説明

静圧流体軸受

【課題】 静圧流体軸受を容易に製造できると同時に高精度に構成可能な新規構造を実現する。
【解決手段】本発明の静圧流体軸受の軸受体200は、第1凹凸端部211を一体に有する第1軸受部材210と、第1凹凸端部に対して軸線方向に嵌合可能に構成された第2凹凸端部221を一体に有する第2軸受部材220とを具備し、第1軸受部材と第2軸受部材が軸線方向に第1凹凸端部と第2凹凸端部とが組み合わされる態様で軸線方向に嵌合し、第1軸受側部分211tと第2軸受側部分221tの少なくとも一方には半径方向に伸び軸受隙間Gに連通する複数の凹溝221gが放射状に形成され、第1軸受側部分と第2軸受側部分とが突き合わされることで凹溝により絞りPが軸線周りに複数分散して構成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は気体、油等の液体その他の流体の圧力で軸受する静圧流体軸受に係り、さらに詳しく言えば、電子記憶媒体に用いるディスクの検査用や精密加工用などのスピンドルの軸受に用いる場合に好適な静圧流体軸受の構造に関する。
【背景技術】
【0002】
高圧流体を絞りを通して軸受隙間に供給し、その流体の有する静圧によって軸に加わる負荷を支持する静圧流体軸受はすでに数多く実用化されている。とくに、高剛性、高精度を必要とする静圧流体軸受にあっては、軸受隙間を小さくし、それに相応して絞りの流体抵抗を大きくすることが求められている。そのため、静圧流体軸受は高い精度で加工することが必要で、さらに複数個の静圧流体軸受を用いるスピンドルにあっては静圧流体軸受自体及びその間の同心度、円筒度、真直度を高い精度で維持することが必要とされている。
【0003】
図3は2個の静圧流体軸受2,2を用いて半径方向の負荷を受ける軸1を支持する従来の技術によるスピンドルの一例を模式的に示す概略断面図である。2個の静圧流体軸受2,2は、それぞれ第1軸受部材2Aと第2軸受部材2Bとが軸線方向に突き合わされた状態で固定されてなる。これらの内径21は高い精度で加工され、真円度、円筒度、真直度、および外径22との同心度、ならびに内径21に対する端面23の直角度は必要精度を十分達成している必要がある。スピンドルを構成するには、スピンドルの構造体となるホルダー(ハウジング)3を用意し、一組の軸受部材2A,2Bをホルダー3に挿入し、スペーサー4を挿入しさらに他方の組の軸受部材2A,2Bを挿入する。ホルダー3の内径31の真円度、円筒度、真直度は必要精度を満足する必要があり、内径31の絶対寸法は第1軸受部材2A、第2軸受部材2Bの挿入を可能にするため、これらの外径22より数マイクロメータ大きく仕上げられている。スペーサー4の両端面41、41の平行度は第1軸受部材2A、第2軸受部材2Bが傾くことを防ぐため十分な精度に仕上げられている。また、スペーサー4の外径42の絶対寸法はホルダー3への挿入を可能にするためホルダー3の内径31より小さく仕上げられている。
【0004】
上記のような静圧流体軸受2の具体例若しくは改良例はたとえば以下の特許文献1に記載されている。また、静圧流体軸受の他の従来例としては、以下の特許文献2乃至4に示す構造が知られている。
【特許文献1】特許第3779186号公報
【特許文献2】特公昭46−8044号公報(特に図1及び図2に示される構造)
【特許文献3】特公昭49−29526号公報(特に図1及び図2に示される構造)
【特許文献4】実開平3−112121号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
従来の技術による静圧流体軸受2を複数個用いてスピンドルを構成するには、図3に示すように、静圧流体軸受2を構成する第1軸受部材2A及び第2軸受部材2Bをホルダー3に隙間嵌めで挿入しなければならないため、静圧流体軸受の内径21と外径22の同心度をたとえ0に仕上げても、複数個の静圧流体軸受間の内径の同心度、すなわち、内径の調心度(アライメント)はホルダー内径31と流体軸受外径22の差、すなわち、隙間嵌めの隙間の値だけの誤差を生じることになる。これは軸受隙間を小さくすることを求められる高剛性、高精度スピンドルでは大きな問題となる。また、工作に当たっても、静圧流体軸受2の内径21/外径22の同心度、端面23の内径21に対する直角度、ホルダー内径31の真円度、円筒度、同心度および絶対寸法、さらに、スペーサー4の両端面41の平行度を高い精度で加工することが必要となる。
【0006】
すなわち、従来の技術を用いた静圧流体軸受を用いてスピンドルを構成するには、部品点数が多く、しかも前記したように各部品を高い精度で加工することが必要である。それにもかかわらず、最終的に複数個の静圧流体軸受の同心度(アライメント)は隙間嵌めの隙間の値だけ誤差を生じるということになる。
【0007】
そこで、本発明の目的は、静圧流体軸受を容易に製造できると同時に高精度に構成可能な新規構造を実現することにある。特に、静圧流体軸受を複数個用いる場合、複数個の静圧流体軸受間の内径の同心度、すなわち、内径の調心度の誤差をかぎりなく0に近づけ、しかも部品点数を少なくし、さらに部品の精度を寛容にし工作を容易にすることを可能とする際に好適な構造若しくは製法を提供することを目的とする。
【課題を解決するための手段】
【0008】
前記目的を達成するために本発明の静圧流体軸受は、回転体と、該回転体との間に軸受隙間を介して対向する軸受面を備えた軸受体とを具備し、前記軸受隙間に加圧した流体を絞りを通して導くことにより前記回転体を回転可能に支持する静圧流体軸受において、前記軸受体は、前記軸受面の一部を構成する第1軸受面部、及び、半径方向に見て凹凸状に設けられた第1凹凸端部を一体に有する第1軸受部材と、前記第1軸受面部に隣接し前記軸受面の他の一部を構成する第2軸受面部、及び、半径方向に見て凹凸状に設けられ、前記第1凹凸端部に対して軸線方向に嵌合可能に構成された第2凹凸端部を一体に有する第2軸受部材とを具備し、前記第1軸受部材と前記第2軸受部材が前記第1凹凸端部と前記第2凹凸端部とが組み合わされる態様で軸線方向に嵌合し、前記第1凹凸端部のうち半径方向の前記第1軸受面部とは反対側に設けられた第1反軸受側部分と、前記第2凹凸端部のうち半径方向の前記第2軸受面部とは反対側に設けられた第2反軸受側部分の対向面間が密接して全周に亘り気密に構成され、前記第1凹凸端部のうち半径方向の前記第1軸受面部の側に設けられた第1軸受側部分と、前記第2凹凸端部のうち半径方向の前記第2軸受面部の側に設けられた第2軸受側部分の少なくとも一方には半径方向に伸び前記軸受隙間に連通する複数の凹溝が放射状に形成され、前記第1軸受側部分と前記第2軸受側部分とが突き合わされることで前記凹溝により前記絞りが軸線周りに複数分散して構成され、前記第1軸受部材と前記第2軸受部材の間に画成され、前記複数の絞りに共通に連通する流体供給用の環状の圧力室が構成されることを特徴とする。
【0009】
本発明によれば、第1軸受部材と第2軸受部材とが第1凹凸端部と第2凹凸端部とにおいて軸線方向に嵌合することで、第1軸受面部と第2軸受面部とが隣接して軸受面を構成するとともに、凹溝によって圧力室に連通する複数の絞りが構成される一方、第1反軸受側部分と第2反軸受側部分とが密接して気密に構成されるため、各軸受部材を嵌合端部より軸線方向に伸びる構造とすれば、第1軸受部材と第2軸受部材の嵌合構造で軸受体を構成することが可能になることから、ホルダー(ハウジング)が不要となって組立作業の容易化及び部品点数の削減を図ることができるとともに、第1軸受部材及び第2軸受部材をホルダーの内部に隙間嵌めによって組み込む必要がなくなるため、当該隙間嵌めによる第1軸受部材及び第2軸受部材の位置ずれ等を防止でき、真円度、円筒度、同心度等への影響を低減できる。
【0010】
なお、本明細書において、「Aのうち半径方向のa1とは反対側に設けられたa2」の意味は、Aにおいて(或いはAに対して)a1が半径方向内側にある場合には、a2がAの半径方向外側に設けられた部分であることを示し、Aにおいて(或いはAに対して)a1が半径方向外側にある場合には、a2がAの半径方向内側に設けられた部分であることを示すこととする。また、「Bのうち半径方向のb1の側に設けられたb2」の意味は、Bにおいて(或いはBに対して)b1が半径方向内側にある場合には、b2がBの半径方向内側に設けられた部分であることを示し、Bにおいて(或いはBに対して)b1が半径方向外側にある場合には、b2がBの半径方向外側に設けられた部分であることを示す。
【0011】
特に、前記第1凹凸端部と前記第2凹凸端部とが相互に圧入状態とされていることにより、組立時における第1軸受部材と第2軸受部材の相対的な位置ずれを確実に防止できるとともに、組立後の経時的な位置変化も抑制できるため、軸受隙間等の精度低下等の不具合の発生を防止できる。すなわち、軸受部材間を締まり嵌めで位置決めすることで、従来の隙間嵌めによる位置ずれ等を回避しつつ、各部の精度を高めることができる。なお、第1軸受部材と第2軸受部材はボルト等の固定手段により軸線方向に互いに固定されることが好ましい。なお、「第2軸受部材と同様に嵌合する」とは、嵌合形状が同様であるという意味ではなく、第1軸受部材と第2軸受部材が圧入状態で嵌合している場合には第1軸受部材と第3軸受部材も圧入状態で嵌合しているという意味である。
【0012】
本発明において、前記第1軸受部材には前記第1凹凸端部の軸線方向反対側に半径方向に見て凹凸状に構成された第1凹凸反端部が形成されるとともに、前記第1軸受部材の前記第1凹凸反端部に対し前記第2軸受部材と同様に嵌合する第3凹凸端部を備えた第3軸受部材が設けられ、前記第1軸受部材と前記第3軸受部材との間に前記絞り及び前記圧力室が同様に構成されることが好ましい。
【0013】
これによれば、第1軸受部材の両側に第2軸受部材と第3軸受部材とが嵌合して軸受体を構成するので、軸線方向の少なくとも二箇所に静圧流体軸受を構成する場合に、スペーサ等の余分な構成部材が不要になるため、さらに製造の容易化及び部品点数の削減を図ることができる。また、二箇所の静圧流体軸受が一体に構成された第1軸受部材の両端部に嵌合した状態(圧入状態で)固定されるので、二箇所の静圧流体軸受間の整合性(調芯度等)を高めることができる。
【0014】
この場合に、前記第1凹凸反端部の凹凸形状が前記第1凹凸端部の凹凸形状に対して軸線方向と直交する対称面に対して対称に形成されている場合があり、また、前記第1凹凸反端部の凹凸形状が前記第1凹凸端部の凹凸形状に対する嵌合可能な形状に形成されている場合もある。また、前記第1軸受部材には、前記第1軸受部材の両端部にそれぞれ設けられた一対の前記絞りの軸線方向中間部において前記軸受隙間若しくはこれらに連通する内部空間に開口する流体排出経路が構成されている場合(一対の一列軸受構造が軸線方向に設けられる場合)と、前記第1軸受部材の両端部にそれぞれ設けられた一対の前記絞りの間に連続する軸受隙間が設けられるとともに当該軸受隙間には流体排出経路が開口せず、前記一対の絞りの軸線方向両側において前記軸受隙間若しくはこれらに連通する内部空間に開口する流体排出経路がそれぞれ構成されている場合(二列軸受構造が設けられる場合)とがある。
【0015】
次に、本発明の別の静圧流体軸受は、回転体と、該回転体との間に軸受隙間を介して対向する軸受面を備えた軸受体とを具備し、前記軸受隙間に加圧した流体を絞りを通して導くことにより前記回転体を回転可能に支持する静圧流体軸受において、前記軸受体は、前記軸受面の一部を構成する第1軸受面部、及び、軸線方向の端部における半径方向の前記第1軸受面部の側において軸線方向に環状に突出する環状凸部を一体に有する第1軸受部材と、前記第1軸受面部に隣接し前記軸受面の他の一部を構成する第2軸受面部、及び、軸線方向の端部における半径方向の前記第2軸受面部の側において軸線方向に環状に凹入する環状凹部を一体に有する第2軸受部材とを具備し、前記第1軸受部材の端部と前記第2軸受部材の端部が前記環状凸部と前記環状凹部とが組み合わされる態様で軸線方向に嵌合し、前記環状凸部のうち半径方向の前記第1軸受面部とは反対側に設けられた第1側面部と、前記環状凹部のうち半径方向の前記第2軸受面部とは反対側に設けられた第2側面部との対向面間、或いは、前記環状凸部のうち半径方向の前記第1軸受面部とは反対側に設けられた第1端面部と、前記環状凹部のうち半径方向の前記第2軸受面部とは反対側に設けられた第2端面部との対向面間の少なくとも一方が密接して全周に亘り気密に構成され、前記環状凸部の軸線方向の先端面と、前記環状凹部の軸線方向の奥底面の少なくとも一方には半径方向に伸び前記軸受隙間に連通する複数の凹溝が放射状に形成され、前記先端面と前記奥底面とが突き合わされることで前記凹溝により前記絞りが軸線周りに複数分散して構成され、前記第1軸支部材と前記第2軸支部材との間に画成され、前記複数の絞りに共通に連通する流体供給用の環状の圧力室が構成されることを特徴とする。
【0016】
本発明によれば、第1軸受部材と第2軸受部材とが環状凸部と環状凹部とにおいて軸線方向に嵌合することで、第1軸受面部と第2軸受面部とが隣接して軸受面を構成するとともに、凹溝によって圧力室に連通する複数の絞りが構成される一方、環状凸部の第1側面部若しくは第1軸受部材の第1端面部と、環状凹部の第2側面部若しくは第2軸受部材の第2端面部とが密接して気密に構成されるため、第1軸受部材と第2軸受部材の嵌合構造で軸受体を構成することが可能になることから、ホルダー(ハウジング)が不要となって組立作業の容易化及び部品点数の削減を図ることができる。特に、第1軸受部材及び第2軸受部材を圧入状態とすることで、ホルダーの内部に隙間嵌めによって組み込む必要がなくなるため、当該隙間嵌めによる第1軸受部材及び第2軸受部材の位置ずれ等を防止でき、真円度、円筒度、同心度等への影響を低減できる。
【0017】
本発明において、前記第1軸受部材と前記第2軸受部材のうちの一方の軸受部材の前記環状凸部若しくは前記環状凹部が設けられた端部とは反対側の端部に別の環状凸部若しくは環状凹部が形成されるとともに、当該別の環状凸部若しくは環状凹部に対し前記第2軸受部材と同様に嵌合する第3軸受部材がさらに設けられ、前記一方の軸受部材と前記第3軸受部材との間に前記絞り及び前記圧力室が同様に構成されることが好ましい。
【発明の効果】
【0018】
本発明によれば、軸受部を構成する第1軸受部材と第2軸受部材とがそれぞれ嵌合可能な凹凸状に構成された端部同士で軸線方向に嵌合してなることから、ホルダーを不要とすることができるため、容易に製造できると同時に高精度に構成可能な静圧流体軸受を実現することができる。特に、静圧流体軸受を複数個用いる場合、複数個の静圧流体軸受自体の構造精度だけでなく、当該軸受間の内径の同心度、すなわち、内径の調心度の誤差をかぎりなく0に近づけ、しかも部品点数を少なくし、さらに部品の精度を寛容にし工作を容易にすることを可能とすることができるという優れた効果を奏し得る。
【発明を実施するための最良の形態】
【0019】
次に、添付図面を参照して本発明の実施形態について説明する。最初に図1を参照して本発明の実施形態の基本構成例について説明する。図1は本発明の基本構成例(ただし、静圧流体軸受を複数個用いてスピンドルを構成する点、軸体で構成される回転体を取り囲む軸受体を構成する点等で具体化されている。)を模式的に示す概略断面図である。図1に示すように、本基本構成例では、回転体100を軸支する軸受体200が、第1軸受部材210と、この第1軸受部材210の軸線X方向の一方の端部211に嵌合する第2軸受部材220と、第1軸受部材210の他方の端部212に嵌合する第3軸受部材230とを有する。なお、特に限定されるものではないが、図示例の場合、回転体100が円柱状の軸体として構成され、軸受体200が回転体100を挿入可能な円筒状に構成される。
【0020】
第1軸受部材210の両端部211、212はそれぞれ半径方向に見て凹凸状に構成され、第1凹凸端部211及び第1凹凸反端部212となっている。また、第2軸受部材220の一方の端部は第1凹凸端部211に嵌合可能に、しかも半径方向に見て凹凸状に構成された第2凹凸端部221となっている。さらに、第3軸受部材230の一方の端部は第1凹凸反端部212に嵌合可能な、半径方向に見て凹凸状に構成された第3凹凸端部231となっている。
【0021】
上記各端部の凹凸形状は少なくとも半径方向に見て凹凸状に構成されていればよいが、特に、軸線Xの周り全周に亘って凸部及び凹部がそれぞれ環状に連続した形状となっていることが好ましい。図示例の場合には、第1凹凸端部211のうち半径方向の内側部分に環状凸部211Aが形成され、同半径方向の外側部分に第1端面部211Bが設けられている。第1端面部211Bは特に限定されないが、図示例では(軸線Xに直交する)平坦面とされている。また、上記第1凹凸端部211と嵌合可能な態様で、第2凹凸端部221のうち半径方向の内側部分に環状凹部221Aが形成され、同半径方向の外側部分に第2端面部221Bが設けられている。この第2端面部221Bも特に限定されないが、図示例では(軸線Xに直交する)平坦面となっている。さらに、第1凹凸反端部212のうち半径方向の内側部分には環状凸部212Aが、半径方向の外側部分には第1反端面部212Bがそれぞれ設けられ、これらに嵌合可能な態様で、第3凹凸端部231のうち半径方向の内側部分には環状凹部231Aが、半径方向の外側部分には第3端面部231Bがそれぞれ設けられている。図示例では、第1反端面部212B及び第3端面部231Bは、上記第1端面部211Bと第2端面部221Bと同様に、それぞれ相互に密接する平坦面となっている。
【0022】
環状凸部211Aの軸線方向の先端面211tは環状凹部221Aの軸線方向の奥底面221tに突き当てられた状態とされ、また、環状凸部211Aの第1側面部211s(半径方向外側の外側面部分)は環状凹部221Aの第2側面部221s(半径方向外側の内側面部分)と密接し、気密に構成される。さらに、第1端面部211Bは第2端面部221Bと密接し、気密に構成される。この場合、第1側面部211sと第2側面部221sのみが密接して気密に構成されていてもよく、或いはまた、第1端面部211Bと第2端面部221Bのみが密接して気密に構成されていてもよい。ここで、第1側面部211sと第1端面部211Bは上記の第1反軸受側部分に相当し、第2側面部221sと第2端面部221Bは上記の第2反軸受側部分に相当している。なお、このような構成は第1凹凸反端部212と第3凹凸端部231の嵌合部においても同様に構成される。
【0023】
環状凹部221Aの奥底面221tの表面には半径方向に伸び上記軸受隙間Gに連通する凹溝221gが形成され、この凹溝221gと先端面211tで絞りPが構成される。ここで、絞りPとしては凹溝221gを幅広の溝形状とすることでスロット絞りを構成するものであることが好ましいが、絞りPの流路の断面形状は特に限定されず、たとえば自成絞りを構成するものであってもよい。いずれにしても、凹溝221gは軸線X周りに放射状に複数設けられ、複数の絞りPが軸線X周りに(望ましくは均等に)分散して形成される。なお、絞りPを形成するには奥底面221tに凹溝221gを設けるだけでなく、その代わりに先端面211tに凹溝を設けてもよく、また、奥底面221tと先端面211tの双方に凹溝を形成してもかまわない。ここで、先端面211tは上記第1軸受側部分に相当し、奥底面221tは上記第2軸受側部分に相当している。
【0024】
また、上記凹溝221gは奥底面221tの半径方向外側に形成された環状溝221hに連通している。この環状溝221hは軸線X周りに環状に構成され、先端面211tとの間に圧力室Rを構成する。この圧力室Rは上記複数の絞りPに連通して均等な圧力で流体を供給するものであり、後述する流体供給経路(給気経路Q)に連通している。ここで、上記環状溝221hの代わりに先端面211tに環状溝を形成してもよく、奥底面221tと先端面211tの双方に環状溝を形成してもかまわない。さらに、上記環状溝は第1側面部211s及び/又は第2側面部221sのうち上記先端面211t又は奥底面221t側の部分に形成されてもよい。なお、凹溝231g及び環状溝231hも上記と同様に構成される。
【0025】
第1凹凸端部211の内周部には第1軸受面部213が形成され、これに隣接して第2凹凸端部221の内周部に第2軸受面部223が形成されている。第1軸受面部213と第2軸受面部223は静圧流体軸受の軸受面201を構成し、回転体1の外周面に対して軸受隙間Gを介して対向している。軸受面201は回転体1の外周面に対応する(同軸の)円筒面を構成している。これと同様に、第1凹凸反端部212の内周部には第1反軸受面部214が形成され、これに隣接して第3凹凸端部231の内周部に第3軸受面部233が形成され、これらによって軸受面202が上記と同様に構成される。
【0026】
第1軸受部材210と第2軸受部材220は嵌合している。特に、環状凸部211Aと環状凹部221Aとが圧入された圧入状態とされている。この場合、第1側面部211sの外径に対して、第2側面部221sの内径が数マイクロメートル〜数十マイクロメートル(2〜60μm)の締め代を以って圧入されていることが好ましい。これによって両軸受部材間の位置精度(組立時及び組立後)を高めることができる。この締め代は第1軸受部材210及び第2軸受部材220の素材の剛性や部材の寸法によって適宜に設定される。特に、第1軸受部材210と第2軸受部材220を一度圧入してから取り外し、再度圧入しても軸受面201の寸法変化が許容範囲内となる程度の軽圧入であることが望ましい。なお、第1軸受部材210と第3軸受部材230の関係についても上記と同様である。
【0027】
なお、第1軸受部材210と第2軸受部材220とはボルトB等の固定手段によって相互に固定されることが望ましい。図示例の場合、ボルトBは両軸受部材を軸線方向に固定している。第1軸受部材210と第3軸受部材230との間も同様である。
【0028】
この基本構成例は、上述の構成により一列給気軸受が軸線方向の二箇所においてそれぞれ構成されたものとなっている。この基本構成例において、上記圧力室Rには流体供給経路である給気経路Qが連通し、当該給気経路Qを介して圧縮空気等の気体が導入される。図示例では、第1軸受部材210、第2軸受部材220及び第3軸受部材230の内部において軸線方向に延長するように形成された共通の給気経路Qが二箇所の圧力室Rに共に連通した構造となっている。軸受構造や他の構造の都合上、給気経路Qの開口部位を軸受体の軸線方向の端部に設ける場合には、図示のように好ましくは複数の軸受部材の内部に軸線方向に伸びる給気経路Qを構成することが望ましい。ただし、本発明においては、流体供給経路は圧力室Rに流体を供給することができる構造となっていればよく、一般的には上記軸受部材のうち少なくとも一つ(たとえば、第1軸受部材210)に形成されていれば足りる。
【0029】
また、第1軸受部材210の内部には流体排出経路である排気経路Sが形成され、当該排気経路Sは二つの絞りPの中間部において軸受隙間Gに連通する内部空間Tに開口している。なお、内部空間Tは軸受面201と202の間に形成された環状凹溝よりなる。
【0030】
以上説明した実施形態の基本構成例では、第1軸受部材210と第2軸受部材220又は第3軸受部材230とが嵌合し、第1凹凸端部211と第2凹凸端部221、或いは、第1凹凸反端面部212と第3凹凸端部231が互いに圧入状態とされていることで、組立時及び組立後の相対的な位置決め精度を確保することができ、高精度の静圧流体軸受を構成できる。また、これらの軸受部材の嵌合部によって流体の密封性を容易に得ることができるため、ホルダー(ケーシング)を別途用いなくても軸受構造を構成することができ、部品点数の削減、製造の容易化を図ることが可能になる。
【0031】
この第1軸受部材210の両端面に第2軸受部材220及び第3軸受部材230を数〜十数マイクロメータの締め代で圧入することにより、第1軸受部材210と第2軸受部材220及び第3軸受部材230は相互に加圧状態とされるとともに、軸線方向のねじBで固定されることで、密着し気密が保持された状態とされる。このとき、第1軸受部材210の半径方向内側に軸線方向に環状に突出する環状凸部211Aと軸線方向中央部付近に軸受隙間Gを形成する第1軸受面部213の同心度、及び、第2軸受部材220の環状凹部221Aとその第2軸受面部223の同心度が高い精度で仕上げられていれば、第1軸受部材210と第2軸受部材220の圧入・密着後、軸受面201の同心度、真直度、円筒度は高い精度で確保される。これは、第1反軸受面部214と第3軸受面部233で構成される軸受面202についても同様である。さらに、必要に応じ、圧入、密着ねじ止め後、軸受面201と202を同時一体研削加工すれば、複数の静圧流体軸受の調心度(アライメント)をかぎりなく0に近づけることが可能となる。
【0032】
さらに、第1軸受部材210が後述するスピンドル等の構造体となるのでホルダーおよびスペーサーが不要となり、高精度加工を必要とする部品点数を削減することが可能となる。すなわち、本基本構成例の具体的な構成において、第1軸受部材210、第2軸受部材220及び第3軸受部材230がスピンドル等の構造体であるハウジングとして機能し、また、第1軸受部材210自体が2つの静圧流体軸受間のスペーサとしても機能している。
【0033】
なお、上記実施形態では、第1軸受部材210の両端部に第1凹凸端部211と第1凹凸反端部212とが形成され、これら各端部の半径方向内側には共に環状凸部211A、212Aがそれぞれ形成されているが、これとは異なり、両端部の半径方向内側に共に環状凹部を形成し、これらに対応させて第2軸受部材220及び第3軸受部材230の端部に環状凸部を設けてもよい。さらには、両端部の一方に同環状凸部を設け、他方に同環状凹部を設けるとともに、これらに対応させて第2軸受部材220及び第3軸受部材230の端部を形成してもよい。また、上記実施形態では、各軸受部材の半径方向内側に環状凸部又は環状凹部を設けているが、半径方向に見て凹凸状に構成され、相互に嵌合しているのであれば、各凹凸端部の凹凸形状は上記態様に限定されるものではない。なお、これらの点は以下に説明する他の例においても同様である。
【0034】
図2は上記基本構成例とは異なる態様の軸受構造を示す変形例である。ここで、上記基本構成例と対応する部分には同一符号を付してある。この例は、第1軸受部材310の両側にそれぞれ複数の軸受部材を互いに嵌合させた場合を示している。すなわち、第1軸受部材310の両側に第2軸受部材320と第3軸受部材330とが圧入されて嵌合し、第2軸受部材320にはさらに第4軸受部材340が圧入されて嵌合し、第3軸受部材330にはさらに第5軸受部材350が圧入されて嵌合するといった具合である。この場合も上記と同様に、種々のバリエーションを適用することができる。この図示例では、軸線方向の二箇所においてそれぞれ二列給気軸受が構成され、これによって軸受剛性のより高い軸受構造が実現されている。ただし、当該例において第2軸受部材320や第3軸受部材330にもそれぞれ流体排出経路を設けることで複数の一列給気軸受が軸線方向に配列された態様で構成されたものとすることも可能である。
【0035】
次に、上記の実施形態の基本構成例の製造方法について説明する。第1軸受部材210、第2軸受部材220及び第3軸受部材230をそれぞれ用意し、一旦、これらを相互に圧入して嵌合させ、軸受体を一時的に形成する。この場合、これらの圧入状態は、予め締め代を設定しておくことで、嵌合後一旦取り外して再度嵌合させても軸受面201、202の面精度が許容範囲内となる程度の軽圧入とする。この第1嵌合工程は、複数の軸受部材を相互に完成状態となるように嵌合させる工程である。
【0036】
そして、この嵌合状態で、軸受面201、202を研削加工、研摩加工等によって成形し、所要の面精度を得る。この軸受面成形工程は、各軸受部材が嵌合状態にあるときに必要な軸受面精度を得るための工程である。
【0037】
その後、第1軸受部材210、第2軸受部材220及び第3軸受部材230の嵌合を外してばらばらとし、上記凹溝221g及びこれに対向する先端面211tの部分等といった絞りPの軸受面201、202に対する開口縁のバリを除去したり、研摩したり、塵埃を除去したりする。この開口縁の処理工程は、上記軸受面成形工程で生じた絞りPの詰まりを防止したり、バリを除去したりといった絞りPの開口部に対する適正化処理工程である。
【0038】
最後に、第1軸受部材210、第2軸受部材220及び第3軸受部材230を再び圧入して嵌合させ、一体の軸受体を構成する。この再度の(第2)嵌合工程によって軸受体が完成する。
【0039】
図4は本発明に係る静圧流体軸受の構造をスピンドルに応用した場合の主要部分を示す概略縦断面図である。このスピンドルは、上記基本構成例と同様の、スピンドル軸400を挿通する第1軸受部材510と、この第1軸受部材510の両端部に嵌合して圧入状態とされた第2軸受部材520及び第3軸受部材530とを有している。各軸受部材間には上記と同様の絞りP及び圧力室Rが構成され、スピンドル軸400をラジアル方向に軸支する。
【0040】
スピンドル軸400は基本的に円柱状に構成されているが、一部に半径方向に張り出したフランジ部401を有し、当該フランジ部401が軸線方向両側にそれぞれ対向するスラスト軸受部材540と僅かな軸線方向の軸受隙間Hを介して嵌合している。スラスト軸受部材540内にはフランジ部401に対して軸線方向両側にそれぞれ対向し、上記軸受隙間Hに軸線方向に開口する絞りU及び圧力室Vが形成され、スピンドル軸400をスラスト方向に軸支する。なお、このスラスト軸受構造としては、上記構造の凹凸関係を逆にし、スピンドル軸400に環状溝を形成し、この環状溝内に軸受隙間を介して嵌入する、内側に張り出したフランジ状の部分を備えた軸受部材を設けたものであってもよい。なお、スラスト軸受部材540は一方で第2軸受部材520に固定され、他方で半径方向の環状固定部材541と軸線方向の環状固定部材542によって支持固定される。なお、各部の固定手段としては図示しないボルト等が用いられる。
【0041】
本応用例でも第1軸受部材510、第2軸受部材520及び第3軸受部材530の少なくとも一つには流体供給経路である給気経路501が構成される。図示例の場合、流体供給経路501は第1軸受部材510、第2軸受部材520及び第3軸受部材530を軸線方向に貫通する態様で各軸受部材の内部に構成される。給気経路501は第3軸受部材530の端面に開口し、図示しない供給管等に接続される。給気経路501は上記圧力室R及びVに連通し、各絞りP及びUを介して軸受隙間G及びHに流体が供給される。また、流体排出経路である排気経路502、503、504が第1軸受部材510及びスラスト軸受部材540に形成されている。
【0042】
図4に示す上記スピンドルにおいて、潤滑流体としてゲージ圧力5 kgf/cm(=490 kPa)の空気を利用し、半径方向負荷に対する剛性k=5 kgf/μm(=49 N/μm)、偏心率0.5における負荷容量W=25 kgf(=245 N)を有するように設計した。
【0043】
一方、図5は、従来の技術による静圧流体軸受を用い、同じ設計目標の性能(半径方向負荷に対する剛性k=5 kgf/μm(=49 N/μm)、偏心率0.5における負荷容量W=25 kgf(=245 N)を有するスピンドルの設計例を示したものである。ここで、対応する部品には図3と同様の符号を付してある。従来構造では、一対の静圧流体軸受を構成するのに、二組の軸受部材2A,2Bをスペーサ4を介してホルダー3内に組み込む必要があるので、部品点数が増大し、組立作業も煩雑であるとともに、ホルダー3に対して四つの軸受部材2A、2Bを隙間嵌めで装着する必要があり、同心度、円筒度、真直度及び調芯度を高めることが難しい。
【0044】
図6は、静圧流体軸受1個当たりの剛性ksおよび流量Qと軸受の半径隙間Crの関係を示したものである。この静圧流体軸受を用いて図4および図5に示すスピンドルで半径方向負荷に対する剛性k=5 kgf/μm(=49 N/μm)を得るには、半径隙間CrをCr=8〜11μm(約10μm)とする必要がある。
【0045】
従来の技術による静圧流体軸受を用いてスピンドルを構成するには、前記したように静圧流体軸受をホルダーに隙間数μmの隙間嵌めで挿入しなければならない。いま、隙間5μmの隙間嵌めでホルダーに静圧流体軸受を挿入したとすると、2個の静圧流体軸受の同心度(調心度、すなわち、アライメントの誤差)は、静圧流体軸受の内径と外径の同心度が0という理想的な精度で加工されていたとしても、隙間嵌めの隙間5μmの誤差を生じることになる。これは、スピンドルで半径方向負荷に対する剛性k=5 kgf/μm(=49 N/μm)を得るために必要な静圧流体軸受の半径隙間Cr=8〜11μm(約10μm)の50%、偏心率εで表すとε=0.5に達する。すなわち、偏心率ε=0.5で負荷容量WはW=0となる。設計目標の負荷容量W=25 kgf(=245 N)を発揮するためにこの状態からさらに5μm軸が変位すると、軸は軸受に接触することになる。
【0046】
本発明による静圧流体軸受を用いれば、複数個の静圧流体軸受の同心度(調心度、すなわち、アライメントの誤差)は確保され、さらに、必要に応じ、圧入、密着ねじ止め後、前記軸受面(円筒内面、図1の201、202)を同時一体研削加工すれば、前記軸受面201、202の同心度すなわち複数の静圧流体軸受の調心度はかぎりなく0に近づけることが可能となり、半径隙間Cr=8〜11(10)μmの静圧流体軸受を複数個用い、潤滑流体としてゲージ圧力5 kgf/cm(=490 kPa)の空気を利用し、半径方向負荷に対する剛性k=5 kgf/μm(=49 N/μm)、偏心率0.5における負荷容量W=25 kgf(=245 N)を有するスピンドルを実現することができる。
【0047】
以上記したように、従来の技術による静圧流体軸受を用いると設計目標の性能を有するスピンドルを実現することは困難であるが、本発明による静圧流体軸受を用いることにより設計目標の性能を満足するスピンドルを実現することが可能となる。
【0048】
なお、上記実施形態は流体として空気を用いているが、他の流体、たとえば、油等の液体、その他の流動性を有する物質を用いることができる。特に、潤滑性の高い流体を用いることが望ましい。また、回転体と軸受体の半径方向の内外の位置関係を逆転させた態様、すなわち、軸受体を中心部に設置し、回転体を軸受体の外周の軸受面を取り巻くように構成した場合でも、上記と同様の作用効果を奏することができる。
【図面の簡単な説明】
【0049】
【図1】本発明に係る静圧流体軸受の実施形態の基本構成例を示す概略縦断面図。
【図2】基本構成例の変形例を示す概略縦断面図。
【図3】従来の静圧流体軸受を用いた軸受構造の概略縦断面図。
【図4】実施形態の静圧流体軸受を用いたスピンドル構造を示す概略縦断面図。
【図5】従来の静圧流体軸受を用いたスピンドル構造を示す概略縦断面図。
【図6】静圧流体軸受1個当たりの剛性および流量と軸受の半径隙間Crの関係を示すグラフ。
【符号の説明】
【0050】
100…回転体、200…軸受体、201,202…軸受面、210…第1軸受部材、211…第1凹凸端部、211A…環状凸部、211B…第1端面部、211t…先端面、211s、221s…第1側面部、212…第1凹凸反端部、212A…環状凸部、212B…第1反端面部、213…第1軸受面部、220…第2軸受部材、221…第2凹凸端部、221A…環状凹部、221B…第2端面部、221t…奥底面、223…第2軸受面部、230…第3軸受部材、231…第3凹凸端部、231A…環状凹部、231B…第3端面部、G、H…軸受隙間、P、U…絞り、R、V…圧力室

【特許請求の範囲】
【請求項1】
回転体と、該回転体との間に軸受隙間を介して対向する軸受面を備えた軸受体とを具備し、前記軸受隙間に加圧した流体を絞りを通して導くことにより前記回転体を回転可能に支持する静圧流体軸受において、
前記軸受体は、前記軸受面の一部を構成する第1軸受面部、及び、半径方向に見て凹凸状に設けられた第1凹凸端部を一体に有する第1軸受部材と、前記第1軸受面部に隣接し前記軸受面の他の一部を構成する第2軸受面部、及び、半径方向に見て凹凸状に設けられ、前記第1凹凸端部に対して軸線方向に嵌合可能に構成された第2凹凸端部を一体に有する第2軸受部材とを具備し、
前記第1軸受部材と前記第2軸受部材が前記第1凹凸端部と前記第2凹凸端部とが組み合わされる態様で軸線方向に嵌合し、前記第1凹凸端部のうち半径方向の前記第1軸受面部とは反対側に設けられた第1反軸受側部分と、前記第2凹凸端部のうち半径方向の前記第2軸受面部とは反対側に設けられた第2反軸受側部分の対向面間が密接して全周に亘り気密に構成され、
前記第1凹凸端部のうち半径方向の前記第1軸受面部の側に設けられた第1軸受側部分と、前記第2凹凸端部のうち半径方向の前記第2軸受面部の側に設けられた第2軸受側部分の少なくとも一方には半径方向に伸び前記軸受隙間に連通する複数の凹溝が放射状に形成され、前記第1軸受側部分と前記第2軸受側部分とが突き合わされることで前記凹溝により前記絞りが軸線周りに複数分散して構成され、
前記第1軸受部材と前記第2軸受部材の間に画成され、前記複数の絞りに共通に連通する流体供給用の環状の圧力室が構成されることを特徴とする静圧流体軸受。
【請求項2】
前記第1軸受部材と前記第2軸受部材とが圧入状態で嵌合していることを特徴とする請求項1に記載の静圧軸受部材。
【請求項3】
前記第1軸受部材には前記第1凹凸端部の軸線方向反対側に半径方向に見て凹凸状に構成された第1凹凸反端部が形成されるとともに、前記第1軸受部材の前記第1凹凸反端部に対し前記第2軸受部材と同様に嵌合する第3凹凸端部を備えた第3軸受部材が設けられ、前記第1軸受部材と前記第3軸受部材との間に前記絞り及び前記圧力室が同様に構成されることを特徴とする請求項1又は2に記載の静圧流体軸受。
【請求項4】
回転体と、該回転体との間に軸受隙間を介して対向する軸受面を備えた軸受体とを具備し、前記軸受隙間に加圧した流体を絞りを通して導くことにより前記回転体を回転可能に支持する静圧流体軸受において、
前記軸受体は、前記軸受面の一部を構成する第1軸受面部、及び、軸線方向の端部における半径方向の前記第1軸受面部の側において軸線方向に環状に突出する環状凸部を一体に有する第1軸受部材と、前記第1軸受面部に隣接し前記軸受面の他の一部を構成する第2軸受面部、及び、軸線方向の端部における半径方向の前記第2軸受面部の側において軸線方向に環状に凹入する環状凹部を一体に有する第2軸受部材とを具備し、
前記第1軸受部材と前記第2軸受部材が前記環状凸部と前記環状凹部とが組み合わされる態様で軸線方向に嵌合し、
前記環状凸部のうち半径方向の前記第1軸受面部とは反対側に設けられた第1側面部と、前記環状凹部のうち半径方向の前記第2軸受面部とは反対側に設けられた第2側面部との対向面間、或いは、前記環状凸部のうち半径方向の前記第1軸受面部とは反対側に設けられた第1端面部と、前記環状凹部のうち半径方向の前記第2軸受面部とは反対側に設けられた第2端面部との対向面間の少なくとも一方が密接して全周に亘り気密に構成され、
前記環状凸部の軸線方向の先端面と、前記環状凹部の軸線方向の奥底面の少なくとも一方には半径方向に伸び前記軸受隙間に連通する複数の凹溝が放射状に形成され、前記先端面と前記奥底面とが突き合わされることで前記凹溝により前記絞りが軸線周りに複数分散して構成され、
前記第1軸受部材と前記第2軸受部材の間に画成され、前記複数の絞りに共通に連通する流体供給用の環状の圧力室が構成されることを特徴とする静圧流体軸受。
【請求項5】
前記第1軸受部材と前記第2軸受部材とが圧入状態で嵌合していることを特徴とする請求項4に記載の静圧軸受部材。
【請求項6】
前記第1軸受部材と前記第2軸受部材のうちの一方の軸受部材の前記環状凸部若しくは前記環状凹部が設けられた端部とは反対側の端部に別の環状凸部若しくは環状凹部が形成されるとともに、当該別の環状凸部若しくは環状凹部に対し前記第2軸受部材と同様に嵌合する第3軸受部材がさらに設けられ、前記一方の軸受部材と前記第3軸受部材との間に前記絞り及び前記圧力室が同様に構成されることを特徴とする請求項4又は5に記載の静圧流体軸受。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−92195(P2009−92195A)
【公開日】平成21年4月30日(2009.4.30)
【国際特許分類】
【出願番号】特願2007−265600(P2007−265600)
【出願日】平成19年10月11日(2007.10.11)
【出願人】(596070168)株式会社ダイヤ精機製作所 (9)
【Fターム(参考)】