を少なくとも含む揺動期間に、型枠10を揺動し、該揺動により原料スラリー2の凝結を遅らせて、最上部鉄筋3の上側における発泡巣の生成を抑制する。
【実施例】
【0023】
次に、上記製造方法を実施例に基づいて詳細に説明する。この実施例では、図3、図4に示すような試験的な型枠10を使用して、三枚のALCパネル1を製造した。型枠10の大きさは、長さ1000mm、幅350mm、高さ700mmである。ALCパネル1の大きさは、長さ840mm、幅600mm、厚さ100mmである。なお、ALCパネル1は長さ方向を横にし、幅方向を縦にして製作される。
【0024】
このパネル1の製造にあたり、まず、型枠10の内側に三組の補強鉄筋11をセットした。各補強鉄筋11は、型枠10の長さ方向へ水平に延びる主筋12と、型枠10の高さ方向(パネル1の幅方向)へ垂直に延びる副筋13とで格子状に組まれた2つの鉄筋が、型枠10の幅方向(パネル1の厚さ方向)に延びる連結筋14で連結されて、かご形に構成されている。主筋12、副筋13、連結筋14の太さは直径5mmである。
【0025】
そして、等間隔をおいて三組の補強鉄筋11をロッドピン15によりプレート16を介して型枠10に吊り下げた。このとき、原料スラリー2の発泡終了高さを660mmに設定し、該発泡終了高さが主筋12のうちの最上部の鉄筋3より140mm上位になるように、すなわち最上部の鉄筋3が型枠10の底面から520mm高くなるように、プレート16上の調節具17でロッドピン15の高さを調節して補強鉄筋11をセットした。
【0026】
次に、型枠10の内側に原料スラリー2を打設した。以下の実施例1〜4および比較例1〜5では、原料スラリー2として、珪石粉末40質量部、セメント15質量部、生石灰粉末10質量部、石膏5質量部、クラスト20質量部、ALCの破砕粉末10質量部からなる固形分に対し、外割で70質量部の水と0.06質量部のアルミニウム粉末(発泡剤)とを添加し、ミキサーで十分に混練したモルタルスラリーを使用した。
【0027】
続いて、補強鉄筋11が配設された型枠10内で原料スラリー2を発泡させた。この発泡工程では、型枠10を揺動する実施例1〜4の方法と、型枠10を揺動しない比較例1〜5の方法とを適用した。そして、スラリー2の発泡および体積膨張が終了した状態で、高さ660mmのALC半硬化体2を取得し、この半硬化体を脱型後にピアノ線で切断し、通常のオートクレーブ養生により本硬化させて、三枚のALCパネル1を完成した。
【0028】
<比較例1>
比較例1では、全発泡期間にわたり型枠10を静止させ、原料スラリー2を自然発泡させる方法を採用した。そして、図5に示すように、発泡期間中に原料スラリー2の発泡高さと強張り(粘度)とを測定した。強張りの測定にあたっては、図6に示すような直径4mm、長さ400mmのアルミ製スケール21を使用し、これを原料スラリー2中に静かに沈下させ、自然に停止したときに、スラリー2の上面より突出する長さを測って貫入値(mm)とした。
【0029】
また、図7(a)に示すように、完成したALCパネル51を幅方向の任意位置で縦方向に切断するとともに、図7(b)に示すように、パネル51の上端部を横方向に切断し、縦断面51aおよび横断面51bにおける発泡巣4の生成状態を観察した。その結果、図7(a)に示すように、縦断面51aには、発泡巣4が最上部鉄筋3から約70mmの高さまで立ち上がっていた。
【0030】
横断面51bについては、図7(b)に示すように、三枚のALCパネル51を最上部鉄筋3からのかぶり高さTが20mm、30mm、70mmとなるように切断した。そして、切断面に現れた発泡巣4のうち最上部鉄筋3の延伸方向に最も長い発泡巣4の長さXに関し、次の基準に基づいて点数評価した。評価結果を表1に示す。
【0031】
評価基準
X>20mm 4点
20mm≧X>10mm 3点
10mm≧X>5mm 2点
5mm≧X>2mm 1点
発泡巣無し 0点
【0032】
【表1】

【0033】
<実施例1>
実施例1では、図4に示すように、型枠10を台車18の上に載せ、原料スラリー2の上面が最上部鉄筋3を越えた後に、台車18と共に型枠10を試験員によって床面上で揺動した。揺動条件は次の通りである。なお、実際の製造設備では、前述した大型の型枠をローラコンベア等の移動体上に載置し、モータや流体圧シリンダを用いた揺動装置によって駆動することができる。
【0034】
揺動条件
揺動期間:原料スラリー2の上面が最上部鉄筋3を20mm越えてから発泡終了高さより20mm低い位置に達するまでの期間(図2参照)
揺動時間:揺動期間の100%(約20分間休まず連続的に揺動)
揺動方向:最上部鉄筋3の延伸方向と直角を成す水平方向(型枠10の幅方向)
揺動距離:型枠10の幅寸法の約5%(17.5mm程度)
揺動加速度:0.07m/s
揺動周期:120サイクル毎分
【0035】
比較例1と同様、原料スラリー2の発泡期間中にスラリー2の発泡高さと強張りとを測定した。測定結果を図8に示す。また、図9に示すように、完成したALCパネル1を縦、横両方向に切断し、縦断面1aと横断面1bにおける発泡巣4の生成状態を観察し、比較例1と同様に評価した。評価結果を表2に示す。
【0036】
【表2】

【0037】
実施例1のALCパネル1では、縦断面1aの発泡巣4が三枚共に最上部鉄筋3から25mm以下の長さに収まっていた(図9a参照)。表2に示すように、横断面1bでは、パネル1のかぶり高さ20mmに長さ2,3mmの発泡巣4が散在していたが、それより上位では発泡巣4が現れず、パネル2,3に関してはどの高さにも発泡巣4が現れていなかった(図9b参照)。表1と表2とを対比すると、型枠10の揺動によって発泡巣4の生成が効果的に抑制されていることが分かる。
【0038】
次に、型枠10の揺動が原料スラリー2に与えた質的な変化を図10、図11に基づいて確認する。図10は、比較例1および実施例1において、原料スラリー2の発泡高さの経時変化を示し、図11は強張りの経時変化を示す。なお、図10及び図11では、図5に示す比較例1の測定データと図8に示す実施例1の測定データとを引用した。
【0039】
図10に示すように、原料スラリー2の発泡高さは、比較例1と実施例1とでほぼ同様に変化しており、有意差が見られない。また、原料スラリーの温度変化も比較例1と実施例1とでほぼ同様であった。このことから、型枠10の揺動が原料スラリー2の水和反応に影響を及ぼしていないことが分かる。これに対し、図11に示すように、原料スラリー2の強張りは、貫入値において実施例1と比較例1とで格段の有意差が見られる。
【0040】
実施例1の貫入値は、型枠揺動期間の初期から比較例1よりも緩やかに上昇し、型枠揺動期間の終期で比較例1の貫入値との間に大きな格差を生じる。また、実施例1の貫入値は、型枠10の揺動が終了した直後に上昇を加速し、原料スラリー2の発泡終了付近で比較例1と同程度の値を示す。これらのことから、型枠10の揺動が、原料スラリー2の発泡期間およびALC半硬化体の硬度に影響を与えることなく、スラリー2の凝結を一時的に遅らせ、発泡巣4の生成を効果的に抑制できていることが分かる。
【0041】
<実施例2>
実施例2では、実施例1と同じ型枠10を使用し、原料スラリー2の上面が最上部鉄筋3を越えた後に、図12に示すように、型枠10を実施例1と異なる方向、距離、加速度および周期で揺動し、三枚のALCパネルを完成した。そして、完成したALCパネルを実施例1と同様に縦、横両方向に切断し、縦断面と横断面における発泡巣の生成状態を観察評価した。揺動条件を次に示し、評価結果を表3に示す。
【0042】
揺動条件
揺動期間:原料スラリー2の上面が最上部鉄筋3を20mm越えてから発泡終了高さより20mm低い位置に達するまでの期間(図2参照)
揺動時間:揺動期間の100%(約20分間休まず連続的に揺動)
揺動方向:最上部鉄筋3の延伸方向と一致する方向(型枠10の長さ方向)
揺動距離:型枠10の長さ寸法の約3%(30mm程度)
揺動加速度:0.03m/s
揺動周期:60サイクル毎分
【0043】
【表3】

【0044】
実施例2のALCパネル1も、実施例1とほぼ同様、パネル縦断面の発泡巣が三枚共に最上部鉄筋から25mm以下の長さに収まっていた(図9a参照)。表3に示すように、パネル横断面では、二枚のパネル(パネル1,3)のかぶり高さ20mmに長さ2,3mmの発泡巣4が散在していたが、かぶり高さ30mmと70mmではどのパネルにも発泡巣が現れていなかった(図9b参照)。なお、表2と表3の対比から、型枠10の揺動方向の違いは発泡巣の抑制効果にさほど影響していないことが分かる。
【0045】
<実施例3>
実施例3では、実施例1の揺動条件のうち、揺動時間のみが相違する二通りの方法で型枠10を揺動した。
第一の方法では、合計揺動時間が揺動期間の50%(約10分)となるように、一回で2分未満の揺動休止時間を設定して型枠10を間欠的に揺動した。
第二の方法では、50%以上の合計揺動時間を確保したうえで、一回で2分以上の揺動休止時間を設定して型枠10を間欠的に揺動した。図13は揺動時間の変化が原料スラリー2の強張りに与えた影響を示す。
【0046】
図13から明らかなように、実施例3の第一又は第二の方法のいずれによっても、比較例1と比較すると、貫入値の上昇速度つまり凝結の進度が遅くなる効果がある。但し、実施例3の第一の方法の場合は、連続的に揺動した実施例1と比較すると、貫入値の上昇速度が若干速くなる。実施例3の第二の方法の場合は、特に型枠揺動期間において、貫入値の上昇速度がさらに加速する。従って、発泡巣をより効果的に抑制するためには、型枠10の合計揺動時間が揺動期間の50%以上であり、かつ全揺動期間を通して型枠10の揺動を2分以上継続的に休止させないことが望ましいことが分かる。
【0047】
<実施例4>
実施例4では、実施例1と同じく原料スラリーの発泡終了高さを最上部鉄筋3よりも140mm上位に設定したが、実施例1の揺動条件のうち、揺動期間のみが相違する三通りの方法で型枠10を揺動した。
【0048】
第一の方法では、スラリー上面が最上部鉄筋3よりも0mm〜30mm上方に位置する期間(最上部鉄筋3を超えた直後から発泡終了高さより110mm低い位置に達するまでの期間)に型枠10を揺動した。この場合、図14(a)に示すように、完成品のパネル縦断面1aには、ALC特有の気泡が各部均一に分布していたが、長さ55mmの発泡巣4が生成していた。
【0049】
第二の方法では、原料スラリー2の上面が最上部鉄筋3よりも60mm〜90mm上方に位置する期間(最上部鉄筋3を60mm超えてから発泡終了高さより50mm低い位置に達するまでの期間)に型枠10を揺動した。この場合は、図14(b)に示すように、気泡の状態が良好であり、発泡巣4が40mmの長さに短縮していた。
【0050】
第三の方法では、原料スラリー2の上面が最上部鉄筋3よりも60mm〜120mm上方に位置する期間(最上部鉄筋3を60mm超えてから発泡終了高さより20mm低い位置に達するまでの期間)に型枠10を揺動した。その結果、図14(c)に示すように、気泡の状態も良好であり、発泡巣4も25mmの長さまで短縮していた。
【0051】
このように、発泡終了高さが鉄筋3よりも140mm上位である本実施例4においては、スラリーが最上部鉄筋3を20mm超えてから発泡終了高さより10mm低い位置に達するまでの最適期間のうちから選ばれる、30mm以上の範囲の一部期間に型枠10を揺動することで(第二又は第三の方法)、外観と強度共に優れたALCパネル1が得られること、また同範囲は広い方がより好ましいことが確認された。
【0052】
以下の比較例2〜5では、発泡巣を抑制するための従来方法がALC特有の気泡の成長に与える影響について検証し、もって本発明による方法の優位性を確認する。
【0053】
<比較例2>
比較例2では、図15(a)に示すように、原料スラリー2の上面が最上部鉄筋3より90mm〜115mm上方に位置する期間に、熊手23を使用してスラリー2の上部を掻き混ぜた。その結果、図15(b)に示すように、発泡巣4は10mm程度の長さに短縮していたが、発泡巣とも云えるほどの多数の粗大気泡6が最上部鉄筋3の上側の広い範囲に拡散していた。これは、掻き混ぜによってALC特有の気泡が潰れた結果であり、商品価値を著しく低下させている。
【0054】
<比較例3>
比較例3では、図16(a)に示すように、原料スラリー2の上面が最上部鉄筋3より30mm程度上方に達した時点で、ジョウロ24で水を散布した。その結果、図16(b)に示すように、パネル縦断面1aに現れる気泡の状態は良好であったが、発泡巣4が比較例1と同じ約70mmの長さに成長していて、抑制効果を確認できなかった。
【0055】
<比較例4>
比較例4では、図17(a)に示すように、原料スラリー2の上面が最上部鉄筋3より30mm〜70mm上方に位置する期間に、ジョウロ24と熊手23とを併用し、スラリー2に散水しつつ掻き混ぜた。その結果、図17(b)に示すように、発泡巣4の長さは約50mmに短くなったが、発泡巣4の上側に高さ30mm程度の無気泡部分7が発生し、さらにその上側に粗大気泡6が散在していた。これは、散水と掻き混ぜの相乗作用によって気泡が広範囲にわたって潰れた結果であり、気泡の見栄えを悪化させている。
【0056】
<比較例5>
比較例5では、図18(a)に示すように、原料スラリー2の上面が最上部鉄筋3より90mm〜120mm上方に位置する期間に、プレート16上に取り付けたバイブレーター25により加振板26とロッドピン15とを介して補強鉄筋11に約200Hzの振動を与えた。その結果、図18(b)に示すように、気泡の状態はほぼ良好であったが、発泡巣4が65mmと長く、抑制効果を確認できなかった。この発泡巣4の上端部分は、スラリー粘度の上昇に伴って生成した粗大気泡ではなく、バイブレーター25による加振期間中に、最上部鉄筋3を通過したスラリー中の気泡が振動により潰れて形成した粗大気泡である。
【0057】
上記実施例1〜4の揺動による方法は、比較例2〜5とは異なり、発泡過程の原料スラリー2に直接的に接触する手段を使用しない。また、揺動による方法は、生成してしまった発泡巣4を物理的に破壊する方法ではなく、原料スラリー2を揺らすことで発泡巣3の生成を未然に抑制する方法である。従って、ALC特有の気泡を潰すことなく液状化したスラリー中に均一に分布させて、外観の見栄えが優れたALCパネル1を製造することができる。
【0058】
なお、型枠10を揺動する期間は、実施例1〜4の期間に限定されず、原料スラリー2の配合に対応して、スラリー上面が最上部鉄筋3を越えた後から発泡終了高さに達するまでの任意の期間に設定することができる。また、往復回動する回転テーブル上で型枠を揺動するなど、各種の揺動装置を使用できる。その他、本発明の趣旨を逸脱しない範囲で、型枠10の揺動条件を適宜に変更して実施することも可能である。
【図面の簡単な説明】
【0059】
【図1】ALCパネルにおける発泡巣の生成メカニズムを説明する模式図である。
【図2】本発明によるパネル製造方法の概要を示す型枠の断面図である。
【図3】本発明の実施例を示す型枠とALCパネルの斜視図である。
【図4】実施例1の方法を示す型枠の縦断面図である。
【図5】比較例1において原料スラリーの発泡高さと強張りを示すグラフである。
【図6】スラリーの強張りを測定する方法を示す型枠の縦断面図である。
【図7】比較例1の方法を評価するALCパネルの斜視図である。
【図8】実施例1において原料スラリーの発泡高さと強張りを示すグラフである。
【図9】実施例1の方法を評価するALCパネルの斜視図である。
【図10】実施例1の方法を評価するスラリーの発泡高さ変化を示すグラフである。
【図11】実施例1の方法を評価するスラリーの強張り変化を示すグラフである。
【図12】実施例2の方法を示す型枠の正面図である。
【図13】実施例3の方法を評価するグラフである。
【図14】実施例4の方法を示すパネルの縦断面図である。
【図15】比較例2の方法を示す型枠とパネルの縦断面図である。
【図16】比較例3の方法を示す型枠とパネルの縦断面図である。
【図17】比較例4の方法を示す型枠とパネルの縦断面図である。
【図18】比較例5の方法を示す型枠とパネルの縦断面図である。
【符号の説明】
【0060】
1 ALCパネル
2 原料スラリー
3 最上部鉄筋
4 発泡巣
10 型枠

【特許請求の範囲】
【請求項1】
補強鉄筋が配設された型枠内で原料スラリーを発泡させ、原料スラリーの上面が補強鉄筋の最上部鉄筋を越えた後における一部期間を少なくとも含む揺動期間に、型枠を揺動し、該揺動により原料スラリーの凝結を遅らせて、最上部鉄筋の上側における発泡巣の生成を抑制することを特徴とする軽量気泡コンクリートパネルの製造方法。
【請求項2】
型枠の揺動距離が、型枠の揺動方向長さの0.3%〜10%である請求項1記載の軽量気泡コンクリートパネルの製造方法。
【請求項3】
型枠の揺動加速度が、0.001m/s〜0.2m/sである請求項1又は2記載の軽量気泡コンクリートパネルの製造方法。
【請求項4】
前記一部期間が、原料スラリーの上面が最上部鉄筋を20mm越えてから発泡終了高さより10mm低い位置に達するまでの最適期間から選ばれる30mm以上の範囲の期間である請求項1〜3のいずれか一項に記載の軽量気泡コンクリートパネルの製造方法。
【請求項5】
前記一部期間に型枠を連続的に揺動する請求項1〜4のいずれか一項に記載の軽量気泡コンクリートパネルの製造方法。
【請求項6】
前記一部期間に型枠を間欠的に揺動し、但し該揺動の合計時間は一部期間の50%以上とし、かつ該揺動の一回の休止時間は2分以下とする請求項1〜4のいずれか一項に記載の軽量気泡コンクリートパネルの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2008−195014(P2008−195014A)
【公開日】平成20年8月28日(2008.8.28)
【国際特許分類】
【出願番号】特願2007−34857(P2007−34857)
【出願日】平成19年2月15日(2007.2.15)
【出願人】(000185949)クリオン株式会社 (105)
【Fターム(参考)】