説明

静電噴霧装置及び静電噴霧方法

【課題】静電噴霧による異なる材料の層を持つ不織布の生成や、その不織布の層の数や幅、厚みを制御できる静電噴霧装置を提供する。
【解決手段】複数のノズル1から成るスプレーブロック100を有する紡糸ユニット22と、ノズル1に導電板2を介して所定の高電圧を印加する高圧電源Aと、紡糸ユニット22の静電噴霧空間の両側面部に静電噴霧されて帯電した高分子物質の流れを制御するための制御電圧印加用の第1と第2の制御端子部30,31と、静電噴霧された高分子物質の噴霧方向と略垂直な方向への空気流作成のため圧縮空気を導入する空気導入口6と、を備え、第1と第2の制御端子部30.31に所定の電圧を印加して樹脂シート8への静電噴霧された高分子物質の流れを制御し、静電噴霧される高分子物質を空気流の方向に略垂直に配置される樹脂シート8上に積層させながら樹脂シート8を移送し高分子ウェブを形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高分子物質溶液の静電噴霧装置及び静電噴霧方法に関するものである。
【背景技術】
【0002】
静電噴霧(エレクトロスピニング)とは塗布させたい材料となる高分子を溶液にして、その溶液を注射器の針先や細いガラス管の様に先端が尖った容器に入れ、高電圧を印加することで電荷を加え、先端から電荷の反発力によって電荷を帯びた霧状になった材料を、クーロン力を利用してグランドまたは噴霧側と異極の側のコレクタと呼ぶ側に向かわせ、材料をそのコレクタまたはコレクタに沿って配置されるサブストレートに捕集(積層)させることである。
【0003】
一般的に車体における静電塗装が知られている。車体塗装に限らず、様々なものに応用可能であるが、本発明においては特に高分子を材料として静電噴霧をさせた場合、100ナノメートルより細い繊維、すなわちナノファイバーと呼ばれる繊維サイズからなる不織布を生成し出来る装置に関するもので、その生成される不織布はフィルター等に応用出来る。
【0004】
従来の不織布の工法の一つである「溶融法」等でもフィルターは製作出来るが、その従来工法では数10マイクロメートルサイズの径の繊維のフィルターが主流で、数100ナノメートルサイズの物を作るのが限界である。前述のように、静電噴霧を使った工法で、従来の物より1桁も2桁も細い繊維径の不織布を作り出すことは出来るが、噴霧口であるノズルが1本だけであると、数センチメートル角の小片しか作り出すことが出来ないので、量産性、生産性の観点から、噴霧口となるノズルが1本である構成は、現実的ではない。繊維メーカやフィルム原反メーカにて、従来の工法で生産されている不織布やフィルム、シートと同様に幅100センチメートル、またはそれに準ずる大きさの物を作る場合、複数のノズルを使う必要がある。
【0005】
従来の複数のノズルを使用する装置の場合、不織布の厚み方向において異なる材料を積層すること、すなわち「層」を作ることも、一度、生成された不織布を装置に再投入する等の手間がかかる。また、従来装置で任意の幅の物を作る場合、マスクなどの覆いをかける工程が必要となり、大きな手間と費用が発生する。材料である高分子物質が単一の場合だけではなく、複数の層、すなわち厚み方向で異なる材料で不織布を作ることが、高機能なフィルター等を生成する場合に求められている。また、任意の幅で不織布を生成することで、必要な物を最小限の材料で効率的に作ることが求められている。
【0006】
特開2002−201559号や特開平8−153669号で複数のノズルを用いる装置が開示されているが、やはり、層や幅の制御に関しては考慮されていない。
【特許文献1】特開2002−201559号公報
【特許文献2】特開平8−153669号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
従来の多数ノズルを用いた静電噴霧装置においては、単一の材料を用いて不織布を生成する構造であるため、異なる材料の層を持つ不織布を生成する場合、装置への再投入等の工程が発生する。
【0008】
また、層の構築だけではなく、不織布の幅を自由に変更することは出来ないために、不必要な部分は廃棄される等、材料の無駄も発生する。
【0009】
本発明は、従来の課題を解決するもので、複数の層を持つ不織布を生成することが出来、且つ、その不織布の幅も任意に決めることが出来る静電噴霧装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
前記課題を解決するために、本発明の静電噴霧装置は、高分子物質を溶剤を用いて液状にした高分子物質溶液を、樹脂シート上に静電噴霧する静電噴霧装置において、
高分子物質溶液を静電噴霧するための導電板に一体的に形成される導電性の2次元状に配置されるノズルから成るスプレーブロックを有する紡糸ユニットと、前記ノズルに前記導電板を介して所定の高電圧を印加する高圧電源と、前記紡糸ユニットの静電噴霧空間の両側面部に静電噴霧されて帯電した前記高分子物質の流れを制御するための制御電圧印加用の第1と第2の制御端子部と、静電噴霧された高分子物質の噴霧方向と略垂直な方向への空気流作成のため圧縮空気を導入する空気導入口と、を備え、
前記第1と第2の制御端子部に所定の電圧を印加して前記樹脂シートへの静電噴霧された前記高分子物質の流れを制御し、前記静電噴霧される高分子物質を前記空気流の方向に略垂直に配置される前記樹脂シート上に積層させながら前記樹脂シートを移送し高分子ウェブを形成することを特徴としたものである。
【0011】
また、本発明の静電噴霧装置は、前記高分子物質溶液を貯留する材料タンクと、前記材料タンクに貯留される高分子物質溶液を静電噴霧するために導電板に複数のノズルを配置するスプレーブロックと、前記ノズルに導電板を介して所定の高圧を印加する高圧電源と、前記スプレーブロックから静電噴霧された高分子物質の噴霧方向と略垂直な方向への圧縮空気を噴き付け前記高分子物質を前記樹脂フィルム上に積層するための複数の紡糸ユニットと、前記樹脂フィルムをロール状に巻回した送り出しロールと、前記紡糸ユニットで高分子物質が積層された樹脂フィルムを巻き取るための巻き取りロールと、を備え、
前記紡糸ユニットは、前記スプレーブロックのノズル先端部に対向して配置される第1のコレクタと、前記スプレーブロックと前記コレクタの間に設置される絶縁フィルムと、前記スプレーブロックの一端部に高分子物質の噴霧方向と略垂直な方向の空気流を生成する圧縮空気を導入するための圧縮空気導入口と、前記紡糸ユニットの静電噴霧空間の両側面部に静電噴霧されて帯電した前記高分子物質の流れを制御するための制御電圧印加用の第1と第2の制御端子部と、を有し、更に、前記紡糸ユニットは、前記スプレーブロックの他端部に前記空気流の方向と略垂直な方向に配置される樹脂フィルムを包含するダクトに装着されるとともに、前記ダクト内に前記樹脂シートに沿って載置され前記静電噴霧される高分子物質を誘引するための第2のコレクタを配置し、それぞれの紡糸ユニットは、前記ダクトを介して縦続に装着接続され、連続的に前記送り出しロールから供給される樹脂性フィルムに高分子物質を積層して高分子ウェブを形成し、前記樹脂性フィルムを前記巻取りローラに巻き取ることを特徴としたものである。
【0012】
また、本発明の静電噴霧方法は、複数のノズルから成るスプレーブロックを有する紡糸ユニットを用いて高分子物質溶液を、樹脂シート上に静電噴霧する静電噴霧方法において、
前記スプレーブロックより静電噴霧するために前記複数のノズルに高電圧を印加して高分子物質溶液を静電噴霧し、前記紡糸ユニットの一端部より当該静電噴霧方向と略垂直な方向の空気流を生成するために圧縮空気を導入する工程と、前記紡糸ユニットの静電噴霧空間の両側面部に所定の高圧を印加して前記静電噴霧されて帯電した高分子物質の流れを制御する工程と、前記静電噴霧された高分子物質を前記紡糸ユニットの他端部に当該空気流の方向と略垂直方向に配置される樹脂シート上に積層する工程と、を備えることを特徴としたものである。
【発明の効果】
【0013】
従来の装置での静電噴霧においては、生成される不織布は、異なる材料での層を持たせることや任意の幅にする手立てが無く、不織布の全体の厚みだけが任意に決めることが出来るものの、基本的に1層で同じ幅の不織布しか生成すること出来なかった。本発明においては、任意の幅で、尚且つ、異なる材料で任意の層の数や、層の順番、組合せ、さらにはその層の厚みも任意に構築された不織布を生成出来ることで、様々な機能を持つ不織布を、効率的に最小限の材料消費で生成出来る静電噴霧装置を提供出来る。
【発明を実施するための最良の形態】
【0014】
以下に、本発明の静電噴霧装置及び静電噴霧方法の実施の形態を図面とともに詳細に説明する。
【実施例1】
【0015】
先ず、図7を用いて本発明における静電噴霧装置を用いて、高分子物質よりなる不織布を積層して静電噴霧によりナノファイバー(繊維)不織布の生成の概要を説明する。不織布を捕集(積層)して生成するためにサブストレートが必要であり、その役目をするポリエチレンなどの絶縁性である樹脂シート8をロール20から送り出し、送り速度を制御出来るローラー18を経由して、巻き取り用のロール21へと巻き取られる。その送り速度は、不織布の厚み、ナノファイバー(繊維)の径や材料などによって決定され、毎分数メートルから数100メートルと広く対応出来る様にする。
【0016】
その樹脂シート8は、ロール20からロール21までの間に、ナノファイバー紡糸ユニット22が装着され、ナノファイバー(繊維)を捕集(積層)するコレクタ7を有するダクト13の内部を通ることによって、樹脂シート上8にナノファイバー(繊維)が捕集(積層)される仕組みである。
【0017】
ナノファイバー紡糸ユニット22は、各々が独立しており、図7に示すように必要とされるナノファイバー紡糸ユニット22が装置本体のダクト13に装着され、その装着個数は、生産速度などにより任意であり、1個〜ダクト13に装着出来る最大個数の間で自由に決定出来る。また、装着しておいても、任意のユニットだけを稼動させることも可能であるので、生産を止めることも無く、特定のユニットの故障への対応やメンテナンス時にも柔軟に対応することが出来る。また、生産中における突発的なユニットの故障に対しても、装置全体を止めることも無く、生産を続行することが可能である。
【0018】
また各々のユニットへ供給される材料は同一にする必要が無く、各々のユニットへの材料供給のための材料の溶液タンク供給するパイプは、ユニット毎に分離独立させることが出来、不織布は異なった材料で作られることも可能である。
【0019】
次にナノファイバー紡糸ユニット22の内部構成を図1を用いて説明する。ナノファイバー紡糸ユニット22は金属ブロック2とそれと一体成形されて格子状に配置される複数のノズル1から成る噴霧部を構成するスプレーブロック100を有している。
【0020】
そして、内部が空洞である金属ブロックの導電板2には、高圧電源Aより高電圧が印加される構成となっている。スプレーブロック100に形成される複数のノズル1内部には、ナノファイバー(繊維)の材料となるポリウレタンなどの高分子物質を、トルエンなどの溶媒によって溶液にして、ナノファイバー紡糸ユニット22毎に独立したタンク15からパイプ14を通して供給される。
【0021】
ノズル1は、導電板2の金属ブロックにプレス加工などで円錐形に一体成形される。そして、導電板2へは高圧電源Aによって、高電圧が印加される構造を有し、ナノファイバー紡糸ユニット22は、ダクト13に装着されている。
【0022】
生成されるナノファイバーの繊維径や材料によって決定される高電圧を、数キロボルト〜数十キロボルトで印加すると、電荷が発生し、電荷は先端部分に集中する性質により、ノズル1の先端部分に集中する。その電荷の集中によって、ノズル先端部分の液体の表面張力に対して、ノズルに対向して配置され金属ブロック2の電位とは異極または接地されたコレクタ4から発生する静電的な引力(クーロン力)の方が大きくなると、液体が霧状となる。即ち、高分子物質溶液が強電界によって微小荷電粒子3となって、ノズル先端部から分離し、帯電液滴となって噴霧される。
【0023】
その霧になった状態3のそれぞれの液粒は電荷を帯びており、その電荷は異極に引かれるため、コレクタ4に向かう。向かう途中、液粒は帯びている電荷のため、何度か静電反発によって分裂を繰り返し、液粒の大きさは微細化していく。その微細化の時に、材料を溶液にするための溶媒は蒸発し、ナノファイバー(繊維)の材料だけが残り、それらが数ナノメートル〜数十ナノメートルの繊維径の、ナノファイバー(繊維)と呼ばれる状態となる。
【0024】
高分子物質材料を含んだ溶液が、このようにナノファイバー(繊維)の状態、すなわち液体が固体の状態になっても、最初にノズルから与えられた電荷は失われておらず、帯電した状態のままである。
【0025】
ノズル1とコレクタ4の間には誘電性の材料を用いたシートまたは板状の絶縁板5が配置されており、その絶縁シート(板)5は、誘電性材料の性質上、外部電界によって誘起される電気分極すなわち誘起分極を示す性質であるので、金属ブロック2に高電圧が印加された時点で表面が帯電する。その帯電は絶縁シート(板)5の噴霧口に向いている面5aは、金属ブロック2と同極となるので、『同じ電位の電荷は反発をする』というクーロン力に従い、ナノファイバー(繊維)になった材料は、帯電した絶縁シート(板)5と反発をするため、ノズルの噴霧口と絶縁シート(板)5との空間10を浮遊した状態になる。
【0026】
その浮遊する状態となったナノファイバー(繊維)は、電源Bによって金属網6に、高圧電源Aによってノズルに印加される同極の電圧を印加し、ナノファイバー(繊維)捕集(積層)用のコレクタ7を高電圧Aと異極の電位または接地電位に設定する。そうすることでナノファイバー(繊維)は、同極の金属網6方向へは向かわず、クーロン力により異極であるコレクタ7方向に引かれる。
【0027】
なお、図では、空気導入口を金網構造で示しているが、金網構造でなくても空気圧が調整された空気をスプレーブロック100の他端部から導入出来る空気導入口を設置する構造でも良い。そして、空気導入口に電源Bによって電圧を印加して、ノズル1と絶縁シート(板)5の間に樹脂シート8へ向かう空気流を生成する様な構成にすることが出来る。
【0028】
そのため、捕集用コレクタ7に沿って載置され送られている樹脂シート8の表面に、引き寄せられたナノファイバー(繊維)が捕集、積層されていき、ナノファイバー繊維の高分子Webを形成することが出来る。そのため、樹脂シート8の送り速度が遅いほど、樹脂シート8がナノファイバー紡糸ユニット22を通過するのに時間がかかり、単位面積当たりに捕集されるナノファイバー(繊維)が多くなるため、生成される不織布であるナノファイバー(繊維)の高分子Webの厚みが増す。また、同じ理由で装置に装着されるナノファイバー紡糸ユニット22の数が多いほど不織布の厚みが増す。このことを利用して、ナノファイバー繊維の高分子Webの不織布の厚みは、装置に装着されるナノファイバー紡糸ユニット22の数または樹脂シート8の送り速度で制御が可能である。
【0029】
微小荷電粒子の電荷は、ナノファイバー(繊維)とともにコレクタ7に沿って載置された樹脂シート8に捕集(積層)されるため、ノズル1の噴霧口と誘電性材料の絶縁シート(板)5の間の空間10には電荷が溜まる事が無く、ノズル1の先端部分の電荷をコレクタ7に放出することが出来、次々と材料が噴霧される。
【0030】
この材料である高分子は、前述の通り、ナノファイバー紡糸ユニット22毎に独立する材料タンク15とパイプ14によって供給されるため、異なる材料で不織布を生成することが可能である。従って、材料はダクト13に装着出来るナノファイバー紡糸ユニット22の最大個数の種類を使用することが出来る。
【0031】
使う材料をA、B、C、Dの4種類と仮定として、図8に示す不織布の断面図を用いて不織布の構成を説明する。図8(A)において、捕集シートである樹脂シート8の上に材料D、材料A、材料C、材料B、材料Aを積層していくが、材料Aと材料Bは複数の紡糸ユニット22を使用して厚く積層するものである。この様に4種類の異なる材料で、違った厚みの層からなる不織布を生成することが可能である。図8(A)では、捕集(積層)用の樹脂シート8から順番に材料Dの層、材料Aの層、材料Cの層、材料Bの層、再びAの層からなる5層の不織布を示している。図では厚みを表す数値を記載していないが、最初の材料Dの厚みを1にすると、次の材料Aの厚みも1倍、次の材料Cの厚みは5倍、次の材料Bの厚みは3倍、次の材料Aの厚みを1倍として説明する。
【0032】
この5層の不織布を生成する場合、送り出しのロール20からダクト13に入った最初のナノファイバー紡糸ユニットには材料Dを用いる。そのため、先ず、捕集(積層)シート8に材料Dで生成される層が出来る。
【0033】
その材料Dを用いるナノファイバー紡糸ユニット22の個数は1個でも連続していれば、複数でも良く、ここでは仮にX個とする。そのX個のナノファイバー紡糸ユニット22を経て、次に材料Aを用いるナノファイバー紡糸ユニット22に樹脂シート8は入る、その個数は、同じ厚みであるので、材料Dと同じくX個である。次の5倍の厚みを持つ材料Cを用いるナノファイバー紡糸ユニット22の個数はX個の5倍の個数となる。次の層のB層は同じ理屈でX×3の個数のナノファイバー紡糸ユニットを通過させる。最後のA層は初めの材料Dと同じ厚みであるので、X個のナノファイバー紡糸ユニットを通過させることで図8(A)で示す5層構造の不織布が生成される。
【0034】
このように従来の装置では、一度の工程では不可能であった、異なる材料での層を持つ不織布の生成を、本発明の装置であれば、容易に行うことが出来る。
【0035】
但し、各々のナノファイバー紡糸ユニット22には静電噴霧のための高圧電源Aが独立して繋がっており、電圧によって噴霧速度が可変となるが、前記の説明は、その噴霧速度が同等である場合である。従って、基準とする層の5倍の厚みの層を作る場合でも、噴霧速度によっては、5倍のナノファイバー紡糸ユニット22を通過する必要は無く、5倍の噴霧速度にすることが可能であれば、1個のナノファイバー紡糸ユニットで良い。逆に噴霧速度が半分であれば、基準とする層の5倍の厚みの層を作るには、10個のナノファイバー紡糸ユニット22が必要となる。
【0036】
同じ材料であれば、噴霧速度は一般的に電圧に比例するが、その印加出来る電圧にも限界がある。また、材料の粘度に代表される性質になどにより、同じ電圧でも材料によって、噴霧速度は一定にならないので、層の厚みの比率だけで単純にナノファイバー紡糸ユニットの数を決めるのではなく、結局は層の厚みは材料の使用量に比例するので、噴霧速度も考慮して、ナノファイバー紡糸ユニットの個数は決めることになる。
【0037】
図1で捕集の樹脂シート8に向かうナノファイバー(繊維)を説明する。ナノファイバー(繊維)は、装置のダクト13に装着された紡糸発生ユニット22の金属網6の方向から乾燥空気11を送り込りこみ、ダクト13内部を周囲の空気圧力より低い圧力、即ち、負圧にして、ナノファイバー(繊維)を捕集する。このダクト13内部を負圧にすることと、コレクタ7を高圧電源Aに対して異極電位又は接地電位に設定することにより、ナノファイバーを確実にダクト内部に集める構造である。金属網6を網の構造にした理由は、乾燥空気をナノファイバー紡糸ユニット内部からダクト13方向へ送り込めるようにすることが理由で、金属板に穴を開けた構造でも良い。
【0038】
送り込みの乾燥空気の速度は、ナノファイバー(繊維)の樹脂シート8への捕集を攪拌させたりしないように数センチメートル/秒程度の弱い風速で良い。数10センチメートル/秒以上の強い風速で送り込むと、その空気の圧力や余分な静電気発生のため、捕集を攪拌することになるので好ましくない。
【0039】
この乾燥空気の送り込みの構造は、ナノファイバー(繊維)の飛散に対する対策だけではない。材料は、前述のように高分子を溶液の状態にするため有機溶剤などを溶媒として用いており、生産とともに大量に使用することになる。その途中に気化する有機溶剤の回収が従来装置では考えられておらず、ナノファイバー(繊維)の飛散における人体への健康被害と同じく、気化した有機溶剤からの健康被害や火災などが重大な懸念事項であった。
【0040】
図1と図7において、ファイバーの捕集動作について、さらに説明する。スプレーブロック100に乾燥空気11を送り込み、ダクト13の内部を負圧にすることで気化した有機溶剤を外部に出さないようにダクト内に送り込み、回収ユニット19で回収し、漏らさないことが可能な構造である。回収ユニット19内部には一般的なドラフトチャンバーと同じく排気用のファンが内蔵されており、ダクト13内部の回収ユニットへの風速は数センチメートル〜10センチメートル/秒程度とし、ダクト13内部はナノファイバー紡糸ユニット22に対して負圧にする。
【0041】
即ち、回収ユニット19内を負圧に設定することによりダクト13内も負圧に引くことができ、ナノファイバ(繊維)を樹脂シート8に積層するとともに、ナノファイバー紡糸ユニット22からの気化した有機溶剤をダクト13を介して回収するものである。回収ユニット19内を負圧にするには、真空ポンプ(図示せず)で回収ユニット13内の空気を吸い込み負圧を発生させダクト13内部の回収ユニットへの風速を数センチメートル〜10センチメートル/秒程度と設定することができる。
【0042】
この乾燥空気の送り込みの構造は、重要ではあるが、主に、樹脂シート8の方向33への空気流れが安定に発生できればよい。空気流れに加えて、図2(B)においてナノファイバー紡糸ユニット22の内部の両側面に静電噴霧を制御する制御端子部である金属性板30、31または網を取り付け、各々独立する電源C及び電源Dを印加する。印加する電源は、電荷を帯びたナノファイバー(繊維)と同極の電圧とし、クーロン力の反発を利用して、電荷を帯びたナノファイバー(繊維)の流れを制御することが出来る。立体図を図3、図4(A)及び図4(B)に示す。
【0043】
乾燥空気の流れがあっても、金属板30及び金属板31がナノファイバー(繊維)が帯びている電位と異極であるか、または、接地されている場合は、捕集シート8だけではなく、金属板30、31に付着してしまう。そのため、ナノファイバー(繊維)が帯びている電荷と同じ極の電位を金属板30及び31に加えることで同極の電荷同士の反発力により、ナノファイバー(繊維)の付着を防ぐことができる。
【0044】
静電噴霧するための高圧電源Aの電圧は数キロボルト〜数十キロボルトであるが、静電噴霧を制御する制御端子部である金属板30、31への印加電圧は数ボルト〜数百ボルト程度である。
【0045】
図5(A)は、捕集(積層)用の樹脂シート8の幅に合わせるように、すなわち、単に金属板への付着を防ぐことだけを目的とする場合、電源C及びDの電圧を帯電粒子の浮遊状態のナノファイバー(繊維)群32と同極性で低電圧の数ボルト程度を印加する場合である。帯電粒子と同極性の制御電圧を制御端子部である金属板30及び31に印加して、金属板30及び31への付着を防いで、樹脂シート8へ向かう方向へナノファイバー(繊維)群32の流れを整列する。図5(A)は、この状態を示すものである。
【0046】
図5(B)は、電源Cと電源Dの電圧は同じであるが、図5(A)の場合より高い電圧を加えた時の図である。高い電圧のため、金属板30及び31に付着しないだけでなく、同極同士の反発力からナノファイバー(繊維)は金属板から離れ、ナノファイバー(繊維)の密度が中央部に集中することを示す図である。
【0047】
図6(A)は電源Cの電圧を電源Dより高くするため、電荷を帯びたナノファイバー(繊維)は電源Cが接続された制御端子部である金属板30から離れ、金属板31の方向に集まる様子を示す図である。
【0048】
図6(B)はその逆の場合で、電源Cの電圧を電源Dより低くするため、電荷を帯びたナノファイバー(繊維)は電源Dが接続された金属板31から離れ金属板30の方向に集まる様子を示す図である。
【0049】
この様に、電荷を帯びたナノファイバー(繊維)群32の捕集(積層)用の樹脂シート8への方向33に対しての制御が電源C及びDの電圧操作によって可能となり、その結果、自由度は1方向だけであるものの、樹脂シートの任意の部分に任意の幅でナノファイバー(繊維)を捕集(積層)することが出来る。
【0050】
図9(A)、(B)、(C)、(D)は、その電圧操作により、生成し得る不織布の例を示したものである。樹脂シート8上に、例として4種類の材料A、B、C、Dを使用している場合で説明する。どの図も左から材料A、材料B、材料C、材料A、材料Dの順番に捕集(積層)しているが、前述の層の構築とは違い、静電噴霧する紡糸ユニット22の順番は任意である。例えば、材料Bを使った紡糸ユニット22が最初に不織布を生成しても良いし、逆に最後になっても良い。
【0051】
図9(A)は樹脂シート8の幅のほぼ全面積を使用している様子を示す図である。制御端子部である金属板30、31に印加する電圧を制御して、ナノファイバー(繊維)を樹脂シート8に捕集(積層)する幅方向位置を調節する。材料Aを捕集する場合は、金属板31に印加する電圧を金属板30に印加する電圧より所定の電圧だけ高くして金属板30側に積層する。材料B,C,A,Dを積層する場合においても、制御端子部である金属板30と31に印加する電圧を制御してそれぞれの樹脂シート8の積層すべき幅方向位置を調節して積層する。
【0052】
図9(B)は必要な幅の不織布同士の間隔を保って、樹脂シート8を広く使って生成する様子を示した図である。制御端子部である金属板30と31に印加する電圧を制御してそれぞれの樹脂シート8の積層すべき幅方向位置を調節して積層するが、材料Aと材料Bは、樹脂シート8の幅方向に隣接して積層するのではなく所定の間隔を設定して積層する。材料Bと材料C、材料Cと材料A、材料Aと材料Dとの間も同様である。
【0053】
図9(C)及び図9(D)は樹脂シートの左右のどちらかに寄せて不織布を捕集(積層)した様子を示す図である。
【0054】
これら4つの例の不織布は前述のように、金属板30、31への印加する電圧のバランス操作によって、電荷を帯びたナノファイバー(繊維)群32の流れの制御を行うことにより得られる。
【0055】
この操作と前述の層の数や厚み、組合せへの操作を組み合わせることで、例として図10で示すような複雑な構造を持つ不織布さえも生成可能となる。複数の材料の積層と幅方向位置を制御することにより、所望の層構造を有する不織布を生成することができる。
【産業上の利用可能性】
【0056】
この静電噴霧を利用し、数ナノメートル〜数10ナノメートルのナノファイバー繊維で出来た不織布やフィルターが量産出来るようになると、従来のフィルターの役割はカバーすることはもちろん、従来のフィルターでは除去の出来なかった粉塵や菌、例えば炭素菌なども篩い分けることが出来る。また、「除去」だけではなく「選別」と観点で数ナノメートルのふるいをかけることは不要物の除去に留まらず、ナノ粒子の取り出すことが出来る。例えば、ダイヤモンド砥粒などは数10ナノメートルの砥粒だけ選別出来ると、従来の研磨精度が二桁以上も改善される。またドラッグデリバリーということにもナノレベルでの「選別」は有望である。
【0057】
加えて現在研究段階の「人工生体膜」等の再生医療にも用いることが出来、この特殊な分野からも期待をされている。
【図面の簡単な説明】
【0058】
【図1】本発明の実施例1における静電噴霧装置のナノファイバー紡糸ユニット部の構成図
【図2】本発明の実施例1における静電噴霧装置のスプレーブロックの構成を模式的に示す図
【図3】本発明の実施例1における静電噴霧装置のナノファイバー紡糸ユニット部の構成を示す斜視図
【図4】本発明の実施例1における静電噴霧装置のナノファイバー紡糸ユニット部の構成を示す他の方向からの斜視図
【図5】本発明の実施例1における静電噴霧装置のナノファイバー紡糸ユニット部で積層される高分子物質と樹脂シートとの関係を説明するための図
【図6】本発明の実施例1における静電噴霧装置のナノファイバー紡糸ユニット部で積層される高分子物質と樹脂シートとの他の関係を説明するための図
【図7】本発明の実施例1に静電噴霧装置の全体構成を模式的に示す図
【図8】本発明の実施例1の静電噴霧装置にて生成される不織布の断面を示す図
【図9】本発明の実施例1の静電噴霧装置にて生成される不織布を示す図
【図10】本発明の実施例1の静電噴霧装置にて生成される他の不織布の断面を示す図
【符号の説明】
【0059】
1 ノズル
2 導電板(金属ブロック)
3 微小荷電粒子
4 ノズル先端からの電荷粒子を誘引するコレクタ
5 透明絶縁シートまたは透明絶縁板(誘電性材料)
5a 透明絶縁シートまたは透明絶縁板(誘電性材料)のノズル側面
6 空気導入口(金属網)
7 電荷を帯びたナノファイバーを捕集(積層)するコレクタ
8 ナノファイバー(繊維)が捕集(積層)される樹脂シート
9 絶縁樹脂
10 電荷を帯びたナノファイバーが浮遊する空間
11 乾燥空気
13 ダクト
14 材料供給パイプ
15 材料タンク
18 樹脂シートの移送方向のためのローラー
19 溶媒の回収ユニット
20 送り出しローラ
21 巻き取りローラ
22 ナノファイバー紡糸ユニット
30、31 制御端子部(金属性板)
32 電荷を帯びたナノファイバー(繊維)群
100 スプレーブロック


【特許請求の範囲】
【請求項1】
高分子物質を溶剤を用いて液状にした高分子物質溶液を、樹脂シート上に静電噴霧する静電噴霧装置において、
高分子物質溶液を静電噴霧するための導電板に一体的に形成される導電性の2次元状に配置されるノズルから成るスプレーブロックを有する紡糸ユニットと、
前記ノズルに前記導電板を介して所定の高電圧を印加する高圧電源と、
前記紡糸ユニットの静電噴霧空間の両側面部に静電噴霧されて帯電した前記高分子物質の流れを制御するための制御電圧印加用の第1と第2の制御端子部と、
静電噴霧された高分子物質の噴霧方向と略垂直な方向への空気流作成のため圧縮空気を導入する空気導入口と、
を備え、
前記第1と第2の制御端子部に所定の電圧を印加して前記樹脂シートへの静電噴霧された前記高分子物質の流れを制御し、前記静電噴霧される高分子物質を前記空気流の方向に略垂直に配置される前記樹脂シート上に積層させながら前記樹脂シートを移送し高分子ウェブを形成することを特徴とする静電噴霧装置。
【請求項2】
前記高分子物質溶液を貯留する材料タンクと、
前記材料タンクに貯留される高分子物質溶液を静電噴霧するために導電板に複数のノズルを配置するスプレーブロックと、
前記ノズルに導電板を介して所定の高圧を印加する高圧電源と、
前記スプレーブロックから静電噴霧された高分子物質の噴霧方向と略垂直な方向への圧縮空気を噴き付け前記高分子物質を前記樹脂フィルム上に積層するための複数の紡糸ユニットと、
前記樹脂フィルムをロール状に巻回した送り出しロールと、前記紡糸ユニットで高分子物質が積層された樹脂フィルムを巻き取るための巻き取りロールと、
を備え、
前記紡糸ユニットは、前記スプレーブロックのノズル先端部に対向して配置される第1のコレクタと、
前記スプレーブロックと前記コレクタの間に設置される絶縁フィルムと、
前記スプレーブロックの一端部に高分子物質の噴霧方向と略垂直な方向の空気流を生成する圧縮空気を導入するための圧縮空気導入口と、
前記紡糸ユニットの静電噴霧空間の両側面部に静電噴霧されて帯電した前記高分子物質の流れを制御するための制御電圧印加用の第1と第2の制御端子部と、を有し、
更に、前記紡糸ユニットは、
前記スプレーブロックの他端部に前記空気流の方向と略垂直な方向に配置される樹脂フィルムを包含するダクトに装着されるとともに、前記ダクト内に前記樹脂シートに沿って載置され前記静電噴霧される高分子物質を誘引するための第2のコレクタを配置し、
それぞれの紡糸ユニットは、前記ダクトを介して縦続に装着接続され、連続的に前記送り出しロールから供給される樹脂性フィルムに高分子物質を積層して高分子ウェブを形成し、前記樹脂性フィルムを前記巻取りローラに巻き取ることを特徴とする静電噴霧装置。
【請求項3】
前記第1と第2の制御端子部に印加する電圧は、帯電した前記高分子物質と同極性の電圧を印加し、当該静電噴霧された高分子物質の流れを制御することを特徴とする請求項2に記載の静電噴霧装置。
【請求項4】
前記導電板に印加する高圧電圧より低い所定の同極性電圧を前記第1と第2の制御電圧に印加し、前記帯電した高分子物質の前記樹脂性フィルム上の幅方向位置を制御して、前記高分子物質を積層し、所定の紡糸ユニットから所定の高分子物質を前記樹脂性フィルム上に積層させて高分子ウェブを形成することを特徴とする請求項2に記載の静電噴霧装置。
【請求項5】
前記材料タンクに貯留される前記高分子物質溶液は、各紡糸ユニットに対応する複数の材料の高分子物質溶液を貯留することを特徴とする請求項4に記載の静電噴霧装置。
【請求項6】
複数のノズルから成るスプレーブロックを有する紡糸ユニットを用いて高分子物質溶液を、樹脂シート上に静電噴霧する静電噴霧方法において、
前記スプレーブロックより静電噴霧するために前記複数のノズルに高電圧を印加して高分子物質溶液を静電噴霧し、
前記紡糸ユニットの一端部より当該静電噴霧方向と略垂直な方向の空気流を生成するために圧縮空気を導入する工程と、
前記紡糸ユニットの静電噴霧空間の両側面部に所定の高圧を印加して前記静電噴霧されて帯電した高分子物質の流れを制御する工程と、
前記静電噴霧された高分子物質を前記紡糸ユニットの他端部に当該空気流の方向と略垂直方向に配置される樹脂シート上に積層する工程と、
を備えることを特徴とする静電噴霧方法。
【請求項7】
前記紡糸ユニットの両側面部の第1と第2の制御端子部に印加する電圧は、帯電した前記高分子物質と同極性の電圧を印加し、当該静電噴霧された高分子物質の流れを制御することを特徴とする請求項6に記載の静電噴霧方法。
【請求項8】
前記第1と第2の制御電圧に印加される高電圧は、前記導電板に印加する高圧電圧より低い所定の同極性電圧を印加し、前記帯電した高分子物質の前記樹脂性フィルム上の幅方向位置を制御して、前記高分子物質を積層し、所定の紡糸ユニットから所定の高分子物質を前記樹脂性フィルム上に積層させて高分子ウェブを形成することを特徴とする請求項6に記載の静電噴霧方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2007−277775(P2007−277775A)
【公開日】平成19年10月25日(2007.10.25)
【国際特許分類】
【出願番号】特願2006−108452(P2006−108452)
【出願日】平成18年4月11日(2006.4.11)
【出願人】(000005821)松下電器産業株式会社 (73,050)
【Fターム(参考)】