説明

静電容量検出装置及びスマートカード

【課題】 高精度に静電容量を検出できる静電容量検出装置を提供する。
【解決手段】 本発明の静電容量検出装置10は、容量値一定の基準コンデンサCRと、対象物表面HBとの間に静電容量CFを形成するセンサ電極SEと、基準コンデンサCRと静電容量CFとの容量比で定まるゲート電位に基づいてドレイン電流を変調する信号増幅素子Tr1と、信号増幅素子Tr1のゲート電位を接地電位にリセットするリセット素子Tr2を備える。対象物表面形状を読み取る際に、非選択列に属する信号増幅素子Tr1のゲート電位を接地電位にリセットすることで、高精度な検出精度を確保する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は指紋等の微細な凹凸を有する対象物の表面形状を、対象物表面との距離に応じて変化する静電容量を検出することによって読み取る静電容量検出装置に関する。
【背景技術】
【0002】
図13は従来の静電容量検出装置の動作原理を説明している。静電容量CFは一方の電極をセンサ電極SEとし、他方の電極を人体(例えば、指先の指紋)HBとする可変容量である。ここでは、人体HBの電位を接地電位としている。静電容量CFは誘電体膜ILの表面に接した指紋の凹凸に応じて変化する。一方、半導体基板には一定の容量値CRを有する基準コンデンサを予め形成しておき、これら二つのコンデンサを直列接続して所定の電圧を印加する。こうすることで、二つのコンデンサの間には指紋の凹凸に応じた電荷Qが発生する。この電荷Qを通常の半導体技術を用いて検出することで、対象物の表面形状を読み取っていた。指紋センサに関する従来技術として、例えば、特開平11−118415、特開2000−346608、特開2001−56204、又は特開2001−133213等が知られている。
【特許文献1】特開平11−118415
【特許文献2】特開2000−346608
【特許文献3】特開2001−56204
【特許文献4】特開2001−133213
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながらこれら従来の静電容量検出装置は、単結晶硅素基板上に形成されているために、指紋センサとして用いると、指を強く押しつけた際に当該装置が割れてしまうとの課題を有していた。
【0004】
更に指紋センサはその用途から必然的に20mm×20mm程度の大きさが求められ、静電容量検出装置面積の大部分はセンサ電極にて占められる。センサ電極は単結晶硅素基板上に作られるが、膨大なエネルギーと労力とを費やして製造された単結晶硅素基板の大部分(センサ電極下部)は単なる支持体としての役割しか担っていない。即ち、従来の静電容量検出装置は高価なだけでは無く、多大なる無駄と浪費の上に形成されているとの課題を有する。
【0005】
加えて近年、クレジットカードやキャッシュカード等のカード上に個人認証機能を設けてカードの安全性を高めるべきとの指摘が強い。然るに、従来の単結晶硅素基板上に作られた静電容量検出装置は柔軟性に欠けるために、当該装置をプラスチック基板上に製造し得ないとの課題を有している。
【0006】
このような背景から、プラスチック基板等の基板上に直接、薄膜半導体を設けることが好ましいと考えられる。ところが、基板上に形成された薄膜半導体装置は、トランジスタ特性が単結晶珪素基板上に形成した半導体装置ほどには優れていないため、指紋センサで検知を要するような、非常に小さい電荷の変化を正確に読み取ることができないという課題があった。
【0007】
そこで本発明は上述の諸事情を鑑み、その目的とするところは、高精度に静電容量を検出できる静電容量検出装置を提供することにある。すなわち、安定に動作し、更に製造時に不要なエネルギーや労力を削減し得、また単結晶硅素基板以外にも製造し得る優良な静電容量検出装置を提供するにある。より具体的には薄膜半導体装置を用いて優良に動作する静電容量検出装置を提供するにある。
【課題を解決するための手段】
【0008】
上記の課題を解決するため、本発明の静電容量検出装置は、対象物との距離に応じて変化する静電容量を検出することにより、前記対象物の表面形状を読み取る静電容量検出装置であって、M行N列に配置された静電容量検出素子と、各々の前記静電容量検出素子に電源を供給する電源線と、各列に配置された静電容量検出素子から出力される信号を伝達するN本の出力線と、特定の行に配置された静電容量検出素子をリセットするM本のリセット線と、を備え、前記各々の静電容量検出素子は、a)前記静電容量に応じた電荷を蓄積する信号検出素子と、b)前記信号検出素子が蓄積した電荷に対応した信号を増幅する信号増幅素子と、c)前記リセット線からの信号により前記信号検出素子に蓄積された電荷をリセットするリセット素子と、を備え、前記信号検出素子は、前記対象物との間に静電容量を形成するためのセンサ電極を備え、前記信号増幅素子は、ソース電極、ドレイン電極、及びゲート電極を具備する半導体装置から成り、前記リセット素子は、ソース電極、ドレイン電極、及びゲート電極を具備する半導体装置から成り、前記信号増幅素子のゲート電極と、前記センサ電極と、前記リセット素子のドレイン電極とが接続され、前記信号増幅素子のソース電極は前記電源線に接続され、前記信号増幅素子のドレイン電極は前記出力線に接続され、前記リセット用半導体装置のゲート電極は前記リセット線に接続され、前記リセット素子のソース電極は前記電源線に接続されて成る。非選択行に配列されている静電容量検出素子の信号増幅素子を強制的にオフ状態にすることで、静電容量検出装置の検出精度を低下させずに選択行に配列されている静電容量検出素子を一意的に選択することができる。
【0009】
本発明の静電容量検出装置は、上述の構成に加えて更に、前記信号検出素子は基準コンデンサを備え、前記基準コンデンサは、基準コンデンサ第一電極と、基準コンデンサ誘電体膜と、基準コンデンサ第二電極とから成り、前記静電容量検出装置は、前記基準コンデンサ第一電極の電位を制御する行線を備え、前記基準コンデンサ第一電極は前記行線に接続され、前記基準コンデンサ第二電極は、前記信号増幅用半導体装置のゲート電極と、前記センサ電極と、前記リセット用半導体装置のドレイン電極とに接続してもよい。基準コンデンサを更に備えることで、検出精度を安定化できる。
【0010】
本発明の静電容量検出装置は、電源線に接地電位が供給されるように構成してもよい。対象物の表面電位を接地電位とした場合、電源線に接地電位を供給することで、非選択行のセンサ電極と対象物との間に形成される可変容量への印加電圧をゼロにし、不要な電荷を除去できるとともに、対象物が動くことで該可変容量の静電容量が変化してもセンサ電極への電荷の流れを抑制できる。
【0011】
本発明の静電容量検出装置は、上述の構成に加えて更に、前記対象物の表面電位と前記センサ電極の電位を略同一にするためのガード電極を更に備えてもよい。ガード電極を更に備えることで、対象物表面の電位とセンサ電極の電位(接地電位)とを一致させることができる。これにより、対象物表面と非選択行のセンサ電極との電位差がゼロとなり、対象物表面が動く等して静電容量が変化しても、電源線に大きな電流が流れることがない。
【0012】
本発明のスマートカードは本発明の静電容量検出装置を備える。これにより、指紋検出精度の高いスマートカードを提供できる。
【発明を実施するための最良の形態】
【0013】
以下、各図を参照して本発明の実施例について説明する。各実施例は本発明の理解を容易にするためのものであり、本発明を限定解釈するものではない。本発明はその趣旨を逸脱することなく、変更・改良され得るとともに、本発明にはその等価物も含まれる。
【実施例1】
【0014】
本実施例では、対象物との距離に応じて変化する静電容量を検出することにより、これら対象物の表面形状を読み取る静電容量検出装置を金属−絶縁膜−半導体膜からなる薄膜半導体装置にて製造する。薄膜半導体装置は、通常、硝子基板上に製造されるために、大面積を要する半導体集積回路を安価に製造する技術として知られ、具体的に昨今では液晶表示装置等に応用されている。従って指紋センサ等に適応される静電容量検出装置を薄膜半導体装置にて製造すると、単結晶硅素基板と云った多大なエネルギーを消費して作られた高価な基板を使用する必要がなく、貴重な地球資源を浪費することなく安価に当該装置を製造できる。また、薄膜半導体装置は、SUFTLAと呼ばれる転写技術(特開平11−312811、又はS. Utsunomiya et. al. Society for Information Display p. 916 (2000)参照)を適用することで、半導体集積回路をプラスチック基板上に製造出来るので、静電容量検出装置も単結晶硅素基板から解放されてプラスチック基板上に形成し得るのである。
【0015】
さて、図13に示した静電容量検出装置を薄膜半導体装置にて製造するのは、現在の薄膜半導体装置の技術を以てしては非常に困難である。二つの直列接続されたコンデンサ間に誘起される電荷Qは非常に小さいために、高精度感知を可能とする単結晶硅素LSI技術を用いれば電荷Qを正確に読み取れるが、薄膜半導体装置ではトランジスタ特性が単結晶硅素LSI技術程には優れず、また薄膜半導体装置間の特性偏差も大きいが故に電荷Qを正確に読み取れない。
【0016】
図5は本実施例の基本動作原理図を示している。同図において、CFは誘電体膜ILを介してセンサ電極SEと人体(指先の指紋等)HBとの間に形成される静電容量(可変容量)、CRは容量値一定である基準コンデンサの静電容量、CTは信号増幅素子(半導体装置)Tr1のトランジスタ容量である。ここでは、表面形状を読み取る対象物として、指紋を例示しているが、これに限られるものではなく、あらゆる微細な凹凸形状を読み取ることができる。センサ電極SEに指先等の人体HBを近づけると、静電容量CFは指紋の凹凸形状(対象物の表面形状)に応じて微妙に変化する。そして、基準コンデンサの信号増幅素子と接続されていない側の電極に所定の電圧を印可すると、信号増幅素子Tr1のゲート端子(図中G)には、合成容量CR+CT+CFと可変容量CRとの容量比に応じた電位VGが誘起され、ゲート電位を変化させる。この状態で、信号増幅素子Tr1のドレイン領域(図中D)に所定の電圧を印加すると、誘起されたゲート電位VGに応じて信号増幅素子Tr1のソース・ドレイン間に流れるドレイン電流Idsは著しく変調される。ゲート電極等には電位VGに応じて電荷Qが発生しているが、これらの電荷は何処にも流れずに保存されるので、電流値Idsは略一定となる。それ故に、信号増幅素子Tr1のドレイン電圧を高くしたり、或いは測定時間を長くしたりする等で電流Idsの測定も容易になり、対象物の表面形状を十分正確に計測し得るのである。対象物の静電容量情報を増幅した信号(電流信号又は電圧信号)は出力線を介して読み取られる。
【0017】
対象物の静電容量を測定するには、信号増幅素子Tr1によって増幅される電流Idsを計測してもよいし、電流Idsに対応する電圧Vを測定してもよい。基準コンデンサCRを設けない場合には、基準コンデンサCRをゼロとし、信号増幅素子のソース電極(図中S)またはドレイン電極(図中D)に所定の電圧を印可することで、対象物の表面形状に応じて変化する静電容量CFとトランジスタ容量CTとを用いて全く同じ原理が働く。以下、本実施例では基準コンデンサCRを設けた構成例を用いて説明するが、後述のように基準コンデンサCRを設けずに、基準コンデンサCRを信号増幅素子Tr1のトランジスタ容量CTで兼用する場合にも有効である。
【0018】
図1は本実施例に係わる静電容量検出装置10の回路構成図である。静電容量検出装置10は、対象物との距離に応じて変化する静電容量CFを検出することにより、対象物の表面形状を読み取る装置である。静電容量検出装置10は、M行N列に配置された静電容量検出素子20と、各々の静電容量検出素子20に電源を供給する電源線PLと、各列に配置された静電容量検出素子20から出力される信号を伝達するN本の出力線OLj(1≦j≦N)と、特定の行に配置された静電容量検出素子20をリセットするM本のリセット線RESETi(1≦i≦M)を備える。各々の静電容量検出素子20は、静電容量CFに応じた電荷を蓄積する信号検出素子CFと、信号検出素子CFが蓄積した電荷に対応した信号を増幅する信号増幅素子Tr1と、リセット線RESETiから出力される信号により信号検出素子CFに蓄積された電荷をリセットするリセット素子Tr2を備える。信号検出素子CFは、対象物との間に静電容量を形成するためのセンサ電極SEと、誘電体膜ILを備える。信号増幅素子Tr1は、ソース電極、ドレイン電極、及びゲート電極を具備する半導体装置から成る。リセット素子Tr2は、ソース電極、ドレイン電極、及びゲート電極を具備するリセット用半導体装置から成る。信号増幅素子Tr1のゲート電極と、センサ電極SEと、リセット素子Tr2のドレイン電極は接続されている。また、信号増幅素子Tr1のソース電極は電源線PLに接続され、信号増幅素子Tr1のドレイン電極は出力線OLjに接続され、リセット素子Tr2のゲート電極はリセット線RESETiに接続され、リセット素子Tr2のソース電極は電源線PLに接続されている。基準コンデンサCRは、基準コンデンサ第一電極E1と、基準コンデンサ誘電体膜EIと、基準コンデンサ第二電極E2とから構成される。基準コンデンサ第一電極E1は行線RLi(1≦i≦M)に接続され、基準コンデンサ第二電極E2は、信号増幅素子Tr1のゲート電極と、センサ電極SEと、リセット素子Tr2のドレイン電極とに接続されている。
【0019】
指紋等の対象物が誘電体膜ILに接した、或いは接近した状態で、行線RLiに所定の電位を印加すると、センサ電極SEには、対象物との静電容量CFに応じて電位VGが発生する。本実施例では、この電位VGを各静電容量検出素子20に設けられた信号増幅素子Tr1にて増幅し、電流信号又は電圧信号に変換する。この電流信号又は電圧信号を検出することにより、対象物の表面形状を読み取ることができる。
【0020】
尚、本明細書では、半導体装置(トランジスタ)のソース電極とドレイン電極とを、説明の便宜上、区別しない。一方の電極をソース電極と称し、他方の電極をドレイン電極と称する。厳密には、N型トランジスタでは、相対的に電位の低い方がソース電極と定義され、P型トランジスタでは相対的に電位の高い方がソース電極と定義される。然るに、どちらの電極の電位が高くなるかは動作状態に応じて変化する。そのために厳密にはソース電極とドレイン電極とは一つのトランジスタ内で常に入れ替わり得る。本明細書では説明を明瞭とする目的で、こうした厳密性を排し、便宜上、一方の電極をソース電極と称し、他方の電極をドレイン電極と称する。
【0021】
本実施例では、対象物の表面形状を読み取る際に、ある特定の行に並ぶ複数の静電容量検出素子20から信号を検出し、他の行に並ぶ全ての静電容量検出素子20をリセットする。ここで、リセットとは、信号増幅素子Tr1のゲート電極に所定の電圧を印加して、信号増幅素子Tr1を強制的にオフ状態にすることをいう。信号増幅素子のゲート電極とセンサ電極が接続されていることから、リセットによりセンサ電極にも所定の電圧が印加され、静電容量CFから余分な電荷が除去される。リセット素子Tr2がない従来例の場合、ある特定の行に並ぶ複数の静電容量検出素子20から信号を読み取るときに、信号増幅素子Tr1のゲート電極の電位が定まらないため、非選択行に配置された静電容量素子20が完全にはオフ状態にはならずに、出力線OLjには複数の電流経路から流れ込んだ電流が重畳され、正確な信号検出が困難であった。また、出力線には複数の信号増幅素子が接続されていることから、非選択行の信号増幅素子のドレイン容量は読み出し時には寄生容量となるが、オフ状態でない信号増幅素子のドレイン容量(ドレイン・ゲート間の寄生容量)は非常に大きくなってしまうため、検出感度を低下させる要因となっていた。これに対し、本実施例によれば、信号の読み取り対象以外の全ての静電容量検出素子20をリセットすることにより、上記の不都合を解消できる。また、対象物の表面形状を読み取る際に、静電容量CFに所定の電圧を印加することで、不要な蓄積電荷を除去し、検出精度を高めることができる。
【0022】
各行に並ぶ静電容量検出素子20を選択するために、リセット線RESETiにはリセット信号が供給される。リセット信号はリセット素子Tr2をオン状態とするための信号である。リセット素子Tr2がN型トランジスタであれば、リセット信号はHレベルの信号である。リセット素子Tr2がP型トランジスタであれば、リセット信号はLレベルの信号である。リセット素子Tr2がオン状態になると、信号増幅素子Tr1のゲート電極とソース電極は電位が等しくなるので、信号増幅素子にドレイン電流は流れない。電源線PLの電位を接地電位にとると、非選択列に配置されたセンサ電極SEの電位は接地電位に等しくなる。人体HBは接地電位であるので、静電容量CFには電荷は蓄積されない。このため、人体HBが動くなどして静電容量CFが急激に変化しても、電源線PLに大きな電流が流れる虞はない。
【0023】
ある特定の行に並ぶ複数の静電容量検出素子20から信号を検出し、対象物の表面形状を読み取るときには、リセット素子Tr2をオフ状態とし、行線RLiの電位を変化させる。そして、電源線PLと出力線OLjとの間に電圧をかけて、信号増幅素子Tr1のゲート端子に生じた電位VGを信号増幅素子Tr1によって増幅して読み取る。
【0024】
図3は、対象物の表面形状を読み取るときに行線RLiとリセット線RESETiに出力される信号波形を示している。いま、i行に配列されている各々の静電容量検出素子20が選択され、(i+1)行に配列されている各々の静電容量検出素子20が非選択の状態にあると仮定する。i行のリセット線RESETiには、リセット期間にHレベルの信号が出力され、リセット素子Tr2はオン状態になる。この状態では、信号増幅素子Tr1のゲート電位は接地電位に等しいので、信号増幅素子Tr1はオフ状態になる。一方、リセットオフ期間にはLレベルの信号が出力され、リセット素子Tr2はオフ状態になる。行線RLiには、読み出し期間において、Hレベルの信号が出力される。すると、信号増幅素子Tr1のゲート端子には、静電容量CFと基準コンデンサCRと信号増幅素子のトランジスタ容量CTとの容量比で定まる電位VGが誘起される。信号増幅素子Tr1は電位VGに基づいてドレイン電流を変調し、対象物の静電容量情報(又は凹凸情報)を増幅した信号(電流信号又は電圧信号)を出力線OLjに出力する。読み出し期間の始期は、リセットオフ期間の始期よりも若干遅めに設定され、読み出し期間の終期はリセットオフ期間の終期よりも若干早めに設定されている。つまり、読み出し期間における、行線RLiの電位変化はリセットオフ期間内に完了するように、ある程度の余裕度が設けられている。
【0025】
尚、信号検出素子20から行毎に信号を読み出すように構成した場合、各行の読み出し期間が時間的に重複しないように、各行の行線RLiとリセット線RESETiに出力される信号タイミングが調整されている。
【0026】
図2は、図3に示した信号波形を生成するための回路構成図である。シフトレジスタ30の各出力段SROUTi(1≦i≦M)には、遅延素子DEi(1≦i≦M)を介してANDゲートAEi(1≦i≦M)とNORゲートNEi(1≦i≦M)のそれぞれが接続している。ANDゲートAEiの出力段は行線RLiに接続され、NORゲートNEiの出力段はリセット線RESETiに接続されている。図4に示すように、シフトレジスタ30からは、時間幅ΔTのパルス信号SROUTiが出力される。すると、行線RLiには、立ち上がりエッジがΔDだけ遅延したパルス信号(時間幅ΔT−ΔD)が出力される。また、リセット線RESETiには、パルス信号SROUTiの立下りエッジがΔDだけ遅延し、更に、論理反転した信号(時間幅ΔT+ΔD)が出力される。このような構成により、各行の行線RLiとリセット線RESETiには、図3に示した信号波形が出力される。
【0027】
本実施例によれば、対象物の表面形状を読み取る際に読み取り対象外の電容量検出素子20に含まれている信号増幅素子Tr1はリセット素子Tr2によって強制的にオフに出来る。これにより、従来、読み取り対象外の電容量検出素子20に含まれている信号増幅素子Tr1が予期せずにオンになり、複数の電流経路から流れ込んだ電流が出力線OLjに重畳されることによる検出誤差を抑制できる。
【実施例2】
【0028】
図6は本実施例の静電容量検出装置11の回路構成図である。図1に示した符号と同一符号の素子等については同一の素子等を示すものとして、その詳細な説明を省略する。静電容量検出装置11は、上述した静電容量検出装置10の構成から基準コンデンサCRと行線RLiとを省略した構造を備えている。静電容量検出装置11の読み取り精度を安定させるには、基準コンデンサCRを備えているのが望ましいが、信号読み出し時に信号増幅素子Tr1のドレイン電極に所定の電圧を印加することで、信号増幅素子Tr1のドレイン容量(ドレイン・ゲート間の寄生容量)が基準コンデンサCRと同等の働きをするため、基準コンデンサCRを省略しても対象物の表面形状を読み取ることができる。
【実施例3】
【0029】
図7は指紋センサ61の平面図、図8は図7の8−8断面図である。指紋センサ61は上述した静電容量検出装置10又は11の何れかを備えており、指紋の凹凸情報を読み取ることができるように構成されている。マトリックスアレイ62にはセンサ電極SEがマトリクス状に配列されている。誘電体膜IL上には各々のセンサ電極SEを区画するように、ガード電極GEが形成されている。ガード電極GEは行方向及び列方向に沿って延在するライン状の電極である。ガード電極GEを設けることによって、対象物表面の電位とセンサ電極SEの電位(接地電位)とを一致させることができる。これにより、対象物表面と非選択行のセンサ電極SEとの電位差がゼロとなり、対象物表面が動く等して静電容量CFが変化しても、電源線PLに大きな電流が流れることがなく、指紋センサ61の電源が安定化する。
【実施例4】
【0030】
図9は指紋センサ63の平面図、図10は図9の10−10断面図である。指紋センサ63は上述した静電容量検出装置10又は11の何れかを備えており、指紋の凹凸情報を読み取ることができるように構成されている。マトリックスアレイ64にはセンサ電極SEがマトリクス状に配列されている。マトリックスアレイ64の外周にはガード電極GEが形成されている。ガード電極GEを設けることによって、対象物表面の電位とセンサ電極SEの電位(接地電位)とを一致させることができる。これにより、対象物表面と非選択行のセンサ電極SEとの電位差がゼロとなり、対象物表面が動く等して静電容量CFが変化しても、電源線PLに大きな電流が流れることがなく、指紋センサ61の電源が安定化する。
【実施例5】
【0031】
図11はICカード(スマートカード)70の分解斜視図である。ICカード70は、2枚のプラスチック製の基材71、72が貼り合わされて形成された基板73と、2枚の基材71、72の間に狭持されたICチップ(集積回路)80及び指紋センサ61とを備えている。また、カード端末等の外部装置(図示せず)との情報交換を行うインターフェイスとして、外部装置と直接接触する接触用IC端末81と、外部装置と一定周波数の電波を受信・送信する非接触型IC用アンテナ82とを備えている。さらに、基材71の上面71aには、指紋センサ61のマトリックスアレイ62を基板上面に露出させるために開口部83が形成されている。さらに、基材71の上面71aには、人体に帯電した静電気を放電させる除電電極90が設けられている。このような除電電極90を形成することで、人体に帯電した静電気を放電した後に、指との間の静電容量を測定することが可能となり、人体に帯電した静電気による放電破壊を回避することが可能となる。
【0032】
接触用IC端子81は、ICチップ80の上面に接触しつつ、基材71の上面71aに露出するように形成されている。一方、非接触型IC用アンテナ82は、2枚の基材71,72の間にコイル状に形成されている。なお、本実施例では、接触用IC端子と非接触型IC用アンテナとを備えるコンビカード(デュアルインタフェース)について例示するが、接触用IC端子のみを備える場合(ISO7816参照)や、非接触型IC用アンテナのみを備える場合(ISO14443等参照)、或いは、接触用ICチップと非接触用ICチップを備えるハイブリッドカードであっても良い。
【0033】
図12はICチップ80の構成図である。ICチップ80は、指紋センサ61に取り込まれた指紋パターンの特徴抽出を行うデータ処理部84、特定の指紋パターンの特徴量等の各種情報を記憶するメモリ85、データ処理部84により抽出された特徴量とメモリ85に記憶された特徴量とを比較する比較部86、ICカード70の動作を制御する制御部87とを備えている。そして、比較部86には、接触用IC端子81及び非接触型IC用アンテナ82が接続されている。
【0034】
ICチップ80を搭載したICカード70は磁気ストライプカードと比較して、高情報容量化、セキュリティ性向上(偽造・不正使用防止)、複数のアプリケーションに対応可能、ホスト負荷軽減(オフライン処理が可能)等の特徴を有する。このため、ICカード70は、クレジットカード、キャッシュカード、電子マネー、電子商取引、鉄道・バス等の交通分野、医療保険分野、ビル等の入出管理に利用可能である。
【図面の簡単な説明】
【0035】
【図1】実施例1の静電容量検出装置の回路構成図である。
【図2】ドライバの回路構成図である。
【図3】リセット信号等の信号波形図である。
【図4】ドライバ回路から出力される信号波形図である。
【図5】実施例1の動作原理図である。
【図6】実施例2の静電容量検出装置の回路構成図である。
【図7】実施例3の指紋センサの平面図である。
【図8】実施例3の指紋センサの断面図である。
【図9】実施例4の指紋センサの平面図である。
【図10】実施例4の指紋センサの断面図である。
【図11】実施例5のICカードの分解斜視図である。
【図12】ICチップの構成図である。
【図13】従来の指紋センサの動作原理図である。
【符号の説明】
【0036】
10,11,12…静電容量検出装置 20…静電容量検出素子 Tr1…信号増幅素子 Tr2…リセット素子 Tr3…行選択素子 Tr4…列選択素子 SE…センサ電極

【特許請求の範囲】
【請求項1】
対象物との距離に応じて変化する静電容量を検出することにより、前記対象物の表面形状を読み取る静電容量検出装置であって、
M行N列に配置された静電容量検出素子と、各々の前記静電容量検出素子に電源を供給する電源線と、各列に配置された静電容量検出素子から出力される信号を伝達するN本の出力線と、特定の行に配置された静電容量検出素子をリセットするM本のリセット線と、を備え、
前記各々の静電容量検出素子は、
a)前記静電容量に応じた電荷を蓄積する信号検出素子と、
b)前記信号検出素子が蓄積した電荷に対応した信号を増幅する信号増幅素子と、
c)前記リセット線からの信号により前記信号検出素子に蓄積された電荷をリセットするリセット素子と、を備え、
前記信号検出素子は、前記対象物との間に静電容量を形成するためのセンサ電極を備え、
前記信号増幅素子は、ソース電極、ドレイン電極、及びゲート電極を具備する半導体装置から成り、
前記リセット素子は、ソース電極、ドレイン電極、及びゲート電極を具備する半導体装置から成り、
前記信号増幅素子のゲート電極と、前記センサ電極と、前記リセット素子のドレイン電極とが接続され、
前記信号増幅素子のソース電極は前記電源線に接続され、
前記信号増幅素子のドレイン電極は前記出力線に接続され、
前記リセット素子のゲート電極は前記リセット線に接続され、
前記リセット素子のソース電極は前記電源線に接続されて成る、静電容量検出装置。
【請求項2】
請求項1に記載の静電容量検出装置であって、
前記信号検出素子は基準コンデンサを備え、
前記基準コンデンサは、基準コンデンサ第一電極と、基準コンデンサ誘電体膜と、基準コンデンサ第二電極とから成り、
前記静電容量検出装置は、前記基準コンデンサ第一電極の電位を制御する行線を備え、
前記基準コンデンサ第一電極は前記行線に接続され、
前記基準コンデンサ第二電極は、前記信号増幅素子のゲート電極と、前記センサ電極と、前記リセット素子のドレイン電極とに接続されて成る、静電容量検出装置。
【請求項3】
請求項1又は請求項2に記載の静電容量検出装置であって、
前記電源線には接地電位が供給される、静電容量検出装置。
【請求項4】
請求項1乃至請求項3のうち何れか1項に記載の静電容量検出装置であって、
前記対象物の表面電位と前記センサ電極の電位を略同一にするためのガード電極を更に備える、静電容量検出装置。
【請求項5】
請求項1乃至請求項4のうち何れか1項に記載の静電容量検出装置を備えたスマートカード。




【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2006−112848(P2006−112848A)
【公開日】平成18年4月27日(2006.4.27)
【国際特許分類】
【出願番号】特願2004−298610(P2004−298610)
【出願日】平成16年10月13日(2004.10.13)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】