説明

迅速な分子プロファイリングのための腫瘍組織マイクロアレイ

【課題】数百の形態学的に制御された腫瘍標本の分子的特徴の迅速な平行分析を可能にするような方法で、最小の組織要求量で組織標本の大規模分子プロファイリングを実施する。
【解決手段】アレイに基づいた技術により、非常に多数のヒト腫瘍の迅速な関連遺伝子のコピー数および発現プロファイリングが容易になる。個々の腫瘍の形態学的に代表的な領域の数百の円筒形組織生検(直径0.6mm)を1つのパラフィンブロックに配列することができる。このようなアレイの連続切片は、DNA、RNAまたはタンパク質標的の平行インサイチューハイブリダイゼーションおよび定量の標的となる。

【発明の詳細な説明】
【技術分野】
【0001】
[発明の詳細な説明]
発明の分野
本発明は組織試料の顕微鏡的、組織学的および/または分子的分析に関する装置に関する。
【背景技術】
【0002】
発明の背景
多数の疾患の生物学的機序は組織標本の顕微鏡調査によって解明されている。組織病理学的調査によっても種々の疾患の効果的な治療の開発が可能になった。標準的な解剖病理では、診断は細胞形態および染色特徴に基づいて下される。例えば、腫瘍の種類を特徴づけ、患者が特定の化学療法の形態に反応するかどうかを予測するために腫瘍試料を検討することができる。腫瘍の顕微鏡的調査および分類により治療が改善されているが、(ヘマトキシリンおよびエオシンなどの)標準的な方法によって染色される組織標本の顕微鏡的外観はごくわずかな診断情報または分子情報しか明らかにすることができない。
【0003】
分子医学の最近の進歩により、疾患の細胞機序を理解し、成功の可能性の最も高い適当な治療法を選択する、より大きな機会が提供されている。例えば、いくつかのホルモン依存的乳癌細胞はそれらの細胞表面のエストロゲン受容体の発現が多く、腫瘍を採取した患者はある種の抗エストロゲン薬剤治療に応答する可能性がある。他の診断用および予後用細胞変化には、(黒色腫におけるような)腫瘍特異的細胞表面抗原の存在、(肝癌のα-フェトプロテインおよび消化器腫瘍によって産生される癌胎児性糖タンパク質抗原などの)胎児性タンパク質の産生および(腫瘍における癌遺伝子の活性化などの)遺伝子の異常が含まれる。このような細胞の異常の存在を検出するために、モノクローナル抗体を用いた免疫表現によるタイピング、プローブを用いたインサイチューハイブリダイゼーションおよびポリメラーゼ連鎖反応(PCR)を使用したDNA増幅を含む種々の技法が進歩した。
【0004】
しかし、新規な分子マーカーの開発は、小さい表面領域内への大多数の組織のグループ分けができないことにより妨害された。特にモノクローナル抗体形成の早期においてはごく少量のハイブリドーマ上清が入手されるだけで、分析できる試料の数が限られる。しかし、大量の免疫組織化学的薬剤が入手できたとしても、試薬は高価で、反応性が異なることもある。これらの問題点により、バチフォラ(Battifora)ら、Lab. Invest. 55: 244-248(1986)(非特許文献1)および米国特許第4,820,504号(特許文献1)において、多数の組織標本を1枚のスライド上にグループ分けし、1滴のハイブリドーマ上清を適用することによって試料を同時にスクリーニングすることができることを提案された。脱パラフィンおよび脱水した組織標本を手で持った剃刀の刃を使用してスライス状に切断し、次いでこれを無作為に束にし、ソーセージの皮の類で包み、再度パラフィンに包埋することによって試料を調製した。この技法は高度な手の器用さが必要され、試料が複合ブロックに組み込まれているために、関心対象の特定の試料を発見し同定するのが困難であった。
【0005】
この方法の改良法がワン(Wan)ら、J. Immunol. Meth. 103:121-129(1987)(非特許文献2)およびフルマンスキー(Furmanski)ら、米国特許第4,914,022号(特許文献2)によって開示されており、パラフィン包埋された組織のコアが標準的な組織ブロックから得られた。暖かい表面上でコアを手動でころがすことによって、コアを軟化して真っ直ぐにし、従来の飲料水用ストローの内側に束状にした。この方法では、例えば、モノクローナル抗体の特徴付けのように多数の組織標本を同時に組織学的に試験するのに好適であることが述べられた。ミラー(Miller)およびグルースイス(Groothuis)、A. J. C. P. 96:228-232(1991)(非特許文献3)の技法は、同様に、帯状組織をころがして「丸太」状にし、それから横方向の切片を採取してパラフィンに包埋した。しかし、ストローおよび丸太技法は労働集約的で、高度な手の器用さが必要とされ、試料が不規則に配列していたため、関心対象の試料の同定が複雑にされていた。
【0006】
バチフォラ(Battifora)およびメタ(Mehta)、Lab. Invest. 63: 722-724(1990)(非特許文献4)および米国特許第5,002,377号(特許文献3)は、試料を複数の細い帯状に切断し、これを個別に成形型の平行な矩形の溝に配置することによって不規則な配置に関する問題のいくつかを克服することを試みた。溝に注いだ寒天ゲルに帯状組織を包埋し、一連の隆起を有するプレート様部材を形成した。隆起を有するプレートのいくつかを積層して、パラフィンに包埋して組織ブロックを形成した。同様の方法は、サンドブラッド(Sundblad)、A. J. C. P. 102: 192-193(1993)(非特許文献5)によって提案されており、その方法では、帯状組織を矩形の溝の代わりに三角形の楔に配置した。組織をスライスし、それを集成して列にし、数段階でそれを包埋してブロックを形成することは時間のかかる方法であり、大多数の組織標本を調査する効率を低下させた。
【0007】
これらの技法は全て、種々の別個の分子マーカーの迅速な平行分析に使用することができる組織標本のアレイを効率的に調製するには不適当であった。この不効率さは癌の研究などの分野で重大な問題となっている。その理由は、癌の形成および進行は、いくつかの染色体領域および多数の遺伝子の逐次的な損失、再配列および増幅を含む多段階過程だからである。これらの事象により、細胞の増殖、死および分化に重大なシグナル伝達経路が調節不全となる。一部には、大多数の培養されていないヒト腫瘍におけるこのような遺伝的変化を分析するための高スループット方法および技法を利用することができないことから、このような複雑な過程の詳細は完全には理解されていない。
【0008】
例えば、癌細胞増殖の調節不全における重大な律速段階を指摘するには、同じまたは関連のあるシグナル伝達経路内のいくつかの遺伝子を同時に分析することが必要である場合がある。さらに、癌の異なる進行段階における遺伝的変化の蓄積パターンを理解するためには、いくつかの染色体、遺伝子座および遺伝子に同時に影響を与える構造状および数の変化を分析することが必要になる場合がある。最終的に、臨床発癌学においてこれらの分子マーカーの診断的、予後的および治療的重要性を判定するためには、癌における新規遺伝子および重要と思われる遺伝的変化が同定された後に、通常実質的な追加の調査が必要になる。
【0009】
しばしば、組織の量がこのような検討を制限するので、独自で、貴重であることが多い腫瘍試料の消費を最小にするように、分子分析用の試料を効率的に獲得し、固定し、保存し、分配することができることが重要である。従って、本発明の目的は、数百の形態学的に制御された腫瘍標本の分子的特徴(遺伝子の量および発現など)の迅速な平行分析を可能にするような方法で、最小の組織要求量で組織標本(腫瘍など)の大規模分子プロファイリングを実施することである。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】米国特許第4,820,504号
【特許文献2】米国特許第4,914,022号
【特許文献3】米国特許第5,002,377号
【非特許文献】
【0011】
【非特許文献1】バチフォラ(Battifora)ら、Lab. Invest. 55: 244-248(1986)
【非特許文献2】ワン(Wan)ら、J. Immunol. Meth. 103:121-129(1987)
【非特許文献3】ミラー(Miller)およびグルースイス(Groothuis)、A. J. C. P. 96:228-232(1991)
【非特許文献4】バチフォラ(Battifora)およびメタ(Mehta)、Lab. Invest. 63: 722-724(1990)
【非特許文献5】サンドブラッド(Sundblad)、A. J. C. P. 102: 192-193(1993)
【発明の概要】
【0012】
上述の目的は、複数のドナー標本をレシピエントアレイの割り付けた位置に配置し、各切片が割り付けた位置を維持する複数のドナー試料を含有するように、複数の切片をレシピエントアレイから得る組織試料の平行分析方法によって達成される。異なる組織学的分析を各切片について実施して、アレイの対応する位置の異なる分析結果の間に相関関係が存在するかどうかを判定する。特定の態様において、ドナー組織から円筒形コアなどの細長い試料をくりぬき、レシピエントアレイの円筒形コアなどの相補的な形状の容器にドナー標本を配置することによって、ドナー標本を得る。ドナー標本について実施することができる分析は免疫学的分析、核酸ハイブリダイゼーションおよび標本の臨床病理学的特徴づけを含む。
【0013】
本発明の方法のさらに特定の態様において、レシピエントブロックは、パンチまたはミクロトームで切断することができるパラフィンなどの硬い包埋様媒体から形成され、別個のドナーブロックは、生物標本を包埋用媒体に包埋することによって形成される。円筒形の容器コアをレシピエントブロック中でくりぬき、所定の位置に容器のアレイを形成し、円筒形ドナー試料コアは、ドナーブロックの包埋された生物標本から得られる。次いで、ドナー試料をアレイの割り当てた位置の円筒形容器に配置し、割り付けたアレイ位置を乱すことなく、レシピエントブロックをスライスして、アレイ中にドナー試料コアの断面を得る。例えば、別個の抗原を認識する異なるモノクローナル抗体または抗原的に別個のモノクローナル抗体と核酸(例えば、RNAおよびDNA)プローブを組み合わせたものを連続切片に使用して、各切片について異なる組織学的分析を実施することができる。アレイの各位置における別個の各々の組織学的分析結果を比較して、例えば、エストロゲン受容体を発現する組織が、特定の癌遺伝子が活性化されている証拠を有するかどうかも判定する。
【0014】
本発明のさらに特定の態様において、パンチ装置またはミクロトームで切断することができるパラフィンなどの硬い包埋用媒体からレシピエントブロックを形成し、かつ生物試料を包埋用媒体に包埋することによって別個のドナーブロックも形成する。レシピエントブロックに円筒形の容器コアをくりぬき、所定の位置に容器のアレイを形成し、ドナーブロック中に包埋した生物試料から円筒形のドナー試料コアを獲得する。次いで、ドナー試料コアをアレイの割り当てた位置の円筒形の容器に配置し、レシピエントブロックをスライスして、割り当てたアレイ位置を乱すことなく、アレイ中でドナー試料コア断面を獲得する。例えば、別個の抗原を認識する異なるモノクローナル抗体または抗原が別個であるモノクローナル抗体および核酸(例えば、RNAおよびDNA)プローブの組み合わせを連続切片に使用することによって、異なる生物学的分析を各切片に実施することができる。例えば、エストロゲン受容体を発現する組織が、特定の癌遺伝子が活性化されている徴候も有するかどうかを判定するために、アレイの各位置における別個の各組織化学的分析の結果を比較する。次いで、エストロゲン受容体および癌遺伝子の有無を(転移性疾患の存在または腫瘍の組織学的グレードなどの )組織に関する臨床的または病理学的情報と相関させることができる。多数の試料のこのような同時の平行分析は、組織の多数の分子的および臨床的特徴の相互関係を解明する助けとなる。
【0015】
本発明は、また、腫瘍などの組織標本から小型の細長い組織試料を獲得し、組織学的または分子的分析などの実験分析に試料を供する方法を含む。細長い組織試料は組織標本の関心対象の領域から採取することができ、かつ試料の大きさは十分に小さく、分析される特徴は小さい試料全体において実質的に均一であった。開示されている態様において、試料は組織標本からくり抜いた円筒形の試料で、円筒形の試料は長さ約1〜4 mmで、直径約0.1〜4 mm、例えば約0.3〜2.0 mmを有する。具体的な態様において、円筒の直径は約1.0 mm未満で、例えば0.6 mmである。試料は好ましくは、核酸の分析を妨害しないように(エタノール固定などの方法で)保存することができ、従って、試料は、単離DNAまたはRNAの包埋に基づいた任意の種類の分子分析などの任意の種類の分子分析に供することができる。
【0016】
本発明はまた、生物材料アレイの切片を平行分析するための試料を調製するための装置を含む。本発明の装置は台と、台上の組織ドナーブロックと、ドナーブロックから組織標本を切り抜くまたはくり抜くパンチ装置とを備える。台は、パンチ装置が選択した位置に容器のアレイを形成するレシピエントブロックを保有してもよい。各容器は、組織標本が容器の往復パンチ装置から排出されるように位置づけされてもよい。x-y位置決定装置は、パンチ装置が往復運動するとき、互いに対してパンチ装置またはレシピエントブロックを逐次的に移動して、容器アレイを形成する。x-y位置決定装置はまた、レシピエントブロックの逐次的な容器をパンチに整列させて、パンチから容器に組織標本を搬送する。レシピエントブロックのパラフィンまたはドナーブロックの組織のいずれかであるような、パンチの内容物を排出するためにスタイレットがパンチ内に組み入れられてもよい。ドナーブロックにわたって薄切片スライドを位置づけして薄切片スライド中の関心対象の構造物をドナーブロック中の対応する組織標本領域に整列させることによって、組織標本の関心対象の領域を配置する。
【0017】
本発明はまた、x-y位置決定台が、レシピエントブロックアレイの位置に対応する複数の座標にトレイを移動する、組織アレイの連続切片を平行分析するためのコンピュータ実施型システムを含む。次いで、容器パンチが位置決定台上でレシピエントブロックから容器コアをくりぬき、スタイレットが容器パンチから容器コアを排出する。ドナーパンチ(レシピエントパンチと同じであっても、別個であってもよい)が位置決定台上でドナーブロックからドナー試料をくりぬき、ドナーパンチが容器内に導入されたとき、スタイレットがドナーパンチからドナー試料を容器に排出する。ドナー試料が容器にぴったり適合するように、ドナー試料は、容器の直径と実質的に同じである直径を有する。ドナーブロックが切片化されたとき、各切片アレイの対応する位置が同一のドナー試料由来の組織を含有するように、コンピュータシステムはレシピエントアレイの位置によって組織を同定する。
【0018】
本発明の上記または他の目的、特徴および利点は、添付の図面を参照にして行なう特定の態様の以下の詳細な説明からより明らかになると思われる。
【0019】
詳細な説明
図1〜10の態様
本発明のマイクロアレイを製造するための装置の第1の態様を図1〜2に示す。ドナーブロック30は、ドナー容器31を台32上で事前に選択された配向に維持するL-型エッジガイド34を有する固定台32に取り付けられた矩形の容器31内に示されている。パンチ装置38は台32の上方に取り付けられ、垂直方向のガイドプレート40および水平方向の位置決定プレート42を備える。位置決定プレート42は、1対のデジタル式マイクロメーターで正確に位置づけすることができるx-yステージ(示していない)に取り付けられている。
【0020】
垂直のガイドプレート40は、図1に示す後退した位置と図2に示す伸びた位置との間のトラック46に沿って往復パンチ台44がスライドできる精密なガイド面となる平坦な前面を有する。ゴムバンド48はこの通路に沿った台44の移動を制御する助けをし、台44の前進および後退の限界は、台44の振動の振幅を制限する停止位置を形成するトラック部材46によって設定される。パンチ50が台32および台上の容器31に対して前進および後退することができるように、先端が鋭く、薄い壁のステンレス鋼製の管状パンチ50が台44の平坦な面に取り付けられている。パンチ50の中空の内部は連続しており、台44を貫通する円筒形の穴を有し、穴は台44の水平なリップ部53の開口部51に貫通する。
【0021】
図1は、関心対象の解剖学的およびマイクロ解剖学的構造物をブロック30に配置することができるように、組織の薄切片をドナーブロック30から得ることができ、(適当に調製、染色して)スライド52にのせることができることを示す。透明なサポートスライド58の端をしっかり保持するクランプ56を有する関節腕ホルダー54(図9)によってスライド52をドナーブロック30の上方に保持することができる。アームホルダー54はジョイント60において接続し、サポートスライド58が容器31の上方の位置に固定される第1の位置と、サポートスライド58が図9に示す位置から水平に移動してパンチ50への自由接近を可能にする第2の位置との間を旋回することができる。
【0022】
操作時には、矩形の容器31が台32上に配置され(図1)、容器31の端がエッジガイド34に隣接して容器31を選択した位置に保持する。(三次元的腫瘍試料62などの)組織標本全体をパラフィンに包埋することによってドナーブロック30を作製した。ドナーブロック30の薄切片を切断し、染色し、薄切片64としてスライド52上にのせ、次いで図9に示すように、スライド52をサポートスライド58上に配置し、ドナーブロック30の上方に位置づける。図9において点線で示すように、薄切片64の端が病理標本全体62の端と整列するまで、スライド52をサポートスライド58上で回転移動することができる。次いで、アーム54は、アームが第2の位置に移動した後に戻ることができる第1の位置に固定される。
【0023】
次いで、薄切片を顕微鏡で調査することによって、関心対象のミクロ解剖学的または組織学的構造物66を配置することができる(示していない)。例えば、組織標本が乳房の腺癌である場合には、関心対象の位置66は、細胞の構造が、化生(例えば、核濃縮、多形性、侵襲性)を示す試料領域であってもよい。関心対象の構造物66を配置した後、関心対象の薄切片構造物66を獲得した組織標本62の対応する領域を関心対象の構造物66のすぐ下方に配置する。図1に示すように、位置決定プレート42は(デジタルマイクロメーターまたは操作レバーの制御下で)xおよびy方向に移動することができ、または、ドナーブロック30の関心対象の領域の上方の位置のパンチ50に整列するようにドナーブロックはさらに長い距離を移動させることができ、かつサポートスライド58は旋回ジョイント60の周囲をドナーブロック30の上方の位置から旋回される(図9)。
【0024】
次いで、プレート44が(装置38によって事前に選択されている)停止位置に到達するまで、垂直ガイドプレート40をトラック46に沿って前進させることによって、パンチ50をドナーブロック30の関心ある構造物に導入する(図2)。パンチ50が前進すると、鋭い先端はドナーブロック30から円筒形の組織標本をくりぬき、パンチが図1に示す後退した位置までパンチが戻るとき、標本はパンチ内に保持されている。スタイレット(示していない)を開口部51内に進行させて、円筒形の組織標本をパンチ50から排出することができる。例えば、組織試料はパンチ50から排出され、図3に示すようにレシピエントブロック70の容器アレイの相補的な形状およびサイズの円筒形容器内に導入される。
【0025】
1つ以上のレシピエントブロック70をドナーブロック30から組織標本を得る前に作製することができる。固形のパラフィンブロックを容器31に配置し、パンチ50を使用して、図3に示す種類の円筒形容器のアレイを形成する規則的なパターンにブロック70内に円筒形の穴を形成することによってブロック70を製造することができる。ブロック70上方の出発点(例えば、予定されるアレイの1カ所の角)にパンチ50を位置づけ、パンチ50を進行させ、次いで後退させてブロック70の特定の座標から円筒形コアを除去し、次いで開口部51にスタイレットを導入することによってパンチからコアを排出することによって規則的なアレイを製造することができる。次いで、パンチ装置またはレシピエントブロックをxおよび/またはy方向に一定の増分でアレイの次の座標まで移動し、穴開け段階を繰り返す。図3の開示されている具体的な態様において、アレイの円筒形の容器は約0.6 mmの直径を有し、円筒の中心は(容器の隣接端間の距離が約0.05 mmであるように)約0.7 mmの距離だけ間隔をおいて配置される。
【0026】
具体的な実施例において、直径0.6 mmおよび高さ3〜4 mmのコア組織生検をパラフィン包埋した個々の「ドナー」腫瘍ブロックの選択した代表的な領域から採取し、新たな「レシピエント」パラフィンブロック(20 mm×45 mm)内に正確に配列した。H&E染色切片をドナーブロック上方に配置し、形態学的に代表的な腫瘍部位からの試料採取をガイドするために使用した。生検パンチの直径は異なってもよいが、0.6 mmの円筒が好適であることが見いだされている。その理由は、0.6 mmの円筒は腫瘍アレイの各構成要素の組織学的パターンを評価するのに十分に大きいが、元のドナー組織ブロックに対してごくわずかな損傷しか生じず、適度に均一な組織ブロックを単離するのに十分な大きさであるからである。1000個までのこのような円筒形組織を20×45 mmの1つのレシピエントパラフィンブロックに配置することができる。円筒の開示されている具体的な直径は0.1〜4.0 mmであり、例えば、0.5〜2.0 mmであり、最も具体的には1 mmより小さく、例えば0.6 mmである。標本のコンピュータガイド式配置による手法の自動化により非常に少量の試料をレシピエントアレイにきちんと配列できる。
【0027】
図4は、アレイ容器に円筒形の組織標本を満たした後のレシピエントブロック内のアレイを示す。次いで、切断された場合、円筒形の組織切片をアレイ内に維持する助けとするために、接着剤を被覆したテープ切り出しシステム(Instrumedics)の接着フィルム74でレシピエントブロックの上面を被覆した。接着フィルムが正常位置にある場合には、レシピエントブロックの4〜8μmの切片を円筒形組織の長手軸に対して横方向に切断して(図5)、(ディスク形状の円筒形組織標本切片を含有する)薄いマイクロアレイ切片76を作製し、従来の標本スライド78に移す。例えば、接着剤によってマイクロアレイ切片76をスライド78に接着する。次いで、下層のマイクロアレイ部材76からフィルム74を剥離して、それを処理するために露出させる。スライド78の黒色化した端80はスライドのラベリングまたは取り扱いに好適である。
【0028】
高分子量のDNAおよびRNAの保持を助けるために、乳癌の組織標本を冷却エタノール中で固定し、372個の標本をこの方法で固定した。少なくとも200個の連続する4〜8μmの腫瘍アレイ切片を各ブロックから切断し、多数の遺伝子のコピー数または発現のインサイチュー相関分析のための標識とすることができる。別個のアレイ切片の異なる遺伝子増幅を試験し、(ドナーブロックから得られた同じ円筒形組織由来の組織標本に対応する)アレイの同一座標における試験の結果を比較することによってこの分析を実施することができる。この方法によって、あらゆる腫瘍の実質的に数百の分子の特徴づけを測定することが可能になり、それによって培養されていないヒト腫瘍の多量の関連する遺伝子型または表現型的特徴の構成を容易にする。
【0029】
645個の標本を含有する1つのマイクロアレイ76の一例を図10Aに示す。マイクロアレイの拡大切片(図10Aにおいて矩形によって強調してある)を図10Bに示す。この図では、erbB2 mRNAインサイチューハイブリダイゼーションのオートラジオグラムは、アレイ中の2個の隣接する標本が強いハイブリダイゼーションシグナルを示すことを例示している。図10Cは、真空乾燥機内において4℃でエタノール中で一晩固定した乳癌標本から高分子量DNAおよびRNAを抽出できることを示す電気泳動ゲルを例示している。
【0030】
「正」の蛍光シグナルを与えた組織標本の1つは、図10Dに示すように、免疫ペルオキシダーゼ染色によっても分析され、erbB2 遺伝産物が存在することが(濃い色の染色によって)確認された。erbB2 遺伝子のDNAプローブを使用して蛍光インサイチューハイブリダイゼーション(FISH)を実施した。図10Dは、erbB2 遺伝子の高レベルの増幅を示した腫瘍アレイ構成要素の1つを示す。図10Eの挿入物は、タイトに密集した数多くのerbB2 ハイブリダイゼーションシグナルを有する3つの核およびセントロメアリファレンスプローブの2つのコピーを示す。これらのアッセイ法に関するさらに別の詳細を以下の実施例1〜4に示す。
【0031】
多数の組織標本の迅速な平行分子分析を実施するための本発明のアレイ技術の可能性を図11に示す。この図では、グラフのy軸が、臨床病理学的または分子的特徴を規定した特定の群の腫瘍の割合に相当する。このダイアグラムは、マイクロアレイにおける組織標本の臨床的特徴および病理組織学的特徴間の相関関係を示す。図11Bの整列した並びにおける各々の小さいボックスはアレイ中の座標位置を示す。レシピエントブロックの連続薄切片の対応する座標は水平方向に延在する並びの中では互いに垂直方向に上下に整列されている。これらの結果は、組織標本は、細胞膜エストロゲン受容体発現の有無および細胞DNA中のp53変異の有無に基づいて、4つの腫瘍群に分類できると思われることを示している(図11A)。図11Bでは、p53変異の存在は黒く塗ったボックスによって示されるが、エストロゲン受容体の存在も黒く塗ったボックスによって示される。4つの群(ER-/p53+、ER-/p53-、ER+/p53+およびER+/p53-)の各々へのカテゴリー分けは図11Aと11Bとの間の点線によって示され、カテゴリーをER/p53状態に応じてI、II、IIIおよびIV群に分割する。
【0032】
図11Bは、アレイのそれぞれの各々の座標の組織と関連した臨床特徴も示す。年齢のところの黒く塗ったボックスは、患者が閉経前であることを示し、Nのところの黒く塗ったボックスはリンパ節領域に転移性疾患が存在することを示し、Tのところの黒く塗ったボックスは臨床的により進行している病期3または4の腫瘍を示し、グレードのところの黒く塗ったボックスは、悪性度の増加に関連するグレードの高い(少なくともグレードIII)腫瘍を示す。ER/p53状態の相関は、臨床指標ボックスの上4つのライン(年齢、N、T、グレード)を中2つのラインのボックス(ER/p53状態)と比較することによって実施することができる。この交差相関の結果を図11Aの棒グラフに示す。この図では、ER-/p53+(I群)腫瘍は他の腫瘍より高いグレードである傾向があり、myc増幅の頻度が特に高いが、ER+/p53+(III群)腫瘍は外科的切除時にはリンパ節が陽性である可能性がより高いことがわかる。ER-/p53-(II群)は、その群において最も多く増幅された遺伝子はerbB2 であることを示した。一方、ER-/p53-(II群)およびER+/p53-(IV群)腫瘍は重症疾患の指標が少ないことを示しており、それによりp53変異がみられないこととより良い予後との間における相関関係を示唆している。
【0033】
本発明を使用して、逐次的なFISH実験において372個の原発性乳癌試料アレイ中のいくつかの他の主要な乳癌癌遺伝子のコピー数も分析し、それらの結果を使用して、ER/p53分類とこれらの他の癌遺伝子発現との相関関係を確認した。レシピエントブロックの連続切片における別個の癌遺伝子の各々のプローブを使用し、アレイの対応する座標における結果を比較することによって、これらの結果を得た。図11Bでは、特定の癌遺伝子またはマーカー(mybL2、20q13、17q23、myc、cnd1およびerbB2 )の増幅についての正の結果を黒く塗ったボックスで示す。erbB2 癌遺伝子は372個の標本アレイの18%において増幅されており、mycは腫瘍の25%において、サイクリンD1(cnd1)は腫瘍の24%において増幅されていた。
【0034】
乳癌において最近発見された2つの新規な高頻度のDNA増幅領域、17q23および20q13は、それぞれ、腫瘍の13%および6%において増幅されていることが見いだされた。癌遺伝子mybL2(最近20q13.1に位置し、乳癌細胞系統において過剰発現されることが見いだされた)は同じセットの腫瘍の7%において増幅されることが見いだされた。mybL2は主要な20q13遺伝子座のコピー数が正常である腫瘍において増幅されており、20qでは独立に選択された増幅領域を規定することを示している。図11Bと11Cの間の点線は、これらの遺伝子の複雑な同時増幅パターンをER-/p53+、ER-/p53-、ER+/p53+およびER+/p53-に対応するI〜IV群に分割する。
【0035】
図11Cおよび図11Dは、ER-/p53+標本の70%がこれらの癌遺伝子の1つ以上が陽性であったこと、およびmycはこの群において増幅される主要な癌遺伝子であったことを示す。一方、ER+/p53-群では試料のわずかに43%がこれらの癌遺伝子の同時増幅を示し、この情報を今度は図11Aに示す臨床パラメータと相関させた。このように、マイクロアレイ技術により、大多数の腫瘍標本をこのような多数の特徴について簡便かつ迅速にスクリーニングすることができ、患者の臨床発現および疾患の分子進化に関連する場合もある遺伝子発現パターンについて分析することができる。本発明のマイクロアレイ技術がない場合には、これらの相関関係は獲得がさらに困難である。
【0036】
このような相関関係を獲得する具体的な方法を、図11Bの右側部分の拡大図である図12に例示する。マイクロアレイ76(図10A)は、異なる腫瘍由来の円筒形の組織標本の断面に対応する円形の位置の横17列と縦9列を含有する切片内に配列されており、マイクロアレイ中の各々の位置は座標(横列、縦列)によって表すことができる。例えば、第1の切片の第1列の標本は座標位置(1,1)、(1,2)...(1,9)を有し、第2列の標本は座標位置(2,1)、(2,2)...(2,9)を有する。これらのアレイ座標の各々を使用して、レシピエントブロックの連続切片に対応する位置由来の組織標本を配置し、同じ円筒形組織から切断したアレイの組織標本を同定することができる。
【0037】
図12に示したように、短形アレイは線形表現に変換され、線形表現の各々のボックスはアレイの座標位置に対応する。同一のアレイ座標位置に対応する各ボックスが同じ座標位置の他のボックスの上方に位置されるように、ボックスの線の各々を整列する。このように、点線1によって結ばれたボックスは、ドナーブロックの連続薄切片の座標位置(1,1)において見ることによって得ることができる結果、またはマイクロアレイから得られていない場合もあるが、その座標位置に対応する腫瘍由来の組織をさらに同定するシステムに入力することができる臨床データに対応する。同様に、点線10によって結ばれるボックスは、アレイの座標位置(2,1)に見つけることができる結果に対応し、点線15によって結ばれるボックスはアレイの座標位置(2,6)における結果に対応する。文字a、b、c、d、e、f、gおよびhは、アレイから切断されたドナーブロックの連続切片に対応する。
【0038】
図12のライン1に整列されたボックスを比較することによって、外科的切除時にリンパ節への転移性疾患がなく、腫瘍は病期3より小さいが、腫瘍の組織学では少なくともグレードIIIであった閉経後の女性から腫瘍が得られたことがわかる。組織ブロックはこの腫瘍から採取され、レシピエントアレイの座標位置(1,1)に挿入され、アレイが完成したら、8つの平行切片(a、b、c、d、e、f、gおよびh)に切片化し、その各々は円筒形アレイの代表的な切片を含有した。これらの切片の各々を、特定の分子的性質に特異的な異なるプローブを用いて分析した。切片aでは、結果は、この組織標本はp53+であったことを示し、切片bでは、それはER-であったことを示し、切片cでは、mybL2癌遺伝子の増幅を示さなかったことを示し、別個の切片d、e、f、gおよびhでは、それは20q13、17q23、myc、cnd1およびerbB2 の増幅が陽性であったことを示す。
【0039】
座標位置(2,1)に配置した円筒形腫瘍標本の分子的特徴の同様の比較を、各ラインの10番めのボックス結び、図10(A)のアレイ76の横第2列、縦第1列(2,1)に対応する図12の垂直線10によって実施することができる。同様に、座標位置(2,6)における円筒形腫瘍標本の切片の特徴を各横列の第15番目のボックスを通過する垂直線15によって分析することができる。この方法で、アレイの別個の切片の平行情報をアレイの372個の全ての位置について実施することができる。このような情報は図12のように視覚的に分析できるように提供されても、または(癌遺伝子増幅パターンおよびそのような増幅パターンの腫瘍の臨床発現への寄与などの)異なる分子的特徴の分析および相関のためにデータベースに入力してもよい。
【0040】
アレイの連続切片の分析によって、あらゆる腫瘍の形態学的に規定された領域における同じ細胞集団において数百の異なるDNA、RNA、タンパク質の標的を同時に局在化することができ、培養されていないヒト腫瘍の多数の関連ある遺伝子型または表現型の特徴のデータベースの構成を容易にする。少量の同定試薬が各々の分析に用いられることから、mRNAインサイチューハイブリダイゼーションまたはタンパク質免疫組織学的染色のスコアリングも腫瘍組織マイクロアレイを用いて容易になる。腫瘍アレイはまた、切片化、染色およびスコアリングについて個別の従来の標本を処理することと比較する場合、組織の消費、試薬の使用および作業量を実質的に減ずる。いくつかのDNA、RNAおよびタンパク質標的の組み合わせ分析はそれらの分子的特徴に関して腫瘍標本の層別化のための有用な手段となる。このようなパターンは、診断的または予後的利用性を有することが明らかになる場合があるような、これまでは評価されていなかったが、重要な腫瘍の分子的特徴を検出するのに有用である。
【0041】
特にドナーブロックから組織採取するための部位が、腫瘍領域を最も代表する組織学的構造を含有するように選択される場合には、組織アレイを製造するために使用する非常に小型の円筒は、ほとんどの場合において、正確な情報を提供することをこれらの結果は示している。元の組織をより総合的に代表するものを得るため、および表現型(組織形態)と遺伝子型との相関関係を直接分析するために1つのドナー組織ブロックの組織学的に規定された多数の領域を採取することも可能である。例えば、異なる病期の乳癌の進行(例えば、正常な組織、過形成、非定型的過形成、分泌管内癌、侵襲性および転移性癌)を示す数百の組織を含むようにアレイを構成してもよい。次いで、組織アレイ技術を使用して、腫瘍の進行に対応する分子的事象を分析してもよい。
【0042】
円筒形試料をタイトに詰めることおよびレシピエントブロックがより大きいことにより、アレイあたりの試料数もかなり多くすることができた。病理学研究室の保存物全体を分子プロファイリングのための複製された1000標本組織マイクロアレイに配置することができる。試料採取およびアレイ形成の手法の自動化を使用すると、各々が分子分析のための数百の切片を提供する数ダースの複製腫瘍アレイを作製することができる。腫瘍アレイのために開発した同じ方法および機器によっても最適な条件で固定され、形態学的に規定された腫瘍組織要素から高分子量RNAおよびDNAを単離するための円筒形組織を顕微解剖することができ、それによってRNAおよびDNAのためのPCR-に基づいた技法によって同じ腫瘍の相関分析が可能になる。核酸分析が計画される場合には、組織標本は、好ましくは、(パラフィンに包埋する前に)ホルマリンの代わりにエタノールまたは分子生物学的固定液(Molecular Biology Fixative(Streck Laboratories., Inc., Omaha, NE)に固定される。その理由は、ホルマリンは核酸を架橋およびそうでなければ損傷することがあるからである。本発明の円筒形組織は、種々の分子分析を実施するアンプル量のDNAまたはRNAを提供する。
【0043】
本発明のアレイ技術の可能性は乳癌における遺伝子増幅のFISH分析において例示されている。FISHは個別の、形態学的に規定された細胞において遺伝子の再配列(増幅、欠失または転移)を可視化および正確に検出する優れた方法である。腫瘍アレイ技術の組み合わせによってFISHは、1日あたり数百の標本の分析を可能にする強力で、高スループットな方法となる。
【0044】
図13〜23の態様
マイクロアレイを高速調製するための自動化システムの一例を図13〜23に示す。システムは、その各々がそれぞれドライブシャフト106および108を回転させる、xドライブ102およびyドライブ104を有するステージ100を備える。シャフト108は標本ベンチ110をy方向に移動するが、シャフト106はベンチ110上のトレイ112をx方向に移動する。各々レシピエントパラフィンブロック122、124または126を含有する3つのレシピエント容器116、118および120、並びに組織試料132が包埋されるドナーパラフィンブロック130を含有するドナー容器128がトレイ112の前方の並びに取り付けられる。トレイの後方の並びには、(液体媒体に標本を維持するための多数の容器を有する)2つのマルチ-ウェルドナートレイ132および134並びに破棄用容器136が取り付けられる。
【0045】
ステージ100の上方には、z方向に上下に移動することができるパンチ装置140を配置する。装置140は、スタイレット144が往復する中央に垂直方向に配置されるスタイレットドライブ142を備える。装置140はまた、傾斜したレシピエントパンチドライブ146および傾斜したドナーパンチドライブ148も備える。パンチドライブ146は、末端に管状のレシピエントパンチ154を保有する往復ラム150を備え、パンチドライブ148は末端にドナー管状パンチ156を保有する往復ラム152を備える。ラム150が延ばされるとき(図14)、レシピエントパンチ154は、スタイレット144と整列した管状の穴の開口した上部に位置付けられ、ラム152が延ばされるとき(図16)、ドナーパンチ156は、スタイレット144と整列した管状の穴の開口した上部に位置付けられる。
【0046】
装置140の逐次的な操作を図13〜17に示す。装置が図13において集成されると、高効率を達成するように装置を作動するためにコンピュータシステムを使用することができる。このように、図13に示すトレイ112上の容器の位置を決定することによってコンピュータシステムを初期化することができる。次いで、ラム150の活動がレシピエントパンチ154をレシピエントブロック122の位置(1,1)の上方の位置に延ばすように、図14に示す位置までベンチ110およびトレイ112を移動するようにxドライブ102およびyドライブ104を活動させる。パンチ154が位置にきたら、装置はz方向に下方に移動してレシピエントブロックのパラフィンに円筒形の穴をくり抜く。次いで、装置140はz方向に上方に移動してパラフィンレシピエントブロック122からパンチ154を上昇させるが、パンチ154はパラフィンコアを保持し、レシピエントブロック122には円筒形の容器が残る。次いで、ベンチ110を移動し、パンチ154の下方に廃棄用容器136を位置づけするようにx-yドライブを活動させる。次いで、整列したパンチ154の開口した上部からスタイレット144を進ませ、パラフィンコアをパンチ154から排出して廃棄用容器136に入るようにスタイレットドライブ142を活動させる。
【0047】
スタイレット144をレシピエントパンチ154から後退させ、ラム150を後退させ、x-yドライブはベンチ110およびトレイ112を移動させて、ラム152の前進がドナーパンチ156をドナーブロック130上方の所望の位置に進ませるような位置(図16に示す)にドナー容器128を配置する。次いで、装置140をz方向に下方に移動させて、ドナーブロック130から円筒形の組織コアをくり抜き、次いで、装置140をz方向に移動させて、ドナーパンチ156を引き抜く。円筒形の組織標本はパンチ内に保持されている。次いで、z方向の下方への装置140の運動が、レシピエントプラグが除去されているブロック122の座標位置(1,1)の容器内にドナーパンチ156を進ませるように、x-yドライブがベンチ110および112を図17に示す位置に移動させる。ドナーパンチ156はスタイレット144の下方に整列され、スタイレットを進ませて、ドナーパンチ156から保持されている円筒形組織を排出する。その結果、装置140がz方向に上方に移動して、レシピエントアレイからドナーパンチ156を後退させるとき、円筒形のドナー組織がレシピエントブロック122の容器内に保持される。次いで、ラム152を後退させる。
【0048】
望ましい数のレシピエント容器が形成され、アレイの望ましい座標位置に円筒形のドナー組織が満たされるまで、この過程を反復することができる。この例示した方法は各容器の逐次的な交互の形成および形成された容器内への円筒形試料の導入を示すが、最初の段階としてレシピエントブロック122、124および126に全ての容器を形成し、次いで組織標本を獲得する段階と、事前に形成された容器内にそれらを導入する段階とに移行することも可能である。同じ組織試料132を繰り返し使用しても、容器128に新たなドナーブロック130を導入することによって、各々のドナー組織試料が得られた後に試料132を交換してもよい。各々の円筒形組織が得られた後で、ドナーブロック130を交換する場合には、アレイの各座標は異なる組織標本由来の組織を含むことができる。
【0049】
ドナー標本を採取することができる関心対象の構造物を配置する助けとなる位置決定装置を図18に示す。位置決定装置は、ドナー容器128の対向する壁の間に延在して、ドナーブロック130の試料132の染色薄切片のせるサポートスライド162を備える。装置140に取り付けた顕微鏡(顕微鏡の対物レンズを166に示す)を使用して、関心対象のマイクロ解剖学的構造物を見つけることができる。ドナーブロック130の上面上方の装置140の適切な垂直高さは、装置140に取り付けられる2つの位置決定ライト168および170の使用によって決定することができる。ライトの上面上方の装置140の垂直高さが望ましいzレベルにある場合に光線が1つのスポット172で一致するような角度で、光線172および174はライト168および170から照射される。この望ましいzレベルは、望ましい位置においてブロック130の表面を貫通し、望ましい深さに達するように適当な高さにパンチ152および154を位置づける。
【0050】
ブロック130からくりぬいた円筒形組織が、それらを収容するように形成されたレシピエント容器にぴったり適合する場合には有利である。ドナーパンチ156がレシピエントパンチ154と同じ内径および外径を有する場合には、円筒形のドナー組織標本はパンチの内径によって形成され、レシピエント容器はパンチの外径によって形成される。この矛盾により、円筒形ドナー組織より直径がわずかに大きい容器が提供される。このように、図19および20に示すように、レシピエントパンチ154は、好ましくは、ドナーパンチ156より直径が小さい。従って、レシピエントパンチは、ドナーパンチ156の内径によって決定される直径で形成される、円筒形の組織標本180と実質的に同じ直径である(パンチ154の外径に対応する直径を有する)円筒形容器を形成する。
【0051】
図21は、容器182が形成されており、円筒形の組織標本180が充填されているレシピエントアレイの断面を例示する。小部分のパラフィン材料122が円筒形組織180を分離しており、例示する容器182は円筒形試料180より深い。その結果、標本と容器の底部との間にわずかな隙間が存在する。アレイが形成されたら、ミクロトームを使用してブロック122の上部から薄切片Sを切断することができ、その結果、切片Sを標本スライド162(図18)にのせて、組織試料132の関心対象の構造物を配置する助けとする。次いで、ミクロトームはまた、すでに記載したように、各々異なる分子分析に供することができる薄い平行切片a、b、c、d、e、f、gおよびhを切断する。
【0052】
例示的な操作環境
図22および以下の考察は、本発明を実施することができる好適なコンピュータ処理環境の簡単で一般的な説明を提供することを意図している。本発明は種々のプログラムモジュールで実施される。一般に、プログラムモジュールは、特定のタスクを実施するまたは特定の抜粋データ型を実行するルーチン、プログラム、コンポーネント、データ構造等を含む。本発明は、手支持装置、マイクロプロセッサシステム、マイクロプロセッサに基づいたまたはプログラム化できる民生用電子機器、ミニコンピュータ、メインフレームコンピュータ等を含む他のコンピュータシステム構成で実施することができる。本発明はまた、通信網を介してリンクする遠隔処理装置によってタスクを実施する分散コンピューティング環境で実施することもできる。分散コンピューティング環境では、プログラムモジュールをローカルおよび遠隔記憶装置内に配置することができる。
【0053】
図22を参照すると、本発明の例示される態様の操作環境は、少なくとも1つの高速処理装置(CPU)を備えるコンピュータ222を記憶装置226、入力装置228および出力装置230に連結したコンピュータシステム220である。これらの構成要素は少なくとも1つのバス構造232によって相互接続される。
【0054】
例示されているCPU224は周知のデザインであり、計算を実施するためのALU234、データの一時的記憶のためのレジスタ236の回収および指示、並びにシステム220の操作を制御するための制御装置238を備える。CPU224は、デジタル(Digital)製のアルファ(Alpha);MIPSテクノロジー(MIPS Technology)、NEC、IDT、シーメンス(Siemens)製などのMIPS;インテル(Intel)並びにサイリックス(Cyrix)、AMDおよびネクスゲン(Nexgen)製などのx86;モトローラ(Motorola)製の680x0;およびIBMおよびモトローラ(Motorola)製のPowerPCを含む種々の構成の任意のものを有するプロセッサであってもよい。
【0055】
記憶装置226は、一般に、ランダムアクセスメモリー(RAM)、およびリードオンリーメモリー(ROM)半導体装置などの媒体の形態の高速メインメモリー240と、フロッピーディスク、ハードディスク、テープ、CD-ROM、フラッシュメモリー等および電子、磁気、光学または他の記録媒体を使用してデータを保存する他の装置などの長期的記憶形態の補助メモリー242とを備える。メインメモリー240は、ディスプレイ装置を介して画像を表示するビデオディスプレイメモリーを備えてもよい。当業者は、メモリー226が、種々の記憶能力を有する種々の別の構成要素を備えてもよいことを認識している。
【0056】
入力装置228および出力装置230も周知である。入力装置228はキーボード、マウス、スキャナー、カメラ、キャプチャカード、リミットスイッチ(ホームスイッチ、安全スイッチ、またはステートスイッチなど)、物理的トランスデューサー(例えば、マイクロフォン)等を備えてもよい。出力装置230はディスプレイ、プリンター、モータードライバー、ソレノイド、トランスデューサー(例えば、スピーカー)等を備えてもよい。ネットワークインターフェースまたはモデムなどのいくつかの装置を入力および/または出力装置として使用してもよい。
【0057】
当業者に周知であるように、コンピュータシステム220は、さらに、オペレーティングシステムおよび少なくとも1つのアプリケーションプログラムを備える。オペレーティングシステムは、コンピュータシステムの演算および資源割付けを制御するソフトウェアのセットである。アプリケーションプログラムは、オペレーティングシステムを介して利用可能となるコンピューター資源を使用して使用者が望むタスクを実施するソフトウェアのセットである。共に例示した記憶装置226の中に存在する。
【0058】
例えば、本発明はアップルコンピュータ(Apple Computer)製のパワーマッキントッシュ(Power Macintosh)8500またはIBM互換性パーソナルコンピュータ(PC)で実施してもよい。パワーマッキントッシュ(Power Macintosh)はモトローラ(Motorola)製のパワー(Power)PC 604 CPUを使用し、システム(System)8などのアップルコンピュータ(Apple Computer)製のMacOSオペレーティングシステムを実行する。入力および出力装置は、既知のSCSIインターフェースを使用してCPUと接続され、またはペリフェラルコンポーネントインターコネクト(PCI)バスを使用して拡張カードに接続される。パワーマッキントッシュ(Power Macintosh)8500の典型的な構成は高速メインメモリーのための72メガバイトのRAMおよび補助メモリーのための2ギガバイトのハードディスクを有する。IBM互換PCは高速メインメモリーのための32メガバイトのRAMおよび補助メモリーのための2〜4ギガバイトのハードディスクを有する構成であってもよい。
【0059】
コンピュータプログラミングの分野の当業者の実施により、本発明は、特に示さない限りコンピュータシステム220によって実施される演算の行為および記号による表示を参照にして記載される。このような行為および演算はコンピュータ実行型と呼ばれることがある。行為および記号によって表される演算は、電気信号表示の得られた変換または減少を生ずる、データビットを表す電気信号のCPU224による演算およびメモリー装置226のメモリー位置へのデータの維持を含み、それによってコンピュータシステムの演算および信号の他の処理を再構成または変更することが理解されている。データビットが維持されているメモリー位置は、特定の電気的、磁気的またはデータビットに対応する他の特性を有する物理的位置である。
【0060】
コンピュータ-アレイシステムの説明
本発明を実施するためのシステムを示すブロックダイアグラムを図23に示す。ハードウェアは、例えば、パンチ154および156、ベンチ110並びにトレイ112の位置を決定することによって、段階250において初期化される。次いで、例えば、各レシピエントブロック122〜126の上部右側の角の位置(x、y、z座標)並びにトレイ130〜136の位置を発見するためにデータを入力またはシステムを駆動することによって、段階252においてシステムはオペレーターによって構成される。ドナーブロックの数、容器、演算速度等もこのとき入力してもよい。
【0061】
段階254において、システムは、トレイ128に配置される第1のドナーブロック130に関する識別情報の入力を実行する。この識別情報はアクセッション番号情報、標本に関する臨床情報および/または腫瘍アレイを分析する際に有用であると思われる他の任意の情報を含んでもよい。段階256において、オペレーターは、パンチ154および156を上昇させる選択機能ボタンを押し、x-yドライブを使用して操作レバーに試料を移動させる。入力したデータは段階258で表示され、段階260で承認される。
【0062】
次いで、システムは、段階262において同定されたドナーブロックから1つ以上のドナー標本を獲得し、次のドナーブロックに関する情報の入力を使用者に実行させる。別のブロックに関する情報を入力する場合には、システムは段階256に戻り、新しいブロックから望ましい数の標本を得る。新しいドナーブロックがドナー容器128に配置されている場合には、システムは段階268においてパンチの位置をチェックする。別のブロックに関する情報が段階264にいおいて入力されない場合には、ドナートレイのブロック130を除去できるように、システムがドナートレイを排出位置に移動する。このシステムは、DNA/RNA単離のために組織学的に制御された標本部位(腫瘍などの)からの円筒形生検試料の採取に適用可能でもある。
【0063】
自動化された腫瘍アレイ技術により、同じセットの腫瘍由来の数ダースまたは数百のマーカーの試験が可能になる。他の研究室に複製腫瘍アレイブロックまたは切片を送付することによって多施設状況下においてこれらの検討を実施することができる。同方法は、診断的、予後的、または治療的利用性について新しく発見された分子マーカーを試験するのに特に有用であると思われる。DNA、RNAおよびタンパク質レベルにおける数百または数千の腫瘍の迅速なプロファイリングのための台を提供し、大量の腫瘍コレクションのバイオマーカーの相関するデータベースを構成することによって、組織アレイ技術は基礎的な癌研究を容易にする。例えば、増幅標的遺伝子の検索は、同じ細胞集団における数ダースの候補遺伝子および遺伝子座の増幅および発現の相関分析を必要とする。規定された大型シリーズの腫瘍のこのような広範な分子分析は従来の技術では実施が困難であると思われる。
【0064】
アレイ技術の例
組織アレイ技術の用途は癌の研究に限定されないが、以下の実施例1〜4は腫瘍分析に関連した用途の態様を開示する。アレイ分析は、異なるトランスジェニック動物または培養細胞由来の貯蔵(repository)組織を含む正常なヒトまたは動物組織だけでなく、他の疾患における多数の遺伝子の発現および量を理解する際に助けとなるとも思われる。下に示す特定の実施例は本発明のいくつかの特定の態様を示す。
【0065】
実施例1
組織標本
乳癌腫瘍組織マイクロアレイを構成するために合計645個の乳癌試料を使用した。試料は372の新鮮な凍結エタノール固定腫瘍、並びに273のホルマリン固定乳癌、正常組織および固定対照を含んだ。凍結した乳癌試料のサブセットはベイセル(Basel)大学病理学研究室の、1986〜1997年の間に外科的切除によって得られた1500より多い凍結乳癌を含む腫瘍バンクから無作為に選択した。この腫瘍バンクの腫瘍だけを分子分析に使用した。このサブセットを1人の病理学者が観察し、標本は259例の腺管癌、52例の小葉癌、9例の髄様癌、6例の膠様癌、3例の篩状癌、3例の管状癌、2例の乳頭状癌、1例の組織球性癌、1例の明細胞癌および1例の脂質豊富癌を含むことを判定した。また、15例の正常所在腺管癌、2例の癌肉腫、手術前に科学療法を受けた4例の原発癌、8例の再発腫瘍および6例の転移が見られた。組織学的グレード分けは、以前に科学療法を受けたことがない侵襲性原発性腫瘍においてのみ実施した。これらの腫瘍のうち、24%がグレードI、40%がグレード2、36%がグレード3であった。pTステージは29%がpT1、54%がpT2、9%がpT3および8%がpT4であった。腋窩リンパ節は282人の患者において調査した(45% pNO、46% pN1、9%pN2)。以前に固定されていない腫瘍は全て冷却したエタノール中で+4℃において一晩固定し、パラフィンに包埋した。
【0066】
実施例2
免疫組織学
アレイを形成し、ドナーブロックの切片化後に、免疫組織科学に標準的な間接的な免疫ペルオキシダーゼ手法を使用した(ABC-Elite, Vector Laboratories)。DAKO(Glostrup、Denmark)製のモノクローナル抗体をp53(DO-7、マウス、1:200)、erbB2 (e-erbB2 、ウサギ、1:4000)およびエストロゲン受容体(ER ID5、マウス、1:400)の検出に使用した。マイクロ波前処理をp53(90℃において30分)およびerbB-2抗原(90℃において60℃)探索に予め実施した。ジアミノベンジジンを発色団として使用した。陽性であることが既知の腫瘍を陽性対照として使用した。陰性対照の一次抗体は省いた。 明白な核の陽性が腫瘍細胞の少なくとも10%においてみられたとき、腫瘍はERまたはp53に陽性であると考えられる。erbB2 染色は主観的に3つの群、陰性(染色されない)、やや陽性(弱い膜の陽性)、強力な陽性(強力な膜の陽性)にグレード分けした。
【0067】
実施例3
蛍光インサイチューハイブリダイゼーション(FISH)
スペクトラム-オレンジ標識したサイクリンD1、mycまたはerbB2 プローブを対応するFITC標識したセントロメア基準プローブと共に使用して、2色FISHハイブリダイゼーションを実施した。1色FISHハイブリダイゼーションをスペクトラム-オレンジ標識した20q13最小共通領域(Vysis、およびTannerら、Cancer Res.,54: 4257〜4260(1994))、mybL2および17q23プローブ(Barlundら、Genes Chrom. Cancer 20:372-376(1997))に実施した。ハイブリダイゼーションの前に、腫瘍アレイ切片を脱パラフィンし、空気乾燥し、70、85および100%エタノール中で変性し、次に70%ホルムアミド-2× SSC溶液中で74℃において5分間脱変性した。ハイブリダイゼーション混合物は、30 ngのプローブの各々、15μgのヒトCot1-DNAを含有した。加湿したチャンバー内で37℃において一晩ハイブリダイゼーションした後、スライドを洗浄し、抗退色溶液中で0.2μMのDAPIで対比染色した。FITCおよびスペクトラム-オレンジシグナルを同時可視化するために、ダブルバンド通過フィルターを備えたザイス(Zeiss)蛍光顕微鏡でFISHシグナルをスコアリングした。細胞あたり10を越えるFISHシグナルまたはシグナルの密集が遺伝子増幅の判定基準として考えられる。
【0068】
実施例4
mRNAインサイチューハイブリダイゼーション
mRNAインサイチューハイブリダイゼーションでは、ハイブリダイゼーションの前に腫瘍アレイ切片を脱パラフィン化し、空気乾燥した。erbB2 mRNAに対する合成オリゴヌクレオチドプローブ(Genbankアクセッション番号X03363、ヌクレオチド350〜396位)の3'-末端を末端デオキシヌクレオチジルトランスフェラーゼを使用して33P-dATPで標識した。1×107CPM/mlのプローブを100μLのハイブリダイゼーション混合液(50%ホルムアミド、10%硫酸デキストラン、1%ザルコシル、0.02 Mリン酸ナトリウム、pH 7.0、4×SSC、1×Denhardt's 溶液および10 mg/mlのssDNA)に加えたものを用いて加湿中のチャンバー内で切片を42℃において18時間ハイブリダイゼーションした。ハイブリダイゼーション後、未結合のプローブを除去するために切片を1×SSC中で55℃において数回洗浄して、簡単に脱水した。切片を3日間ホスホールイメージャースクリーン(phosphorimager screen)に暴露してERBB2 mRNA発現を可視化した。陰性対照切片はハイブリダイゼーションの前にRNaseで処理し、全てのハイブリダイゼーションシグナルを消失させた。
【0069】
本発明は、1アレイあたり数百の標本の高スループット分析を可能にする。従って、この技術は、数ダースの個別のホルマリン固定標本が、あまり規定されていない形態または規定されていない形態で存在し、抗体試験に使用される従来のブロックと比較して、分析できる標本の数の大きさの次数を増加する。本発明のさらなる利点は元の組織ブロックごくわずかしかない破壊およびこの技法の利用性をDNAおよびRNA標的の可視化に拡大する最適の固定プロトコールを含む。本発明はまた、研究目的のためのヒト腫瘍組織の獲得と分配の改善を可能にする。手法を自動化することにより、効率的な標本のサンプリングおよび各々が分子分析に50、100または200までもの切片を提供する多数の組織アレイの形成が可能になる。病理学研究所の現行の数千のホルマリン固定組織のうちの数十の保存物全体を、多数の種類の腫瘍型および異なるステージの腫瘍進行を調査するために、数ダースの高密度組織マイクロアレイに配置することができる。腫瘍アレイ法はまた、同じセットの腫瘍の数ダースまたは数百もの可能な予後または診断分子マーカーの試験を可能にする。または、円筒形の組織試料は、分子分析のためにDNAおよびRNAを単離するために使用することができる標本となる。
【0070】
本発明の原理を適用することができる多数の可能な態様に関して、例示した態様は本発明の好ましい実施例であり、本発明の範囲を制限するものと考えられるべきではないことが認識されるべきである。むしろ、本発明の範囲は特許請求の範囲によって規定される。従って本発明者らは、本発明者らの発明がこれらの特許請求の範囲の範囲および精神の範囲内にあることを主張する。
【図面の簡単な説明】
【0071】
【図1】ドナーブロック内のドナー組織の関心対象の領域の上部のパンチの整列を示す、本発明のパンチ装置の第1の態様の斜視図の略図である。
【図2】図1と同様の図であるが、パンチが前進してドナー試料サンプルを獲得している。
【図3】ドナー試料が配置されているレシピエントブロックの斜視図の略図である。
【図4−8】レシピエントブロックから薄切片アレイを作製する際の段階を示す。
【図9】関心対象の領域に配置するドナーブロックの組織の上方に、試料を乗せたスライドを保持するためのロック装置の斜視図である。
【図10A】顕微鏡による調査のためにスライドに乗せたH&E染色薄切片組織アレイを示す。
【図10B】図10Aのスライドの一部の拡大図で、図10Aの小さい矩形内の領域における組織アレイのerbB2mRNAインサイチューハイブリダイゼーションの結果を示す。
【図10C】高分子量DNAおよびRNAを乳癌試料から抽出することができることを示す電気泳動ゲルである。
【図10D】erbB2抗原を染色する免疫ペルオキシダーゼ染色を示す、図10Aのアレイの組織標本の1つの拡大図である。
【図10E】erbB2 DNAプローブによるアレイ中の組織の蛍光インサイチューハイブリダイゼーション(FISH)によって検出される高レベルerbB2遺伝子増幅を示す、図10Dと同様の図である。
【図11】本発明の方法によって獲得されるアレイの平行分析の一例を例示する略図である。
【図12】図11の一部の拡大図である。
【図13】本発明のアレイを形成するための装置の第2の態様の上面図である。
【図14】レシピエントパンチによってレシピエントブロック内に容器を形成することを例示する、図13に示す装置の前面図である。
【図15】図14と同様の図であるが、レシピエントパンチから破棄トレイへの栓の排除を示す図である。
【図16】ドナーブロックから組織標本を獲得するドナーパンチを示す図である。
【図17】レシピエントブロックの容器内へのドナー組織の挿入を示す図である。
【図18】ドナーブロック内の関心対象の構造物上に整列させたドナーパンチの断面の拡大図である。
【図19−20】図19はレシピエントパンチの拡大断面図であり、図20はドナーパンチの同様の図で、2つのパンチの相対的な断面直径を例示する。
【図21】レシピエントアレイ内に配列されたドナー試料を有し、かつ示されたレシピエントブロックのミクロトーム切片の線を有するレシピエントブロックの断面図である。
【図22】本発明の方法を実施することができるコンピュータシステムの略図である。
【図23】本発明のコンピュータ実施式方法の一例を例示するアルゴリズムである。

【特許請求の範囲】
【請求項1】
以下の段階を含む、組織標本を平行分析するための方法:
複数のドナー試料を獲得する段階;
レシピエントアレイの割り当てた位置に各ドナー試料を配置する段階;
各切片が割り当てた位置を維持する複数のドナー試料を含有するように、レシピエントアレイから複数の切片を獲得する段階;
各切片の異なる組織学的分析を実施する段階;および
異なる切片の対応する割り当てた位置の異なる組織学的分析の結果を比較して、割り当てた各位置の異なる組織学的分析の結果の間に相関関係があるかどうかを判定する段階。
【請求項2】
ドナー試料から細長い試料をくり抜くことによってドナー試料を獲得し、レシピエントアレイの割り当てた位置に配置する、請求項1に記載の方法。
【請求項3】
レシピエントアレイの割り当てた位置にドナー試料を配置する段階が、ドナーブロックに細長い容器を形成する段階と、レシピエントブロックの細長い容器に細長い試料を配置する段階とを含む、請求項2に記載の方法。
【請求項4】
細長い試料の断面サイズおよび形状に相補的な断面サイズおよび形状を有する容器に細長い試料を配置する、請求項3に記載の方法。
【請求項5】
細長い容器を形成する段階が、レシピエントブロックに円筒形の穴を形成する段階を含み、ドナーブロックから円筒形の組織標本をくり抜くことによって試料を獲得し、細長い容器の直径が試料の直径と実質的に同じである、請求項4に記載の方法。
【請求項6】
臨床パラメータをレシピエントアレイの割り付けた位置と関連させる段階をさらに含む、請求項1に記載の方法。
【請求項7】
各スライドについて異なる組織学的分析を実施する段階が、免疫学的分析および核酸ハイブリダイゼーションからなる群から選択される異なる試験を実施する段階を含む、請求項1に記載の方法。
【請求項8】
臨床パラメータと、免疫学的分析と核酸ハイブリダイゼーションとの間に相関があるかどうかを判定する段階をさらに含む、請求項6に記載の方法。
【請求項9】
生物試料が組織標本または細胞調製物である、請求項1に記載の方法。
【請求項10】
以下の段階を含む、同一アレイの組織標本を平行分析する方法:
包埋用媒体に包埋した生物試料を含むドナーブロックを形成する段階;
生物試料から複数の円筒形ドナー試料を獲得する段階;
レシピエントの包埋用媒体から容器コアをくりぬいて円筒形容器アレイを形成する段階;
アレイの割り当てた位置の円筒形容器にドナー試料コアを配置する段階;
レシピエントの包埋用媒体を切片化してアレイの中にドナー試料コアの断面を獲得し、連続する断面でアレイの割り当てた位置を維持する段階;
各断面の異なる組織学的分析を実施する段階;および
異なる切片の対応する割り付けた位置の各組織学的分析結果を比較して、割り当てた各位置の異なる組織学的分析結果の間に相関関係が存在するかどうかを判定する段階。
【請求項11】
割り付けた位置の異なる組織学的分析結果を、割り付けた位置の生物試料に関する臨床情報と比較する段階をさらに含む、請求項10に記載の方法。
【請求項12】
生物試料が腫瘍由来の組織標本である、請求項11に記載の方法。
【請求項13】
組織学的分析が、免疫学的分析および核酸ハイブリダイゼーション分析を含む、請求項12に記載の方法。
【請求項14】
ドナーブロック上に薄い組織切片を整列させ、ドナー試料コアを採取する関心対象の領域を同定する段階をさらに含む、請求項10に記載の方法。
【請求項15】
円筒形ドナー試料コアが、約1 mm未満である直径を有する、請求項10に記載の方法。
【請求項16】
請求項10に記載の方法によって獲得されるドナー試料コアの断面。
【請求項17】
生物材料アレイの切片の平行分析のための試料を調製するための装置であって、
ドナー位置に組織ドナーブロックを維持するために配置することができるホルダーと、
ドナー位置のドナーブロックからの組織標本に穴をあけるためにホルダーにホルダーに対して配置する往復パンチとを備え、
該ホルダーはレシピエント位置にレシピエントブロックを保持することもでき、該レシピエントブロックは容器アレイを備え、その各々は往復パンチに対して事前に選択した位置に配置されて、組織標本を往復パンチから事前に選択した位置の容器に搬送することができる装置。
【請求項18】
ホルダーが、往復パンチで連続容器を整列させるように増加的に配置することができるx-y位置決定装置を備える、請求項17に記載の装置。
【請求項19】
往復パンチで整列させた容器の1つに該パンチから組織標本を移動させるために該パンチにに導入するために配置したスタイレットをさらに備える、請求項17に記載の装置。
【請求項20】
ドナーブロックの対応する組織標本領域を有する薄切片スライドに関心対象の構造物を整列させるために、ドナーブロック上に薄切片スライドを配置する位置決め装置をさらに備える、請求項17に記載の装置。
【請求項21】
レシピエントブロックに容器のアレイを形成するためにレシピエントブロックに対して固定した位置に配置することができる別個の往復パンチをさらに備える、請求項17に記載の装置。
【請求項22】
レシピエントブロックの容器の位置を記録するためのレコーダーをさらに備える、請求項21に記載の装置。
【請求項23】
レコーダーが、容器の位置を記録し、各容器に配置される組織標本を同定するためのコンピュータ実施式システムである、請求項22に記載の装置。
【請求項24】
以下の特徴を有する、組織アレイの連続切片の平行分析をするためのコンピュータ実施式システムであって、レシピエントアレイの容器内の組織の同定を記録するシステム:
レシピエントブロックアレイの位置に対応する複数の座標に対してトレイを移動するためのx-y位置決定台;
容器パンチが位置決定台上でレシピエントブロックの容器コアに穴を開けることができるように、位置決定台に対して穴を開けられる関係に位置づけられた容器パンチ;
ドナーパンチが位置決定台上でドナーブロックのドナー試料に穴を開けることができるように、位置決定台に対して穴を開けられる関係に位置づけられ、容器コアがドナー試料の直径と実質的に同じである直径を有するドナーパンチ;および
容器コアがレシピエントコアからくりぬかれた後に容器パンチの内容物を移し、かつドナー試料がドナーブロックからくりぬかれた後にレシピエントブロックアレイの容器内にドナーパンチの内容物を移すため、ドナーパンチおよびレシピエントパンチと共に選択的に別の方法で整列されるスタイレット。
【請求項25】
ドナーブロックを観察し、ドナーブロックと共に整列させた基準スライドに関心対象の構造物を配置するための顕微鏡をさらに備える、請求項24に記載のコンピュータ実施式システム。
【請求項26】
システムがレシピエントブロックの容器コアに穴を開け、スタイレットを用いて容器パンチから容器コアを移動し、次いでドナーブロックのドナー試料に穴を開け、ドナーパンチ装置を容器ブロックの選択した容器に整列させ、ドナー試料を選択した容器に移動する、請求項24に記載のコンピュータ実施式システム。
【請求項27】
エクスビボ組織標本から細長い組織標本をくり抜く段階と、試料を生物学的分析に供する段階とを含む、半ビボにおいて組織標本を分析する方法。
【請求項28】
組織標本から細長い組織試料をくり抜く段階が、往復パンチ装置の下方のホルダー内に組織標本を配置する段階と、組織標本の事前に選択した位置に往復パンチ装置を進行させる段階とを含む、請求項27に記載の方法。
【請求項29】
くり抜く段階の前に、組織標本を包埋用媒体中に組織標本を配置する段階をさらに含む、請求項28に記載の方法。
【請求項30】
組織標本の事前に選択された位置が、包埋用媒体から切断された薄切片を調査することによって決定される、請求項29に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6−7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate


【公開番号】特開2009−244269(P2009−244269A)
【公開日】平成21年10月22日(2009.10.22)
【国際特許分類】
【出願番号】特願2009−107937(P2009−107937)
【出願日】平成21年4月27日(2009.4.27)
【分割の表示】特願2000−533760(P2000−533760)の分割
【原出願日】平成11年2月24日(1999.2.24)
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.フロッピー
【出願人】(500400560)ザ ユナイテッド ステイツ オブ アメリカ リプレゼンティッド バイ ザ シークレタリー デパートメント オブ ヘルス アンド ヒューマン サービシーズ (1)
【Fターム(参考)】