説明

非対称トラップ電界を利用した線形イオントラップ装置および方法

【課題】非対称トラップ電界を生成可能な線形イオントラップ装置および方法の必要性が存在する。
【解決手段】線形イオントラップは、4つの電極を備え、トラップ電界の中心がトラップ構造の幾何学的中心から偏位した非対称トラップ電界で動作する。非対称トラップ電界は、四重極成分を提供する主AC電位と、付加AC電位とを含むことができる。主AC電位は、複数の対向電極対の間に印加され、付加AC電位は、1つの電極対に印加される。付加AC電位は、トラップ電界を非対称とするための双極成分を付加することができる。また、付加AC電位は、非線形共鳴のための六重極成分を付加することができる。補足AC電位を付加AC電位と同じ電極対に印加して、共鳴励起を強化することができる。排出のための動作ポイントは、イオン振動振幅を選択的に1方向に増加させるために純粋共鳴状態を利用できるように設定可能である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般的に、線形イオントラップ装置と、その動作のための方法に関する。特に、本発明は、イオンを捕捉するために非対称電界を提供するための線形イオントラップ装置および方法であって、トラップ電界の中心が、装置の幾何学的中心から偏位している装置および方法に関する。
【背景技術】
【0002】
イオントラップは、イオン運動の制御が望まれる数々様々な用途に使用されてきた。特に、イオントラップは、質量分析装置または質量分光分析(MS)システムの分別装置として利用されてきた。イオントラップに基づく質量分析装置のイオントラップは、電界および/または磁界により構成される。本開示は、主に、磁界を使用せずに、電界のみで構成されるイオントラップを指向している。
【0003】
本開示に関する限り、MSシステムは、一般的に公知であり、詳述する必要はない。簡単に言うと、典型的なMSシステムは、試料導入システムと、イオン源と、質量分析装置と、イオン検出装置と、信号プロセッサと、読出/表示手段とを備えている。さらに、現代的なMSシステムは、MSシステムの1以上の部材の機能を制御し、MSシステムにより生成される情報を格納し、分析に有用な分子データのライブラリを提供するためのコンピュータなどを備えている。MSシステムは、制御下の真空環境において質量分析装置を密閉する真空システムも備えている。設計に応じて、試料導入システム、イオン源、およびイオン検出装置の全部または一部も、真空環境に密閉可能である。
【0004】
動作において、試料導入システムは、少量の試料材料をイオン源に導入する。このイオン源は、設計に応じて、試料導入システムに組み込まれていてもよい。イオン源は、試料材料の成分を陽イオンまたは陰イオンの気体流に変える。そして、イオンは、加速されて質量分析装置に導入される。質量分析装置は、各イオンの質量電荷比に従ってイオンを分離する。「質量電荷比」という用語は、しばしばm/zまたはm/eとして表現され、電荷zまたはeが値1を有する場合、単に「質量」として表現されることがある。質量分析装置の多くは、分析対象のイオンのm/z比の非常に小さな差異を識別可能である。質量分析装置は、イオン検出装置で収集されるm/z比に従って分離されるイオン束を生成する。イオン検出装置は、質量で識別されるイオン情報を、信号プロセッサによる処理/調整、メモリへの格納、および読出/表示手段による表示に適した電気信号に変換するトランスデューサとして機能する。読出/表示手段の典型的な出力は、質量スペクトル、例えば、検出されたm/z値のイオンの相対的存在量を表す一連のピークであり、熟練分析者は、MSシステムにより処理された試料材料に関する情報をこの質量スペクトルから得ることができる。
【0005】
図1を参照して、従来のイオントラップのほとんどは、3次元イオントラップ電極アセンブリ10を用いた3次元電界により構成される。この種の電極構造は、1960年という早い時期に、Paulらによる下記特許文献1に開示されている。図1に矢印で示すように、この電極アセンブリ10は、z軸を中心として回転対称である。電極アセンブリ10は、回転双曲面で形成される上側電極すなわち端部キャップ12と、下側電極すなわち端部キャップ14と、中央電極すなわちリング16とから構成されている。上側および下側電極12、14は、それぞれ開口部12A、14Aを備え、一方の開口部が、イオンをトラップに導くための入口開口部としての役割を果たし、他方の開口部が、イオンをトラップから排出するための出口開口部としての役割を果たし、あるいは、両開口部が出口開口部としての役割を果たす。外部のイオン化装置を使用して電極アセンブリ10にイオンを注入する代わりに、一方の開口部12Aまたは14Aを介して電子ビームを電極アセンブリ10の内部に導くなどの公知の手段によって、電極構造内部でイオン化を実施することもできる。
【0006】
通常、一般的にRF周波数を有する交流(AC)電圧をリング16に印加して、リング16と端部キャップ12、14との間に電位差を生成する。このAC電位は、電極アセンブリ10の中心に向けて3次元復元力を付与する3次元四重極トラップ電界を生成する。AC電圧は、調節可能であるので、トラップ電界は、電気力学的であり、質量走査処理に最適である。イオンは、その軌道がr方向およびz方向に制限されている場合、電気力学的四重極電界内に閉じ込められる。トラップ電界におけるイオン運動は、ほぼ周期的である。純粋な四重極トラップ電界においては、r方向およびz方向のイオン運動は、互いに独立している。したがって、トラップ電界における単一イオンに関する運動方程式は、純粋なr運動と純粋なz運動とに分解可能であり、これらの運動は、様々な形態で表現可能な公知のマチウ(Mathieu)方程式によって記述される同一の数学的形態を有する。例えば、下記非特許文献1を参照。
【0007】
軸運動に関するマチウ方程式は、しばしばトラップパラメータ、走査パラメータまたはマチウパラメータと称される、z軸方向の解を特徴付ける2つのパラメータaおよびqに依存している。r軸方向の運動に関して、同様のパラメータaおよびqが存在する。これらのパラメータは、イオン運動が制限されて安定している座標u(rまたはz)に対する(a,q)空間における2次元領域を定義している。安定領域外に存在するイオンは、不安定であり、イオンの偏位が制約なしに助長されて、イオンがトラップ電界から排出される。すなわち、この特定のイオンに関するトラップ電界のパラメータは、イオンを捕捉不可能とするものである。放射方向および軸方向の安定性/不安定性イオン運動に関する(a,q)空間のグラフ表示またはマッピングは、安定性図として公知である。(a,q)空間におけるポイントは、イオンの動作ポイントを定義する。パラメータa,qは、そのイオンのm/z比、電極構造で規定される内部体積の中心に対する電極構造の距離、およびACトラップ電位の周波数に依存する。さらに、パラメータaは、トラップ電界のDC成分(存在する場合)の振幅に依存し、パラメータqは、AC成分の振幅に依存する。したがって、所与の電極構成に関して、ACトラップ電位の大きさおよび周波数は、対象となる所望のm/z範囲のイオンのみが安定かつ捕捉可能なように設定することができる。a、qの値が小さい場合、あるイオンの擬似調和運動は、u座標の運動に関する優位な(主な)基本周波数によって特徴付けが可能であり、イオン運動の数学的処理を単純化する。
【0008】
通常、質量分光分析実験の一部としてイオンを検出する目的で、図1に示すようにイオン振動を増加させて3次元イオントラップからイオンを排出するために、様々な技術が利用されてきた。下記非特許文献2に報告されているように、トラップ内部での光解離によって生成される、質量電荷比の異なるイオンを識別するために、3次元四重極イオントラップが使用されていた。トラップ電界周波数を走査して、連続する質量電荷比のイオンを軸方向に不安定化し、トラップから順次排出して、電子増倍管によって検出していた。Staffordらの特許に係る下記特許文献2には、質量選択不安定性走査に関する同様の技術が開示されている。この特許では、対象のm/z範囲のイオンを四重極電界で捕捉する。そして、高m/z値のイオンを不安定化するように、RF電圧の振幅を増加させる。不安定なイオンは、トラップ電界から排出されて検出され、質量スペクトルを提供する。この質量選択不安定性走査技術の不利な点は、例えば、Franzenらの特許に係る下記特許文献3に記載されている。第1に、イオン排出の方向の適切な制御や収束が不可能である。排出イオンを検出装置まで送るために、3次元トラップ構造10の電極に貫通孔が設けられている場合、実際には、質量選択不安定性により排出されるイオンは、ほんの少ししか貫通孔を通過しない。第2に、四重極トラップ電界の特性上、中央部における電界強度はゼロである。したがって、このシステムに付加的な静電誘導を導入しなければ、電界の中央部付近のイオンを排出することができない。
【0009】
別の技術においては、イオン運動の周波数のうちの1周波数と共鳴する周波数を有する対称な補足AC電界の印加によって、放射方向または軸方向のイオン運動の振幅を増加させることができる。イオン運動の振幅を充分に増加させれば、イオンは、電極表面まで移動する。イオンを導く電極に、図1の開口部12A、14Aといった開口部が存在すれば、イオンは完全にトラップ電界を逃れてトラップから抜け出る。下記非特許文献3に報告されているように、軸方向共鳴電界を端部キャップ12、14に印加することによって、3次元トラップから外部検出装置へとイオンを排出するために、双極共鳴励起が使用されていた。印加電界の周波数を走査して、連続する質量電荷比のイオンをトラップから排出していた。市販のイオントラップ質量分光分析装置においては、双極共鳴励起によってイオンを排出するために、これらの方法の変形態様が使用されている。イオン運動の基本周波数が、端部キャップ12、14の補足AC電圧と共鳴して共鳴排出が生じるまで、RFトラップ電界の振幅は、イオンの動作ポイント(q,a)が増加するように線形に増加する。双極共鳴励起を行って、2つのシートを有する回転双曲面で構成される3次元四重極イオントラップから不要なイオンを排出可能であることも証明されている。下記非特許文献4および下記非特許文献5を参照。これらの研究においては、イオントラップの端部キャップ12、14に補足AC電圧を位相不一致の状態で印加して、軸方向のAC双極電界を生成していた。前述のように、共鳴排出は、補足AC電界の周波数に等しい軸方向運動周波数(永続周波数)を有するイオンに関してのみ発生する。補足電界と共鳴状態にあるイオンは、イオンの運動エネルギーがRFトラップ電界の復元力を上回り、軸方向のイオン排出が発生するまで、軸方向の振動振幅が大きくなる。補足AC双極電界を用いた排出は、Sykaらの特許に係る下記特許文献4の質量分光分析タンデム(MS/MS)モードにまで拡大適用されている。
【0010】
Franzenらの特許に係る下記特許文献3には、四重極トラップ電界に伴うゼロ電界強度の問題に対処する質量選択共鳴排出技術が開示されている。RF励起電位は、端部キャップ12、14に渡って印加される。イオンのz軸方向永続周波数が励起電圧の周波数に一致する場合、イオンは、励起電界からのエネルギーを吸収し、イオンが端部キャップ12、14の一方に向けて排出されるまで、z軸方向のイオン運動の振幅が増加する。この技術を使用して、四重極トラップ電界を一定に保ちながら励起周波数を走査するか、あるいは励起周波数を一定に保ちながらトラップ電界の振幅を走査することによって、連続的なm/z値のイオンを排出することができる。さらに、下記特許文献3は、結果的に非線形共鳴状態となる電界不良を故意に導入するために、機械的または幾何学的に「非理想的な」イオントラップ構造を提供することを提案している。具体的には、リング16または端部キャップ12、14を、理想双曲線の湾曲から逸脱するような形状とすることによって、八重極成分をトラップ電界に導入する。この様にして、イオン偏位をz軸に沿って圧縮して、端部キャップ12、14の頂部においてz軸と整合する開口部12A、14Aに向かう排出を促進することができる。しかし、この技術は、全てのイオンを所望の単一方向に排出することができない。さらに、この機械的な解決策は、生産工程のコスト、複雑性、および精度を引き上げる可能性がある。さらに、八重極電界は、機械的に固定され、そのパラメータの変更は不可能である。
【0011】
四重極共鳴励起によるイオン排出は、同位相で端部キャップ電極に印加される補足AC電圧の印加により行うことができる。イオン周波数が補足四重極周波数の1/2である場合、補足四重極電界によるパラメータ共鳴励起によって、イオン振幅が軸方向に増加する。パラメータ共鳴励起は、理論的に研究されてきた。Langmuirらの特許に係る下記特許文献5および下記非特許文献6を参照。補足双極電界は、経時的に線形に増加する振幅で振動するようにイオンを励起するが、補足四重極電界は、振動振幅を指数関数的に増加させる。Kelleyらの特許に係る下記特許文献6を参照。しかし、主要な四重極トラップ電界の場合のように、補足四重極電界は、イオントラップの中心において値がゼロである。ヘリウムなどの緩衝ガスを用いて、イオン軌道をトラップの中央へと減衰する場合、パラメータ励起は、補足四重極電界強度の低下により効果がなくなる。補足四重極電界の中央から、イオンに付与される有限励起力を得るために電界が非ゼロ値となる場所まで、イオンを移動させる必要がある。
【0012】
Kelleyの特許に係る下記特許文献7に記載されているように、イオンの動作ポイントを変更してイオンの基本周波数を双極電界と共鳴させる場合、パラメータ周波数の1/2の周波数を有する弱共鳴双極電界を使用して、トラップの中央からイオンを移動させることができる。パラメータ周波数は、双極周波数の2倍であるので、イオンは、補足四重極電界からのパワーを吸収する。双極電界、そして、四重極電界から連続的にパワーを吸収するイオン排出のこのモードは、イオン運動の基本周波数がRF電界の振幅により変化しない静的トラップ電界のイオン排出に相応しい。しかし、トラップ電界振幅が、通常の質量走査の場合のように変化する場合、イオン排出のこのモードは最適ではない。この場合、RFトラップ電界振幅が増加して、イオン運動の基本周波数が増加し、まず双極電界と共鳴する。双極電界は、四重極電界がゼロであるトラップの中央からイオンを移動させる。イオンは、中央から移動した後、パラメータ共鳴と共鳴すれば、補足四重極電界からパワーを吸収することができる。したがって、トラップ電界RF振幅を増加させることによってイオン運動の基本周波数を増加させると、イオン運動が双極電界、そして、四重極電界と連続的に共鳴するように、パラメータ共鳴の1/2よりも小さな値に双極共鳴周波数を固定する必要がある。Franzenの特許に係る下記特許文献8を参照。
【0013】
上記のように、3次元イオントラップ装置10の電極構造の構成は、質量分解能を向上するために、意図的に4次八重極成分をトラップ電界に導入するように変更可能であり、このことは、例えば、下記非特許文献7に記載されている。理想的な双曲表面を維持する一方で、端部キャップ12、14間の分離を大きくすることによって高次電界を得ることができる。下記非特許文献8を参照。これらの表面は、理想的なイオントラップの対称放射平面に対して35.26゜の漸近線を有する。あるいは、端部キャップ12、14間の理想的な分離を維持する一方で、端部キャップ12、14の表面を35.96゜の角度の形状とすることも可能である。例えば、Franzenらの特許に係る下記特許文献9、Franzenらの特許に係る下記特許文献10およびFranzenの特許に係る下記特許文献11を参照。いずれの構成でも、トラップ電界は、放射平面に関して対称である。
【0014】
前述の従来技術の短所は、イオン運動を単一の軸に沿って収束させてトラップ電界からのイオンの走査を改善することが可能であっても、イオンは、同様に、この軸に沿って何れか一方の方向に排出される可能性が高いことである。この様に、実際には、排出されるイオンの1/2しか検出装置に到達しない。この問題は、本開示の譲受人に譲渡されたWangらの特許に係る下記特許文献12において述べられている。下記特許文献12は、電気回路手段を使用して、四重極トラップ電圧と同じ周波数でAC双極および/または単極電圧を端部キャップ12、14に印加可能であることを教示している。これは、トラップ電界の中心が3次元電極構造の幾何学的中心から偏位している非対称トラップ電界を生成する効果を有する。補足電圧は、陽イオンおよび陰イオンを分離し、目標端部キャップ12、14の方向にイオンを選択的に排出するように、中心において四重極電界の対称性に歪みを与える。
【0015】
本開示の譲受人に譲渡されたWellsらの特許に係る下記特許文献13に記載されている新規なイオン排出方法も、放射平面に関して非対称である四重極トラップ電界を利用している。非対称トラップ電界は、リング16に印加されるRF電圧と同じ周波数で、位相不一致の状態で各端部キャップ12、14にAC電圧を印加することによって生成される。このトラップ電界双極(TFD)成分によって、トラップ電界の中心は、イオントラップ電極アセンブリ10の幾何学的中心と不一致となる。双極成分をトラップ電界に付加する1次的な効果は、リング16に印加されたRF電圧と同位相のTFD成分を有する端部キャップ12、14に向かってイオンを移動させることである。2次的な効果は、実質的な六重極電界をトラップ電界に重畳させることである。結果として生じる多重極トラップ電界は、イオントラップ構造に関わる安定性図において、β=2/3の動作ポイントで非線形共鳴を有する。イオンが、非対称トラップ電界によってトラップの幾何学的中心から既に偏位しているので、イオンが存在する場合、六重極共鳴は有限値を有する。同様に、この動作ポイントにおいて、補足四重極電界によるパラメータ共鳴も、非ゼロ値を有する。最後に、このポイントにおいて補足双極電界を付加することによって、双極共鳴励起も生じる。全部で3つの電界は、β=2/3の動作ポイントにおいて非ゼロ値を有するので、三重共鳴条件が存在することになる。この動作ポイントに移動するイオンは、同時に3つの電界の全てと共鳴して、3つの電界の全てから同時にパワーを吸収する。
【0016】
三重共鳴の動作ポイントにおいて、イオンによるパワー吸収は非線形である。軸方向のイオン運動の振幅も経時的に非線形に増加し、イオンはトラップから迅速に排出される。イオン軌道は、短い排出時間のため、共鳴領域における減衰ガスとの衝突の影響をそれほど受けず、分解能が改善される。さらに、出口端部キャップ12、14に向かうトラップ中心の移動によって、イオンは、この電極を介してのみ排出されるので、検出されるイオンの数が2倍になる。この様に、下記特許文献13に開示されているシステムは、3次元イオントラップ装置10の動作、特に、制御可能かつ調整可能な電気手段によって非対称トラップ電界および非線形共鳴を確立する能力において、顕著な利点を提供する。しかし、3次元トラップ構造10は、後述するように線形2次元トラップ構造の利点を提供しない。
【0017】
3次元イオントラップに加えて、線形および曲線状のイオントラップが開発されており、この様なイオントラップにおいては、トラップ電界が、細長い直線または曲線の軸に直交するx−y(またはr―θ)平面内にイオン運動を制約する2次元四重極成分を含む。2次元電極構造は、端部キャップ12、14を、図1の紙面を貫通する方向に細長い双曲形状の上側および下側電極に置き換え、リング16を、同方向に細長い互いに近接させた上側および下側電極と同様の側方対向電極対に置き換えることによって、図1から概念化することができる。結果的に、中心軸線を中心として平行に配置される軸方向に細長い4つの電極が1組でき、対向電極対は、電気的に相互接続される。この四電極構造の横断面は、例えば、本明細書の図2Aに示すように、本開示の実施形態で使用されている電極セット110、112、114、116と同様である。
【0018】
2次元形状を利用したイオンガイドおよびトラップ装置は、数十年にわたり当業において公知である。双曲形状の4本の平行ロッド、または双曲形状に近似する円筒形ロッドで構成される基本的な四重極質量フィルタが、前記のPaulらの特許に係る下記特許文献1と同時期に開示されている。2次元RF四重極ロッドアセンブリを「競技場」のような円形または楕円形に湾曲させることによって形成された曲線イオントラップが、下記非特許文献9に記載されている。下記非特許文献10に報告されているように、イオン−分子反応の研究のために、2次元RF四重極ロッドアセンブリで形成される2次元線形イオントラップが使用されている。
【0019】
線形イオントラップの場合、イオンの軌道がx軸方向およびy軸方向に制約されると、イオンは、電気力学的四重極電界に閉じ込められる。復元力は、イオンを2次元電極構造の中心軸に向かって移動させる。3次元イオントラップ10の場合と同様に、線形イオントラップの純粋な四重極トラップ電界においても、x軸方向およびy軸方向のイオン運動は、各々独立しており、トラップ電界におけるイオン運動は、ほぼ周期的である。トラップ電界における単一イオンに関する運動方程式は、マチウ方程式により記述される同一の数学的形態を有する純粋なx軸運動と純粋なy軸運動とに分解可能である。y軸運動に関するマチウ方程式もまた、y軸方向の解を特徴付ける2つのトラップパラメータa、qに依存する。x軸運動に関しても、同様のパラメータa、qが存在する。捕捉イオンは、x軸方向およびy軸方向の安定性が同時に存在することを必要とする。非理想的双曲状電極または双曲状電界に近似させるために使用される円形電極によって、電界内で非線形共鳴を生成することが公知である。しかし、さらに、これら非線形共鳴が、四重極質量フィルタの性能を劣化させることも公知である。本開示の前には、非線形共鳴が線形イオントラップにおいて有用であることは認識されていなかった。
【0020】
数々の用途のために、線形イオントラップは、図1に示すような3次元イオントラップに勝る利点を提供する。例えば、電極構造の直線寸法、すなわち、その軸長を大きくすることによって、線形イオントラップのイオン貯蔵に利用可能な電極構造の体積を増加させることができる。比較すると、図1の3次元イオントラップ10の貯蔵体積を増加させる唯一の実際的な方法は、体積中心からの双曲状電極表面の放射(半径)方向距離を増加させることであるが、これにより、動作に必要なRF電圧が不所望に増加するので望ましくない。さらに、電極構造体積内で直接イオン化を行うことが好ましいので、線形イオントラップ形状は、3次元イオントラップ10と比較して、外部源からのイオン注入により適している。イオンは、隣接する電極間ではなく、線形イオントラップ構造の軸方向端部から注入可能であり、イオンの軸方向運動は、線形トラップ構造の軸方向端部における減衰ガスとの衝突および/またはDC電圧の印加によって安定化可能である。この様な利点は、例えば、Sykaらの特許に係る下記特許文献14において認識されている。Bierらの特許に係る下記特許文献15においては、電極間隔を放射方向に増加させることによるイオン貯蔵体積の増加は、その体積に捕捉可能なイオンのm/z範囲を縮小するので、不利であることが更に示唆されている。
【0021】
Sykaらの特許に係る下記特許文献14に、質量分光分析装置として利用される線形イオントラップが開示されている。この特許では、イオン検出は、印加された補足AC電圧パルスによりトラップ内のイオンの固有振動からトラップ電極に誘導される画像電流によって実現される。質量スペクトルは、周波数ドメインスペクトルを生成するために、時間ドメイン画像電流のフーリエ変換によって生成される。数多くの3次元イオントラップの場合と同様に、この線形イオントラップの動作は、単一方向にイオンを排出できないので、排出の際に、多くの捕捉イオンが失われ検出されない。
【0022】
Bierらの特許に係る下記特許文献15は、線形イオントラップ質量分光分析装置としての2次元RF四重極ロッドアセンブリの使用を教示している。開示されたイオン排出法は、Staffordらの特許に係る下記特許文献12に開示されている質量選択不安定性走査技術、または、Sykaらの特許に係る下記特許文献14に開示されている質量選択共鳴走査技術に基づいている。イオンを不安定化または共鳴励起することによって横方向(すなわち、電極アセンブリの中心軸に対して径方向)にトラップからイオンを排出して、電極のスロットを介してトラップ体積からイオン検出装置へとイオンを排出する。従来技術の全ての線形イオントラップと同様に、トラップ電界の中心は、線形電極構造の構造中心軸と一致し、すなわち、トラップ電界が対称である。さらに、イオンは、単一軸に沿って排出可能であるが、単一方向には排出不可能である。したがって、質量スペクトル生成のための方策に寄与しないという意味で、多くのイオンが無駄になる。
【0023】
質量分光分析装置としての線形イオントラップの使用は、Hagerの特許に係る下記特許文献16にも報告されており、これは、軸方向の質量選択イオン排出によってイオン検出を行う線形イオントラップを教示している。すなわち、イオンは、トラップの対称軸に直交する軸に沿ってではなく、トラップの対称軸に沿って、線形イオントラップからイオン検出装置へと排出される。イオンは、出口レンズにおいてAC電位を印加することにより生成された補助的なAC電界、または、AC電位を対向電極対に印加することによって生成された補助的なAC共鳴双極電界によって、排出のために質量選択される。RFトラップ電界振幅を増加させることによって、イオンを共鳴させると、イオンの振動振幅が増加する。軸からの距離が増加するにつれて、軸方向電位は減少し、横方向振動振幅が大きなイオンは、軸方向電位バリアを逃れる。
【特許文献1】米国特許第2,939,952号明細書
【特許文献2】米国特許第4,540,884号号明細書
【特許文献3】米国特許第4,882,484号明細書
【特許文献4】米国特許第4,736,101号号明細書
【特許文献5】米国特許第3,065,640号号明細書
【特許文献6】米国特許第5,436,445号明細書
【特許文献7】米国特許第5,381,007号明細書
【特許文献8】米国特許第5,468,957号明細書
【特許文献9】米国特許第4,975,577号明細書
【特許文献10】米国特許第5,028,777号明細書
【特許文献11】米国特許第5,170,054号明細書
【特許文献12】米国特許第5,291,017号明細書
【特許文献13】米国特許第5,714,755号明細書
【特許文献14】米国特許第4,755,670号明細書
【特許文献15】米国特許第5,420,425号明細書
【特許文献16】米国特許第6,177,668号明細書
【非特許文献1】March et al.,Quadrupole Storage Mass Spectrometry,Wiley,New York (1991)
【非特許文献2】K.B.Jefferts,Physical Review Letters,20(1968)39
【非特許文献3】Ensberg et al.,The Astrophysical Journal,195(1975)L89
【非特許文献4】Fulford et al.,Int.J.Mass Spectrom.Ion Phys.,26(1978)155
【非特許文献5】Fulford et al.,J.Vac.Sci.Technology,17(1980)829
【非特許文献6】Alfred et al.,Int.J.Mass Spectrom.Ion Processes,125(1993)171
【非特許文献7】Franzen et al.,Practical Aspects of Ion Trap Mass Spectrometry,CRC Press(1995)
【非特許文献8】Louris et al.,Proceedings of the 40th ASMS Conference on Mass Spectrometry and Allied Topics,(1992)1003
【非特許文献9】Church,Journal of Applied Physics,40,3127(1969),Dolnikowski et al.,Int.J.Mass Spectrom.and Ion Proc.,82,1(1988)
【非特許文献10】Dolnikowski et al.,Int.J.Mass Spectrom.and Ion Proc.,82,1(1988)
【非特許文献11】Barbier et al.,CERN Technical Report,58−5(1958)
【非特許文献12】R.Hagedorn,CERN Technical Report,Parts I&II,57−1(1957)
【非特許文献13】H.Goldstein,Classical Mechanics,Addison−Wesley (1965)
【非特許文献14】Wang,Rapid Commun.In Mass Spectrom.,7(1993)920
【発明の開示】
【発明が解決しようとする課題】
【0024】
したがって、非対称トラップ電界を生成可能な線形イオントラップ装置および方法の必要性が存在する。さらに、イオンを選択的に単一方向に排出可能な線形イオントラップ装置および方法の必要性も存在する。さらに、イオン運動の振幅を線形速度より高速に経時的に増加させることが可能な線形イオントラップ装置および方法の必要性も存在する。さらに、非線形共鳴励起によって、特に単一方向にイオンを排出可能な線形イオントラップ装置および方法の必要性も存在する。さらに、装置の動作中に、基本トラップ電界に付加された成分のオンおよびオフ切り換えが不要な線形イオントラップ装置および方法の必要性も存在する。
【課題を解決するための手段】
【0025】
イオン運動の制御のための方法が、提供されている。ある方法によると、四重極成分を含むイオントラップ電界が、主AC電位を線形イオントラップの電極構造に印加することによって生成される。付加AC電位を電極構造に印加して、トラップ電界の中心軸を電極構造の中心軸から偏位させる。
一般的には、本明細書に開示の方法は、質量フィルタリング、質量選択検出、質量選択蓄積、質量選択排出、タンデム(MS/MS)およびマルチMS(MS)処理、イオン−分子相互作用研究などに有用である。特に、イオン運動は、単一の軸に沿って制御可能であり、所望であれば、主に中心軸の一方の側で制御可能である。偏位させた、つまり非対称なトラップ電界によって、例えば、複数の電極のうちの1つ電極に形成された単一の開口部を介して、様々なm/z値のイオンを全て、電界から単一方向に排出することができ、これは、試料出発原料のイオン種の質量スペクトルの作成などの目的でイオンを検出する際に、特に有利である。この方法は、不安定性および共鳴励起に基づく技術を含む、いかなるタイプの質量選択排出技術とも相性が良い。この方法は、非線形共鳴条件下での捕捉イオンの励起に特に適している。
【0026】
更なる方法によれば、線形イオントラップの電極構造は、中心軸に直交する軸に沿って配置された対向電極対を備え、トラップ電界双極成分をトラップ電界に付加するために、この電極対に付加AC電位を印加することによって、トラップ電界の中心軸を電極対の軸に沿って偏位させる。
更なる方法によれば、付加AC電位によって、多重極成分がトラップ電界に付加され、トラップ電界に非線形共鳴条件を導入する。
【0027】
更なる方法によれば、m/z値の異なる1以上のイオンが、トラップ電界から同じ方向に排出される。
更なる方法によれば、イオンは、主AC電位の振幅などの電界の成分のパラメータを走査することによって排出され、m/z値の異なるイオンが、非線形共鳴条件を満たす動作ポイントに順次到達する。
【0028】
更なる方法によれば、共鳴双極成分をトラップ電界に付加するために、補足AC電位が電極対に印加され、補足AC電位は、非線形共鳴条件に対応する周波数に一致する周波数を有する。
更なる方法によれば、イオン振動を主に電極対の方向に増加させるためにイオンを共鳴励起可能なポイントへとイオンのa−q動作ポイントを移行するために、DCオフセット電位が電極対に印加される。
【0029】
更なる方法によれば、中心軸にほぼ沿ってイオンを導入することによって、電極構造の体積内にイオンを供給可能である。四重極電界およびその他の成分は、前記体積へのイオンの導入を妨げることはないので、この期間中、動作状態とすることができる。
前述の方法は、軸方向に前部、中央部および後部に分割された電極構造で実施可能である。実施する手順に見合うように、これらの部分の1以上の部分において電極構造に様々な電位や電圧を印加することができる。
【0030】
所望の共鳴状態を生成する目的で、構造特有の多重極成分を、電極構造に組み込むように設計することが可能である。例えば、電極構造は、対称形または厳密に双曲状の電極構成と比較して、非理想的な構成とすることができる。この構成は、2以上の電極の間の距離を変更し、かつ/または理想双曲線の湾曲から逸脱するように1以上の電極の形状を設定したりすることを含む。
【0031】
ある実施形態によれば、線形イオントラップ装置は、中心軸に沿って細長い構造体積を規定する電極構造を備えている。電極構造は、中心軸に対して放射方向に配置された第1の対向電極対と、中心軸に対して放射方向に配置された第2の対向電極対とを備えている。さらに、この装置は、直交軸に沿って中心軸から偏位した電界中心を有する非対称四重極トラップ電界を生成するための手段を備えている。
【発明を実施するための最良の形態】
【0032】
一般的に、「連通」という用語(例えば、第1の部材が、第2の部材と「連通する」または「連通状態である」など)は、本明細書において、2つ以上の部材間または素子間の構造的、機能的、機械的、電気的、光学的、または流体的な関係を示すために使用されている。この様に、第1の部材が第2部材と連通するということは、更なる部材が第1の部材と第2の部材との間に存在したり、第1の部材や第2の部材に動作可能に関連または係合したりする可能性を排除する意図はない。
【0033】
本明細書に開示の主題は、一般的に、イオン運動の制御が望まれる多様な用途で利用可能な線形イオントラップ装置および方法に関する。この装置および方法は、イオンのm/z比に応じてイオンの選択または分別の実施に特に有用である。したがって、この装置および方法は、質量分光分析に特に有用であるが、このタイプの作業に限定されない。下記に詳述するように、線形イオントラップを形成する電極構造に非対称トラップ電界を印加し、線形イオントラップ構成においてこれまで実現されていない数々の利点を提供する。以下、図2A〜図15Dを参照しながら、主題の実施形態の例をさらに詳述する。
【0034】
図2Aは、電極構造と、付随する回路とを備えた線形イオントラップ装置100を示す。電極構造は、軸方向に細長い4つの双曲状電極110、112、114、116の配列を備えている。電極110、112、114、116は、電極110、112が対向電極対を構成し、電極114、116が同様に対向電極対を構成するように配置されている。適切な相互接続手段によって、電極対110、112の電気的相互接続が可能であり、電極対114、116の電気的相互接続が可能である。電極110、112、114、116は、線形イオントラップ装置100の長手方向の中心軸のまわりに配列されている。この例では、中心軸は、任意にz軸と見なされ、図2Aの向きでは点により表現されている。電極構造の横断面は、中心z軸に直交する放射平面またはx−y平面内に存在する。電極対110、112は、y軸に沿って配置されており、各電極110、112はx軸の両側に位置する。電極対114、116は、x軸方向に沿って配置されており、電極114、116は、y軸の両側に位置する。中心z軸は、図4に示す別の実施形態の側断面図においてより明白である。線形形状を形成するために、電極110、112、114、116は、構造的にz軸に沿って細長く、x―y平面内においてz軸から放射方向(径方向)に間隔を置いて配置される。対向電極対110、112および114、116の内面は、互いに対向し、協働して線形イオントラップ装置100の構造体積または幾何体積または内部120を規定している。体積120の構造中心または幾何学的中心は、中心z軸にほぼ一致している。図4に示すように、電極110、112、114、116のうち1以上の電極が、イオン出口開口部132を備え、中心軸に対して放射方向または直交方向に構造体積120から排出された選択されたm/z比のイオンの収集および検出を可能とする。出口開口部132は、軸方向に細長く、この様な実施形態においてはスロットとして特徴付けられる。
【0035】
図2Aに示すように、各電極110、112、114、116の横断面は、双曲状とすることができる。「双曲状」という用語は、略双曲状の輪郭も含むことを意図する。すなわち、電極110、112、114、116の形状は、完全な双曲線または双曲面を記述する数学的パラメータ表現に正確に従うものであってもよく、なくてもよい。さらに、電極110、112、114、116の全横断面が双曲状であってもよく、あるいは、構造体積120に面する内面の湾曲だけが双極状であってもよい。電極110、112、114、116は、双曲状のシートまたはプレートに加え、多くの四重極質量フィルタと同様に円筒形ロッドとして、あるいは、平面プレートとして構成することもできる。これら後者の場合であっても、電極110、112、114、116を使用して、数多くの実施に適するように有効な四重極電界を確立することができる。
【0036】
ある実施形態においては、電極構造の形成および配置において全く不完全性が無い、あるいはごく僅かな不完全性があると仮定して、各電極110、112、114、116のz軸に最も近いポイント(すなわち、双曲状の湾曲の頂部)の放射距離が定数rで与えられるように、電極110、112、114、116は、z軸を中心として対称に配置される。この様に、rは、電極構造の固有寸法であると考えられる。他の実施態様において、本開示の他の箇所に記載のように、基本的な四重極電界パターンよりも高次の多重極電界成分(例えば、六重極、八重極、十二重極など)を意図的に生成するために、電極110、112、114、116のうち1以上の電極が、理想双曲形状または配置から逸脱するようにすることが望ましい。非理想電極構造を形成する他の機械的な方法としては、1対の電極をそれらの理想離間状態から偏位または「伸長」させることを含む。高次電界成分は、イオンを励起して構造体積120内で生成されるトラップ電界から排出するために利用可能な電界において、共鳴状態を生成可能である。他の実施態様において、高次電界成分は、後述するような電気的手段、または物性と電気手段との組合せによって生成可能である。
【0037】
図2Aは、さらに、相互連結電極対110、112および相互連結電極対114、116の間に、適切な大きさおよび周波数の主電位差V1を付与するように、電極110、112、114、116に結合された適切な設計の電圧源140を示す。例えば、電圧源140は、電極対110、112に+V1の電圧を、電極対114、116に―V1の電圧を印加可能である。ある実施形態においては、電圧源140は、図2Aに示すように、トランス144によって電極110、112、114、116に連結可能である。電圧源140による電極構造への印加によって、結果的に、一般的な簡略式Φ=U+Vcos(Ωt)に従って、構造体積120における選択m/z範囲の安定イオンを捕捉するのに有効な四重極電界が生成される。すなわち、電圧源140は、少なくとも基本交流(AC)電位Vを供給するが、ゼロ値または非ゼロ値を有するオフセット直流(DC)電位Uも供給することができる。四重極トラップ電界によってイオンを安定して捕捉可能であるかどうかは、イオンのm/z値および印加される電界のトラップパラメータ(振幅Vおよび周波数Ω)に依存する。したがって、捕捉対象のm/z値の範囲は、電圧源140の動作パラメータを選択することによって選択可能である。
【0038】
一般的に、本明細書に開示の方法に相応しい伝達関数や信号処理などを実施するために必要な、負荷やインピーダンスなどの電気的成分の特定の組合せは、当業者にとっては理解が容易であり、したがって、本主題を説明するためには、図2A〜図2Cに示す単純な概略図で充分であると考えられる。図2Aにおいて電圧源140を示す回路記号は、AC電圧源、または、DC電圧源と直列のAC電圧源との組合せを表すことを意図している。したがって、本明細書において特に指定がない限り、一般事項としての「交流電圧」、「交流電位」、「AC電圧」、「AC電位」などの用語は、交流電圧信号の印加、または、交流電圧信号および直流電圧信号の印加を含む。電圧源140は、公知の方法で提供可能であり、一例としては、付随するDC源の有無にかかわらずAC発振装置や波形発生装置がある。ある実施形態において、波形発生装置は、ブロードバンド(広帯域)多重周波数波形発生装置である。典型的な実施形態において、トラップ電界のAC成分の周波数Ωは、ラジオ波周波数(RF)範囲である。
【0039】
電圧源140によって生成される四重極トラップ電界または四重極蓄積電界は、構造体積120内に存在するイオンに対して復元力を生成する。復元力は、トラップ電界の中心に向けられる。その結果、特定のm/z範囲のイオンが、中心z軸を横断する方向に捕捉され、これらのイオンの運動は、x―y平面(または放射平面)内に制約される。上記のように、トラップ電界のパラメータは、安定性があり電界に捕捉可能なイオンのm/z範囲を決定する。この様にして捕捉されたイオンは、電極構造の構造体積120内に位置するトラップ体積に閉じ込められると考えられる。トラップ電界の中心は、電界強度がゼロまたは略ゼロであるゼロ領域または略ゼロ領域である。純粋な四重極電界を変更なしに印加すると仮定すると、トラップ電界の中心は、通常、電極構造の幾何学的中心(すなわち、z軸)に対応する。
【0040】
線形イオントラップ装置100の形状および四重極トラップ電界の2次元的な特性によって、軸方向のz軸方向にイオン運動を制約して、電極構造の軸方向端部からのイオンの望ましくない漏出を防止し、電界歪が存在する四重極トラップ電界の端部にイオンを近づけないようにするために、更なる手段が必要である。軸方向トラップ手段は、z軸に沿った一方向のイオン運動を電極構造の中心に向けるのに効果的な、z軸に沿って電位ウェル(井戸)または電位バリアを形成するための適切な手段とすることができる。図4に模式的に示す一例として、線形イオントラップ装置100は、前側プレート152や後側プレート154などの、軸方向に電極構造の前端および後端に近接して配置された適切な導電体を備えることができる。一方で前側プレート152と後側プレート154とに適切な大きさのDC電圧を印加し、他方で電極構造に大きさの異なるDC電圧を印加することによって、電極構造のz軸に沿って導かれるイオンに力を付与する。したがって、イオンは、電圧源140により確立される交流電圧勾配によってx軸方向およびy軸方向に沿って制限され、電極構造と前側プレート152および後側プレート154との間に印加されたDC電位によってz軸に沿って制限される。後でさらに詳述するように、軸方向のDC電圧を利用して、構造体積120へのイオン導入を制御することができる。
【0041】
上記のように、単に四重極電界のみを生成したとすれば、結果として生じるトラップ電界の中心は、従来技術の線形イオントラップの場合と同様に、電極構造の幾何学的中心対称軸(z軸)と一致するであろう。しかし、この実施形態においては、四重極トラップ電界は、電界がz軸に関して非対称となるように変更される。有利な実施形態においては、結果的に結合トラップ電界または複合トラップ電界となるような付加電圧電位など、付加的な電気エネルギー入力を電界に重畳または付加することによって、四重極電界が変更される。一実施形態によれば、付加AC電位が、電極構造の電極対110、112または114、116のうちの1つの電極対に印加される。結果的に得られる結合トラップ電界は、もはや純粋な四重極電界ではなくて、幾何学的中心z軸に関して非対称であり、電界中心がz軸から偏位またはオフセットしている。例示として、図2Aは、電極対110、112に付加AC電位を印加した後の非対称トラップ電界の中心を示すz’軸を示す。非対称トラップ電界の中心z’軸は、y軸に沿って幾何学的中心z軸から量yだけ偏位する。オフセットトラップ電界は、厳密にy軸に沿って偏位する必要はないので、偏位量yは、rとして特徴付けることによって放射x―y平面に関して一般化することができる。
【0042】
非対称トラップ電界の利用は、数多くの利点を提供可能である。例えば、イオン捕捉の後、非対称トラップ電界は、適切なイオン排出技術により、単一または複数の目標(例えば、図4に示す電極110Aのイオン出口開口部132)に向かって、選択m/z比または選択範囲の連続m/z比の全てのイオンを容易に排出することができる。全てのイオンが単一方向に排出されるので、反対側の電極(例えば、図4に示す電極112A)上でのイオンの損失がない。したがって、より多くの選択イオンの検出が可能となり、単一の検出装置しか必要でない。有利な実施形態においては、非対称トラップ電界は、共鳴励起によって、イオン排出を容易にすることができる。更に有利な実施形態においては、非線形共鳴励起に依存するイオン排出技術と共に、非対称トラップ電界を利用可能である。非線形共鳴状態は、四重極トラップ電界を変更することによって確立することができる。トラップ電界は、付加的な電気エネルギー入力および/または電極構造(例えば、前記の非理想電極構造)の固有物性によって変更可能である。ある有利な実施において、非線形共鳴励起による排出は、1以上の補足励起電圧の付加的な印加によって、促進または増加可能である。線形イオントラップにおける非線形共鳴の利用は、従来技術では認識されていない。以下で例示するように、従来技術の共鳴イオン排出技術とは異なり、本開示に係るトラップ電界の非線形共鳴によるイオン排出は、線形速度よりも高速で適時にイオン振動振幅を増加させ、トラップ電界のゼロ領域の存在による制限を受けず、所望の目標電極に向かう一方向とすることができる。より高速なイオン排出速度は、排出プロセスにおいて、構造体積120に存在する減衰ガスとのイオン衝突の影響を低減する。
【0043】
動作において、イオンは、適切な手段によって線形イオントラップ装置100の構造体積120に供給される。この文脈において、「供給」という用語は、構造体積120へのイオンの導入や構造体積120内におけるイオンの形成を含むことを意図する。すなわち、ある実施形態においては、線形イオントラップ装置100の電極構造の外側にある公知の設計のイオン源において試料材料をイオン化することによって、イオンを生成可能である。イオン化の後、公知の技術によってイオンを構造体積120に導く。別の実施形態においては、まず、適切な供給源(例えば、ガスクロマトグラフィ装置または液体クロマトグラフィ装置の出口とのインタフェース)から気体状またはエアゾール状の試料材料を構造体積120内に注入し、適切なイオン化技術を構造体積120内で実施してイオンを生成する。いずれの場合も、イオンを構造体積120に供給した後、四重極電圧と少なくとも1つの付加エネルギー入力(例えば、付加AC電圧)とを含む非対称結合トラップ電界が、上記のように電極構造に印加される。トラップ電界のパラメータ(例えば、振幅、周波数)は、所望の範囲のm/z値の全イオンの軌道または経路が安定化するように設定される。その結果、安定なイオンは、z軸で表される機械的中心から偏位するトラップ電界中心(z’軸)を中心とする軌道に制限される。当業者に理解されるように、減衰ガスは、例えば図5に示すガス源162の出口から構造体積120に導入可能である。減衰ガスは、捕捉イオンの振動振幅を減衰させる効果を有するので、イオンは、緩慢となり、本実施形態では図2Aにおけるz’軸で表される非対称トラップ電界中心であるトラップ電界中心の周りに集まったイオン団またはイオン雲の状態となる。
【0044】
非対称に捕捉されたイオンは、所望の期間蓄積され、その後、公知技術によってトラップ電界から排出される。例えば、結合電界の1以上の電圧成分の1以上のパラメータ(例えば、電圧の大きさおよび/または周波数)を走査して、連続m/z値のイオンの排出を誘発することができる。その後、排出イオンは、公知技術(例えば、ファラデーカップ、電子増倍管などを使用する技術)による外部検出装置によって検出可能である。あるいは、公知の設計の検出装置を電極構造に組み込んだり、構造体積120内に配置したりすることも可能である。排出以外の目的のため、あるいは、排出の目的に加えて、イオン運動を増大させることもできると理解される。目的の一例としては、反応または断片化のためにバックグラウンドガス分子を用いた衝突誘起解離(CID)の促進がある。
【0045】
図2Bは、非対称トラップ電界の生成に適した線形イオントラップ装置100の実施形態を示す。トラップ電界は、付加的な交流電位差δを補助電圧源160から1対の対向電極に付与することによって、非対称とすることが可能である。好ましくは、この電極対の少なくとも1方の電極が、検出のためにイオンを排出可能な開口部を備えている。図示の例では、補助電位δは、トランス164によって電極対110、112に連結されている。この例では、基本四重極トラップ電界を確立する蓄積電圧源140が、トランス164の中央タップを介して電極対110、112と連通し、トランス144の中央タップは接地されている。しかし、適切な電位を電極構造に印加するために、他の回路構成も使用可能であると理解される。補助交流電位δの印加は、トラップ電界に双極成分(トラップ電界双極成分またはTFD)を重畳させる結果となる。電圧源140、160は、協働して(+V+δ)の電圧を電極110に印加し、(+V―δ)の電圧を電極112に印加する。有利な実施形態においては、補助電位δは、電極対110、112および114、116間に印加されるトラップ電界電位V1と同じ周波数かつ同じ相対位相で、電極110、112に印加される。四重極強度の所望の一定割合で、双極強度を設定することも有利である。より厳密に下記に例示するように、これにより、y軸に沿ってトラップ電界が均一に偏位する結果となる。
【0046】
更に有利な実施形態においては、補助交流電位δの印加により、2つの成分がトラップ電界に付加される結果となる。第1の成分は、トラップ電界中心を電極構造の幾何学的対称軸(z軸)から偏位させる効果を有する前記の双極成分である。トラップ電界に付加された第2の成分は、六重極成分(すなわち、3次成分)である。より厳密に下記に例示するように、六重極成分は、トラップ電界において非線形共鳴を生成する。六重極非線形共鳴を利用して、図4に示す出口開口部132など、複数の電極のうちの1つの電極の開口部を介してイオントラップからイオンを排出することができる。
【0047】
図2Cは、電極構造に印加される電界への六重極成分の付加を有利に利用する線形イオントラップ装置100の実施形態を示し、これによって、電界中に確立された非線形共鳴状態に応答して、選択イオンを排出することができる。四重極トラップ電界を生成するために使用される電圧源140および双極成分と六重極成分とを付加するために使用される補助電圧源160に加えて、付加電圧電位などの更なる電気エネルギー入力が、所望の範囲のm/z比のイオンを共鳴励起して、これらのイオンが方向制御されて非対称トラップ電界の復元力に打ち勝つような状態になるように供給される。図2Cに示す実施形態において、補助電位δが印加される同じ電極対に補足交流励起電位V2を印加するために、更なる電圧源170が設けられている。この様に、本実施形態においては、励起電位V2が、電極110、112に印加される。電圧源140、160、170は、協働して(+V+δ+V2)の電圧を電極110に印加し、(+V―δ―V2)の電圧を電極112に印加する。励起電位は、イオン排出のために利用される非線形共鳴のa―q動作ポイント(図3参照)に対応する周波数で印加される。イオンを排出するために、トラップ電位V1(そして、四重極電界の付随DCオフセット成分を供給する場合には、このDCオフセット成分)の振幅を増加させて、イオンの動作ポイントを増大させる。所与のm/z比のイオンの動作ポイントが、補足共鳴電位V2の周波数と、補助電位δにより提供される非線形共鳴とに一致すれば、イオンは、検出のためにトラップから排出される。
【0048】
有利な実施形態においては、線形イオントラップ装置100は、図3の安定性図におけるイソ−ベータラインβ=2/3に沿って位置するa―q動作ポイントとなるような基本トラップ周波数および永続周波数で動作する。所与の軸方向yに関して、βは、ωsec=(β/2)Ωに従って、イオンの永続周波数ωsecおよび主AC電位の駆動周波数Ωに関連付けられる。これらの周波数は、相互に整数倍であるので、β=2/3におけるイオン排出によって、補足共鳴周波数をトラップ電界周波数に位相ロックすることができる。さらに、イオン運動における基本周波数と第1の側波帯周波数との間の周波数差は大きいので、イオン排出プロセスに揺動が加わるような有意なビート周波数が発生することはなく、質量分解能が向上する。
【0049】
線形イオントラップ装置100がβ=2/3で動作し、四重極トラップ電位V1がDC成分を有さない場合、パラメータa=0であり、動作ポイントは、図3においてβ=2/3に関するイソ−ラインが(β/2)+β=1に関するイソ−ラインと交差しているPである。下記にさらに詳述するように、y座標イオン振動は、このポイントでx座標イオン振動と結合するので、Pでの動作は最適ではない。したがって、有利な実施形態においては、補助電位δが印加される同じ電極対(この例では電極110、112)に、DC電位が印加される。下記にさらに詳述するように、このDC電位は、図3の安定性図のq=0軸を下回る位置にa―q動作ポイントを移行する役割を果たす。換言すれば、トラップパラメータaの値は、a=0からa<0に移行する。イソ−βラインβ=2/3に沿って動作する場合、動作ポイントが、安定性図においてPからPへと移行するという効果があり、2つの非線形共鳴は縮重(縮退)することなく、y座標イオン振動はx座標イオン振動から切り離される。これによって、y軸に沿った所望の単一方向へのイオン排出が確実となる。本実施形態においては、この様に、動作ポイントPに対応する周波数で補足励起電位V2を印加して、イオン排出を実行すると有利である。なお、本明細書に開示の装置および方法は、β=2/3に沿った動作に限定されないが、この様にすると有利である。一般的には、DC成分をトラップ電位に付加して、イオン排出のための動作ポイントを、純粋非線形共鳴と結合非線形共鳴との間の縮重が排除されるa―q空間内の位置へと移動させることができるので、純粋共鳴のみがイオン運動に影響を及ぼし、イオン運動の振動振幅を主に一方向に増加させる。
【0050】
以下、図4〜図6を参照して、線形イオントラップ装置100の更なる実施形態について説明する。
図4〜図6を参照して、ある実施形態においては、前記4つの細長い双曲状電極110、112、114、116は、軸方向に分割され、すなわち、z軸に沿って分割され、中央電極セット110A、112A、114A、116A(図5)、対応する前端電極セット110B、112B、114B、116B(図6)、対応する後端電極セット110C、112C、114C、116C(図6)を形成する。前側電極116Bおよび後側電極116Cは、実際に図示されていないが、前側電極116Bおよび後側電極116Cは本質的に存在し、図示の他の電極と同様の形状であり、実質的に、図6の切欠図に示す前側電極114Bおよび後側電極114Cの鏡像であると理解される。ある実施形態においては、前端電極110B、112B、114B、116Bおよび後端電極110C、112C、114C、116Cは、中央電極110A、112A、114A、116Aよりも軸方向に短い。各電極セットにおいて、対向電極は、電気的に相互接続され、前記のように電極対を形成している。ある実施形態においては、四重極トラップ電界を生成する基本電圧V1(図2A〜図2C)は、前側電極110B、112B、114B、116B、および後側電極110C、112C、114C、116C、また中央電極110A、112A、114A、116Aの電極対の間に印加される。前側プレート152が、軸方向に前側電極110B、112B、114B、116Bの前端に近接して配置されており、後側プレート154が、軸方向に後側電極110C、112C、114C、116Cの後端に近接して配置されている。
【0051】
図4に示す実施形態において、DCバイアス電圧は、z軸に沿ってイオン運動を制約するために、z軸に沿って電位バリア(陽イオンの場合は正電位、陰イオンの場合は負電位)を提供するのに適した方法で印加することができる。軸方向のDCトラップ電位は、1以上のDC源によって生成可能である。図4に示す例においては、前側プレート152に電圧DC−1が印加され、後側プレート154に電圧DC―2が印加される。更なる電圧DC―3が、中央電極セット110A、112A、114A、116Aに隣接する前側電極セット110B、112B、114B、116Bおよび後側電極セット110C、112C、114C、116Cの4つの電極全てに印加される。交流トラップ電位とDCバイアス電圧との組合せは、基本的な線形トラップを形成する。あるいは、電圧DC−1を前端電極110B、112B、114B、116Bに印加し、電圧DC―2を後端電極110C、112C、114C、116Cに印加し、電圧DC―3を中央電極110A、112A、114A、116Aに印加することもできる。ある実施形態においては、前側プレート152は、入口開口部152Aを有し、電圧DC―1の大きさを適切に調節することによって、適時にイオンを構造体積120に導入するためのレンズおよびゲートとして前側プレート152を使用することができる。例えば、前側プレート152に印加される当初は高いゲート電位DC―1’を電圧値DC―1まで降下させて、前側プレート152の電位バリアを上回るのに十分な運動エネルギーを有するイオンをトラップに導入することができる。電圧DC―2は、通常、電圧DC―1よりも大きく、イオンが電極構造の後ろから漏出するのを防止する。所定時間の後、前端プレート152の電位を電圧値DC―1’まで再度上昇させて、トラップ内への更なるイオン導入を停止することができる。有利な実施形態においては、z軸に沿って、または略z軸に沿って、前側プレート152の入口開口部154Aを介してイオンを導入する。あるいは、2つの隣接する電極間のギャップを介して、または、電極に形成された開口部を介してイオンを構造体積120内に導入することも可能である。同様に、後端プレート154も、数々の目的のために、例えば、対象のm/z範囲外のイオンを除去するために出口開口部154Aを有していてもよい。
【0052】
図4〜図6に示す分割型線形電極構造を使用する様々な実施形態において、本明細書に記載の方法に従ってイオンを捕捉して任意に排出するために、結合電界または混合電界を確立することができる。例えば、図2A〜図2Cに関連して上記で説明した適切な回路部材および接続部材を用いて、動作ポイント移行DC電位、補助電位δ、補足励起電位V2などの付加的な電位と共に、基本トラップ電位V1を適時に印加することができる。基本補助トラップ電位V1と同じ周波数および位相を有する補助電位δを1対の電極間に印加して、結果的に得られる電界において双極成分および六重極成分を生成することができる。補助電位δと同じ電極対にDC動作ポイント移行電位を印加して、q軸(a=0)からq軸を下回るライン(a<0)へと、例えば、図3における動作ポイントPからPへと、イオン動作ポイントを移行することができる。補足励起電位V2は、イオン排出に使用される動作ポイント(好ましくは、本開示の他の箇所に記載されているように図3における動作ポイントP)に対応する周波数で、補助電位δと同じ電極対に印加される。
【0053】
ある実施形態においては、補助電位δおよびDCオフセット電位が、電極構造の中央部の電極対(例えば、電極対110A、112A)のみに印加される。他の実施態様においては、補助電位δおよびDCオフセット電位は、電極構造の中央部ならびに前部および後部の同様の電極対(例えば、電極対110B、112Bおよび110C、112C)に印加される。結果的に、中央電極110A、112A、114A、116Aおよび各端部電極セット110B、112B、114B、116Bおよび110C、112C、114C、116Cの間の領域は、同等となり、それらの間のフリンジ電界の排除が可能となる。これによって、中央電極セット110A、112A、114A、116Aの端部付近のイオンの如何なる摂動も除去される。構造体積120へのイオン輸送に悪影響を及ぼすことなく、イオンを構造体積内に導入する間は、電極構造のいかなる部分においても、いつでも非対称トラップ電界および付加電界を活性化可能である。例えば、図11Bに示すように、まず、中心z軸に沿ってトラップ構造内にイオンが入射し、中央部に到達するとz軸から偏位し、そして、中央部において偏位させた非対称電界軸に沿うように、ACトラップ双極電界をまず中央電極110A、112Aにのみ印加することができる。全てのイオンの導入が完了し、選択範囲のm/z値のイオンの体積が中央部において安定すれば、端部におけるトラップ電界を調整して中央部と同様に均一に偏位させ、上記のように摂動を低減することができる。
【0054】
非線形共鳴を生成する付加電界成分をオンする一方で、イオンは、中心軸に沿ってトラップ電界に入射可能であることが分かる。すなわち、イオンがトラップ構造に入射する場合に付加電界成分をオフする必要がなく、イオンがトラップ構造から走査される場合に付加電界成分をオンする必要がない。中心軸において、非線形共鳴は全て厳密にゼロである。この特徴は、付加電界成分のスイッチオン/オフのために複雑な電気回路を要する従来技術のイオントラップに勝る利点である。特に、この特徴は、図1に示すトラップ構造10などの3次元イオントラップに勝る利点がある。3次元イオントラップにおいて、イオンは、回転対称軸(図1のz軸)に沿って、したがってトラップの中心からの距離が最大の位置で入射する。中心からの距離が大きな位置では、トラップ電界双極成分の付加によりトラップ電界に存在する不所望な非線形共鳴の結果、不所望なイオン排出が発生するので、本開示の譲受人に譲渡されたWellsらの特許に係る上記特許文献13に記載されているようなスイッチ回路設計が必要となる。さらに、線形イオントラップ構造の対向電極に印加されるブロードバンド(広帯域)多重周波数波形は、イオンビームの方向を横切る力を生成するので、中心軸に沿って入射するイオンの運動を妨げることはない。比較として、図1に示す3次元トラップ構造10の端部キャップ電極12、14に印加されるブロードバンド多重周波数波形は、外部イオン源からトラップ内へのイオン輸送を低減する電位バリアを形成する。これは、振動電界が、イオンビームの方向と共線方向に整列配置されるからである。
【0055】
ある実施形態では、励起電位V2を印加するために用いる電圧源170(図2C)は、ブロードバンド多重周波数波形発生装置である。イオンがトラップに入射する間に、共鳴排出によって不要イオンをトラップから排除するように選択された周波数構成で、ブロードバンド多重周波数波形を対向中央電極対110A、112A、114A、116Aに印加することができる。
【0056】
図5Aに概略的に示すように、ある実施形態においては、構造体積120に減衰ガス、緩衝ガス、衝突ガスを注入するために1以上のガス源162を設けることができる。当業者に認識されているように、減衰ガスを用いて捕捉イオンの振動を減衰することができるので、イオンがトラップ電界の中央領域においてイオン雲に収束する傾向となる。適切なガスとしては、限定はしないが、水素、ヘリウム、窒素が例示される。減衰ガスを構造体積120に充填可能な圧力の一例としては、約0.5×10―3Torr〜約10×10―3Torrである。ただし、本明細書に開示の主題には他のタイプのガスおよび他のガス圧も含まれると理解される。例えば、ガス源162を用いて、CIDプロセスのための背景ガスを供給したり、化学反応を行うための試薬ガスを供給したりすることができる。
【0057】
図5Bに示すように、ある実施形態においては、同一であるが、逆配置の2つの出口開口部を設けることができる。例えば、出口開口部132Aを電極110Aに形成し、出口開口部132Bを電極112Aに形成することができる。他の実施形態のように、単一方向のイオン排出のためには、出口開口部132A、132Bのうちの1つの出口開口部のみが必要である。しかし、電極構造の対称性が向上し、電気的フリンジ効果などの不要な電界効果が回避されるという点で、反対側の出口開口部の存在は有利である。
【0058】
さらに図5Bに示すように、開口部を形成する各電極の縁部は、この開口部の存在による影響、例えば、トラップ電界の摂動、容認できないほど顕著なフリンジ電界効果、不要な多重極成分などを低減するような形状および/または開口寸法に設定可能である。一般的に、全方向に無限に延びる理想双曲状電極セットについては、所望の四重極電界は、電界における唯一の多重極成分である。しかし、実際の装置を提供するために必要であるように、双曲状電極が有限寸法に切頭されている場合、付加多重極成分が電界に付加され、すなわち、印加電界の総電位に関する式において更なる成分が必要となる。この様な付加多重極成分は、(少なくとも実行可能に)機能的な利点が得られない純粋四重極電界または理論四重極電界の不所望な歪を意味する。同様に、スロットなどの開口部が形成された電極を設けることによっても、多重極成分が変化する。電極の切頭の結果として導入される八重極成分などの多重極成分は、双極電界が印加される電極対の漸近角度を変化させたり、それらの離間を変化させたりすることによって補償可能である。さらに、電極の機械的形状に隆起または他の変化を加えて、電界における不要な多重極成分を導入したり、打ち消したりすることもできる。一般的に、電極の特定の機械的形状および電界の多重極構成の関係は、周知ではなく、通常、実験に基づいて決定される。
【0059】
電極の開口部の悪影響は、例えば、この開口部の存在によるトラップ電界の摂動を低減したり補償したりするために、開口部を形成する電極の縁部または領域を理論双極形状から逸脱するような形状とすることによって、最小限に抑えることができる。さらに、十分多量のイオンを排出して検出するために線形イオントラップ装置100の性能を過度に低減することなく、開口部の寸法(すなわち、スロットの場合は、長さおよび幅)を実用可能な限り最小限に抑えなければならない。3次元イオントラップと比較して、線形イオントラップ装置100は、軸方向寸法が際立っている。線形イオントラップ装置100により規定される構造体積120は、この様に軸方向に細長い。相対的に、線形イオントラップ装置100の2次元形状は、3次元形状よりも多量のイオンを捕捉して分別可能であるので、これは、3次元イオントラップに勝る利点であると考えられる。一方、細長い構造体積120により、結果的に、イオンのためのトラップ体積、すなわち、トラップ電界によって閉じ込められるイオン雲も軸方向に細長いことになる。したがって、イオンが電極に衝突することによってゼロ化または中和されることなく、検出装置への排出イオンの輸送を最大化するには、所与の電極の開口部が、同様にスロットのように細長いことが有利である。したがって、スロットの寸法は、イオン輸送の最大化と電界効果の最小化との競合基準を考慮して決定しなければならない。さらに、スロットは、通常、電極構造の軸方向端部に対して軸方向に中心整合するように配置しなければならず、かつ/またはスロットの軸方向縁部を電極構造の端部から幾分離間させるように、スロットの長さを制限しなければならない。これは、捕捉イオンを軸方向に閉じ込めるといった目的のために電極構造に印加される非四重極DC電界によって、不要時にイオンが排出されたり、意図しないm/z値のイオンが排出されたりするからである。スロットを中心整合させたり、電極端部からスロットを離間させたりすることによって、実施される特定の排出技術の制御がより確実となる。さらに、イオン排出効率は、電極の双曲状湾曲の頂部を中心としてスロットを配置することによって最適化可能である。なぜなら、頂部からの偏差によって、排出イオンがスロット形成縁部または表面に衝突する可能性が増加するからである。
【0060】
本明細書に開示の主題は、以下、電気力学的線形トラップ電界の開発、双極成分と六重極成分との重畳、および質量走査処理へのイオントラップ装置100の適用を含め、イオントラップ装置100の様々な実施形態の動作原理をより厳密に検討することによって更に理解することができる。ただし、以下の検討は、本明細書の請求内容の範囲を限定、制限するものではないと理解される。
【0061】
一般的に、中心軸(z軸)に関して対称配置される電極間の空間における電位Φは、下記の円柱座標のラプラスの方程式(Laplace’s equation)を満たさなければならない。
【0062】
【数1】

【0063】
ラプラスの方程式に対する一般解は、下記で与えられる。
【0064】
【数2】

【0065】
図2Aを参照して、電極110、112および電極114、116が同じ電位であり、さらに電極対110、112および電極対114、116間に任意の交流電位および静的DC電位が印加されている場合、時間依存の電位場全体は、下記で与えられる。
【0066】
【数3】

【0067】
交流電位の高調波成分を基本波のみに限定すると、電位は低下して下記の形態となる。
【0068】
【数4】

【0069】
式中、Uは、DC電圧であり、Vは、交流電圧である。電位は、原点において有限であるので、下記のようになる。
N=0に対してA’=0
N≧0に対してB’=0

【0070】
したがって、下記のようになる。
【0071】
【数5】

【0072】
円柱座標系(r,θ)における時間依存電界に関する電気力学的電位の一般形は、下記で与えられる。
【0073】
【数6】

【0074】

【0075】
であるので、
【0076】
【数7a】

【0077】
【数7b】

【0078】
式中、二項係数は、

【0079】
で与えられる。
式7a、7bを式5に代入して、最初の3項(N=3)を用いると、下記の式が得られる。
【0080】
【数8】

【0081】
係数は、電極形状から決定可能である。電極が、無限に延びる双極状シートであり、x軸およびy軸に沿って配置される場合、電極形状は、下記により決定される。
y軸に沿った電極については、
【0082】
【数9a】

【0083】
x軸に沿った電極については、
【0084】
【数9b】

【0085】
式8において電極を境界条件として用いると、下記のようになる。
【0086】
【数10】

【0087】
四重極電位Vの一般形は、下記のとおりである。
【0088】
【数11】

【0089】
理想四重極電位V電界におけるイオン運動の方程式の標準形は、下記のベクトル方程式から得られる。
【0090】
【数12】

【0091】
式中、位置ベクトルは、

【0092】
であり、mは、イオンの質量であり、eは、イオンの電荷である。この電位の形態によって、イオン運動方程式をx成分、y成分に独立分離することができる。
【0093】
【数13a】

【0094】
【数13b】

【0095】
【数13c】

【0096】
式13a〜13cを式12に代入すると、これらの式の標準形は、下記のようになる。
【0097】
【数14】

【0098】
これは、周知のマチウ方程式であり、式中、無次元パラメータζ、a、qは、下記のとおりである。
【0099】
【数15a】

【0100】
【数15b】

【0101】
【数15c】

【0102】
【数15d】

【0103】
式中、u=xに対しては、Ψ=+1
u=yに対しては、Ψ=−1
マチウ方程式(式14)は、パラメータa、qによって特徴付けられる安定な解を有する二階微分方程式であることが分かる。これらのパラメータの値は、安定性領域(例えば、図3参照)におけるイオンの動作ポイントを定義する。式14に対する一般解は、下記のとおりである。
【0104】
【数16】

【0105】
イオン運動ωの永続周波数は、下記のようにβの値から決定可能である。
【0106】
【数17】

【0107】
βの値は、(a,q)空間における動作ポイントの関数であり、周知の連分数から演算可能である。例えば、上記非特許文献1を参照。
図3に示す(a,q)空間の低安定性領域は、x運動、y運動に関する独立した安定性領域を示す。イオン捕捉のためには、イオンは、x軸方向およびy軸方向に同時に安定でなければならない。したがって、安定性重複領域にある(a,q)および(a、q)に対応する動作ポイントのみを用いることができる。図3に示すように、これらの領域は、x軸方向にはβ=0およびβ=1によって境界設定され、y軸方向にはβ=0およびβ=1によって境界設定される。
【0108】
図2Bを参照して、付加交流電位δを基本電位V1と同位相で電極110に加え、電極112から減じると、式8における係数が変化する。式8に境界条件を適用することによって、電位に関して下記の式が得られる。
【0109】
【数18】

【0110】
DC電位Uおよび基本交流電位tの初期位相がゼロである、新しい電位Vの一般形は、下記のとおりである。
【0111】
【数19】

【0112】
今、最初の2項のみを考慮して式13a、式13bにこれらを代入すると、電位場Vtによってイオンに対して軸方向に作用する瞬間的な電界が下記のように得られる。
【0113】
【数20a】

【0114】
【数20b】

【0115】
y軸方向のイオン運動方程式は、下記のようになる。
【0116】
【数21】

【0117】
ζ=Ωt/2を代入すると、下記の式が得られる。
【0118】
【数22】

【0119】
式22を式21に代入して、式15aから式2ζ=Ωtを導くことによって、y軸方向の基本的なイオン運動方程式が下記のように得られる。
【0120】
【数23】

【0121】
下記のように定義して、
【0122】
【数24a】

【0123】
および
【0124】
【数24b】

【0125】
式24aおよび式24bを式23に代入することによって、マチウ方程式と同様の方程式が下記のように得られる。
【0126】
【数25】

【0127】
下記の定義および式25への代入によって、下記の形態のマチウ方程式が得られる。

【0128】
【数26】

【0129】
したがって、イオンの軸方向偏位は、2項の合計となることが分かる。
【0130】
【数27】

【0131】
最初の項は、式16と同様に通常の時間依存振動の解u(ζ)を表す。式27における2番目の項は、双極成分によるy軸に沿ったイオンの偏位を表す付加的オフセット値である。
【0132】
【数28】

【0133】
質量分析においては、質量の関数としての案内電界のAC電圧を増加させるのが一般的である。δ=ηVacである特別な場合、式28は下記のようになる。
【0134】
【数29】

【0135】
したがって、
【0136】
【数30】

【0137】
したがって、双極成分が適切な位相であり、トラップ電界の一定の割合(η)として存在する場合、イオン運動がy軸に沿って一定量だけ均一に偏位することが式30から分かる。線形イオントラップ装置100の実施形態に関して既に指摘したように、このトラップ電界双極成分(TFD)の印加の結果、非対称トラップ電界となる。偏位の大きさおよび符号は、質量電荷比およびイオン電荷の極性と無関係である。偏位は、双極成分の割合(η)および電極構造の幾何学的寸法にのみ依存する。なお、偏位の方向は、双極成分の位相を0からπまで変化させることによって変更可能である。
【0138】
式18に示す電位の3つ全ての項が、式12に含まれている場合、運動方程式は、下記のようになる。
【0139】
【数31a】

【0140】
および
【0141】
【数31b】

【0142】
式31bにおける括弧内の3つの項は、それぞれ、双極成分、四重極成分、六重極成分である。式31a、式31bは、x座標またはy座標の関数に限らない項を含むので、これらの各方向の運動は結合される。式31a、式31bを再編し、式15a〜式15dを代入すると、下記の式が得られる。
【0143】
【数32a】

【0144】
および
【0145】
【数32b】

【0146】
これらの式は、駆動マチウ方程式の新たな形態であり、式の右辺に駆動力が現れている。
式32a、式32bのタイプの結合非線形方程式の解は、交流勾配円形加速装置やその機械的類似装置における非線形ベータトロン振動の理論から公知である。一般的には、上記非特許文献11、上記非特許文献12、上記非特許文献13および上記非特許文献14を参照。式32a、式32bにおける高次幾何項は、解の共通部分における特異点を形成し、非線形共鳴を示す。非線形共鳴に対応する動作ポイント(a,q)におけるイオンは、電極の方向の限界なしに、その振動振幅を増加させる。単純双極共鳴排出と同様に、経時的な振幅の増加は、線形ではなく、むしろ、非線形共鳴の次数に応じた率で増加する。非線形共鳴は、下記の関係を有する動作ポイントで発生する。
【0147】
【数33】

【0148】
式中、|n|+|n|=Nである。したがって、ω=(β/2)Ωであり、ν=1に対しては下記のとおりである。
【0149】
【数34a】

【0150】
または
【0151】
【数34b】

【0152】
式中、K=N,N−2,N−4,・・・である。したがって、電界で生成された3次共鳴(N=3)は、
【0153】
【数35a】

【0154】
であるy座標のみに影響を及ぼす純粋共鳴と、
【0155】
【数35b】

【0156】
であるx座標およびy座標に影響を及ぼす結合共鳴(図3において点線で示す)である。
したがって、線形トラップ電界は、従来技術で公知の3次元電界と同様のβ=2/3で非線形共鳴を有することが分かる。Wellsらの特許に係る上記特許文献13を参照。線形イオントラップ装置100の実施形態に関して既に指摘したように、この非線形共鳴を用いて、複数の電極のうちの1つ電極の方向にイオンを排出することができる。トラップ電界において、2つの対向電極(例えば、図2Cの電極110、112)の間にイオン振動の周波数で付加交流電位(例えば、図2CのV2)を印加すると、イオンは、これらの電極110、112の一方、例えば、図4〜図6における電極110Aの方向に偏位する。この電極は、開口部132を有し、排出イオンは、この開口部を介して適切なイオン検出装置へと導かれる。
【0157】
式35a、式35bは、安定性領域のq軸(すなわち、DC電位U=0の場合、a=0)に沿ったβ=2/3(式35a)に対応する動作ポイントにおけるイオンが、図3においてポイントPとして示すβ=2/3(式35b)に対応する結合共鳴にも対応することを示す。したがって、2つの共鳴は、3次元トラップの場合と異なり、この動作ポイントにおいて縮重する。この動作ポイントにおいては、y軸方向の振幅の増加は、結合共鳴によってx軸方向の振幅の増加を引き起こすので、イオンがβ=2/3に位置することは望ましくない。しかし、既に指摘したように、低DC電位をトラップ電界に加えると、動作ポイントを図3におけるq軸(U=0)から動作ポイントPへと移行することができる。2つの非線形共鳴ラインは、この新たな動作ポイントPにおいて縮重することはなく、結合共鳴の前に、純粋β=2/3共鳴に直面する。既に指摘したように、補足交流電位(例えば、図2CにおけるV2)が、図3における動作ポイントPに対応する周波数で対向電極に印加されると、y座標振動の振幅の増加は、x座標振動の増加を伴うことなく発生する。
【0158】
式15c、式15dは、V/m比およびU/m比が適時に一定となると、動作パラメータa、qも適時に一定となることを示す。質量走査は、連続質量電荷比のイオンが、適時に同じa−q動作ポイントを線形に通過することにより達成される。適時に基本トラップ周波数V(例えば、図2A〜図2CにおけるV1)の振幅およびDC振幅Uを線形に増加させて、そのV/U比を一定とすると、結果的に、m/zの一次関数であるイオン排出が得られる。上記のように、排出のための動作ポイント(a、q)がβ=2/3に対応することが有利であるが、本明細書に開示の主題は、単一のイソ−ベータラインに沿った動作、または、a―q空間における他の特定の位置での動作に限定されるものではないと理解される。基本周波数ωまたは側波帯の1つ(例えば、Ω−ω)に対応する補足共鳴周波数は、結果的に、トラップ電界の補足双極共鳴および非線形六重極共鳴によってイオン振動の振幅を増加させ、これにより、複数の電極のうちの1つ電極のスロット(例えば、図4〜図6の電極110Aの開口部132)を介したイオン排出が達成される。
実験結果
Idaho National Engineering and Environmental Laboratory,Idaho Falls,Idahoで開発されたイオンシミュレーションプログラム、SIMIONを使用して、非対称トラップ電界を有する線形イオントラップ装置に閉じ込められたm/z=100のイオンの軌跡を演算した。トラップ電界双極成分(TFD=δ/V)は0%であり、トラップ電界のDC成分はゼロ(U=0)であり、トラップ周波数は1050kHzであり、図3の安定性図におけるイオンの動作ポイントはβ=0.51であった。図7A、図7Bは、TFDが電極に印加されない(δ/V=0%)場合に、イオン軌道の4000データポイントのフーリエ解析によって得られたx軸方向およびy軸方向それぞれのイオン運動の成分の高速フーリエ変換(FFT)解析を示す。周波数スペクトル範囲は、0〜2000kHzであり、イオン運動の基本永続周波数ωは、約280kHzで観察されている。基本周波数ωおよび側波帯周波数Ω−ω、Ω+ωのみがイオン運動に存在する。
【0159】
比較として、図8A、図8Bは、30%TFDが電極に印加される場合の、x軸方向およびy軸方向それぞれのイオン運動成分のFFT解析を示す。TFDは、トラップ電界に六重極成分を導入するので、2ω、3ω、4ωに存在するイオン運動には、オーバトーンおよび高調波の側波帯だけでなく基本周波数ωおよび側波帯周波数Ω−ωおよびΩ+ωが存在する。イオン運動周波数の高調波が側波帯周波数に一致する場合、非線形共鳴が動作ポイントで発生する。一致は、高調波および側波帯の全グループに対して起こる。なお、駆動周波数Ωは、y軸方向運動で観察されるが、x軸方向運動では観察されない。これは、電界における奇数次の多重極とy軸方向に整合するが、x軸方向には整合しない。したがって、イオンは、トラップから単一の所望の方向に排出可能である。
【0160】
図9は、図3における動作ポイントPを通る走査に対応するイオン運動のシミュレーションを示している。四重極トラップ電界の結果、x―y平面におけるイオンの偏位は制限される。30%TFDが、電極対110A、112Aに印加され、その結果、トラップの幾何学的中心に対してy軸に沿って偏位した非対称トラップ電界となる。オフセットトラップ電界中心は、図9におけるイオンの経路により明らかである。イオンは、補足共鳴電界(a=0、q=0.7846、すなわち、β=2/3に対応する700kHz)のほか、純粋非線形共鳴、および結合非線形共鳴によって、y軸方向に駆動される。x軸方向には、結合共鳴によってのみイオンが駆動される。結果的に、イオンが電極に接近する時に、座標がx軸方向およびy軸方向に増加し、横方向に顕著に偏位する。
【0161】
比較として、図10は、図9と同様の動作条件でのイオン運動のシミュレーションを示すが、動作ポイントが図3におけるポイントP(a=0.03、q=0.75、すなわち、β=2/3)に対応するように、5VのDC電位がy軸方向の電極対に付加される場合である。好都合にも、横方向のイオン運動の顕著な増加は、この動作ポイントにおいて観察されていない。したがって、図9および図10においてシミュレーションされた条件で動作する線形イオントラップに関して、イオンをy軸に沿った方向に排出すると仮定すれば、所望のy軸方向のイオン排出の効率は、ポイントP(図9)と比較してポイントP(図10)で動作する方が向上する。
【0162】
図11Aは、Ω−ω=700kHzで励起する第1の側波帯周波数における共鳴双極成分と、および非線形共鳴との複合効果によって、β=2/3でイオンを排出する線形イオントラップにおける単一イオンシミュレーションを示している。30%TFDによるイオン運動の偏位を観察可能である。イオンは、電極110Aに形成された開口部132を介してy軸に沿って排出される。
【0163】
図11Bは、図11Aに示すものと同様のシミュレーションを示すが、イオントラップの側断面の斜視図である。図11Bは、イオンが、中心z軸に沿って前側プレート152の開口部152Aを介して左側から入射して、非対称トラップ電界の確立によって中央電極セット(例えば、図11Aにおける110A、112A、114A、116A)に入射すると中心軸線から偏位するのを示している。イオンは、減衰ガスの存在により衝突減衰を受けて、最終的に、上記のような共鳴排出によって、中央電極110Aの出口開口部132を介して上方に排出される。適切に調節されたDC電圧による、中央電極セットの長さ方向に沿う軸方向のz軸方向へのイオン運動の制限も、明らかに観察できる。
【0164】
図12Aおよび図12Bは、図11Aおよび図11Bと同様のシミュレーションを示すが、合計9つのイオンが主RFトラップ電位のランダム位相で線形イオントラップ装置100に入射する場合である。
図13は、TFDが存在しない状態(δ/V=0%)における9つのイオンのシミュレーションを示すが、減衰ガスが存在する場合のイオン排出のための閾値電圧よりも若干大きな12Vの振幅を有する補足双極成分V2(図2Cを参照)を印加した場合である。イオンの全てがy軸方向に沿って排出されるというわけではなく、多くがx軸方向に排出されることが分かる。
【0165】
図14Aは、0%TFDで、衝突減衰がなく、補足双極電圧V2が2Vである線形四重極イオントラップにおける、時間の関数としてのイオン運動のy座標振幅のプロットを示す。イオンは、β=2/3(図3参照)で励起されるが、印加補足電位が小さく、非線形共鳴が存在しないために、y安定性境界(β=1)に到達するまで、イオンは排出されない。比較として、図14Bは、30%TFDを印加した場合の顕著に高速なイオン排出を示している。
【0166】
図15Aは、時間の関数としてのイオン運動のy座標振幅の別のプロットを示している。このシミュレーションにおいては、TFDは印加されず(0%)、補足共鳴双極電位は印加されない(0V)。β=2/3における非線形共鳴および補足共鳴電位は存在しない。したがって、イオンは、不安定性によりβ=1において排出される。図15Bは、20Vの補足双極共鳴電位のみ(TFDは印加されない)によるβ=2/3におけるイオン排出を示している。排出を支援するためのトラップ電界において、非線形共鳴が存在しないので、はるかに大きな電圧を要する。図15Cは、補足双極共鳴電位が10Vまで低下すると、衝突の消散効果により排出は起こらないことを示す。比較として、図15Dは、30%TFDが付加されると、β=2/3における強い非線形共鳴の生成によって補足双極共鳴電位が10Vであっても、イオン排出が起こることを示す。
【0167】
総論的に上述したように、本明細書に開示の装置および方法は、MSシステムにおいて実施可能であると理解される。しかし、この主題は、MSに基づく用途に限定されない。
本明細書に開示の装置および方法は、タンデムMSの用途(MS/MS分析)およびマルチMS(MS)の用途に適用可能であると理解される。例えば、「親」イオンとの衝突のための適切なバックグラウンドガス(例えば、ヘリウム)を使用する周知の手段によって、所望のm/z範囲のイオンを捕捉して、衝突誘発解離(CID)させることができる。結果的に得られた断片または「娘」イオンは、質量分析可能であり、このプロセスは、継続的なイオン生成のために繰り返される。不要なm/z値のイオンの排出、および検出のためのイオンの排出に加えて、本明細書に開示の共鳴励起方法を用いて、イオン振動の振幅を増加することによってCIDを容易にすることもできる。
【0168】
また、本明細書に開示の実施形態において印加される交流電圧は、正弦波形に限定されないと理解される。三角波(鋸歯状)、矩形波などの他の周期波形を使用してもよい。
さらに、本発明の様々な態様または詳細は、本発明の範囲から逸脱することなく変更可能であると理解される。さらに、前述の説明は、特許請求の範囲で定義される本発明の例示目的であり、限定目的ではない。
【図面の簡単な説明】
【0169】
【図1】公知の3次元四重極イオントラップの横断面図である。
【図2A】本明細書に開示されている実施形態に係る線形四重極イオントラップ装置の概略図である。
【図2B】更なる実施形態に係る線形四重極イオントラップ装置の概略図である。
【図2C】更なる実施形態に係る線形四重極イオントラップ装置の概略図である。
【図3】本明細書に開示されている線形イオントラップ装置におけるイオン運動を記述するa―q空間にプロットされた安定性図である。
【図4】本明細書に開示されている実施形態に係る線形四重極イオントラップ装置の横断側面図である。
【図5A】図4に示す装置のx―y平面に沿った横断立面図である。
【図5B】1以上の更なる実施形態に係る、図4に示す装置のx―y平面に沿った横断立面図である。
【図6】図4に示す装置の切断斜視図である。
【図7A】本明細書に開示されている主題に係る非対称トラップ電界を用いた線形イオントラップ装置における、装置の電極にトラップ電界双極成分(TFD)を印加しない場合の、x座標イオン運動の高速フーリエ変換(FFT)解析を示す。
【図7B】図7Aと同様の実験条件におけるy座標運動のFFT解析を示す。
【図8A】本明細書に開示されている主題に係る非対称トラップ電界を用いた線形イオントラップ装置における、トラップ構造の電極に30%TFDを印加した場合の、x座標イオン運動のFFT解析を示す。
【図8B】図8Aと同様の実験条件におけるy座標運動のFFT解析を示す。
【図9】線形イオントラップ装置のx―y平面の横断面図であり、図3の安定性図における動作ポイントPを通る走査に対応するイオン運動のシミュレーションを示す。
【図10】図9と同様のシミュレーションを示す線形イオントラップ装置のx―y平面の横断面図であるが、イオン運動が図3の安定性図における動作ポイントPを通る走査に対応するように、y軸方向に沿って配置された電極対に5VのDC電位を付加した場合である。
【図11A】非対称トラップ電界が印加された線形イオントラップ装置のx―y平面の横断面図であり、装置の電極の開口部を介したイオンの排出を示す。
【図11B】図11Aに示す装置の側断面図であり、イオンが装置の幾何学的中心軸に沿って装置に入射し、非対称トラップ電界の印加によりこの軸から偏位するときのイオンの経路を更に示す。
【図12A】図11Aと同様のシミュレーション条件による線形イオントラップ装置のx―y平面の横断面図であり、9つのイオンの軌跡を示す。
【図12B】図12Aに示す装置の、図11Bと同様の側断面図であり、9つのイオンの軌跡を示す。
【図13】図11Aと同様の線形イオントラップ装置のx―y平面の横断面図であるが、TFDを印加せずに、補足電気双極成分を印加した場合である。
【図14A】TFDを印加せず、衝突減衰がなく、2Vの補足双極電圧を印加した線形イオントラップ装置における時間の関数としてのy座標イオン運動のプロットを示す。
【図14B】図14Aと同様の条件で動作している線形イオントラップ装置における時間の関数としてのy座標イオン運動のプロットを示し、30%TFDを印加したときのイオン排出を示す。
【図15A】TFDを印加せず、衝突減衰がなく、補足双極電圧を印加しない場合の時間の関数としてのy座標イオン運動のプロットを示す。
【図15B】20Vの補足双極共鳴電位の印加によってイオンが排出される条件における、時間の関数としてのy座標イオン運動のプロットを示す。
【図15C】双極電位を10Vに下げ、衝突減衰の作用によってイオン排出を防止する条件における時間の関数としてのy座標イオン運動のプロットを示す。
【図15D】双極電位を10Vに下げた条件における、時間の関数としてのy座標イオン運動のプロットを示すが、30%TFDを印加し、その結果、非線形共鳴条件の達成によりイオン排出に至る場合である。

【特許請求の範囲】
【請求項1】
(a) 主AC電位を線形イオントラップの電極構造に印加することによって、四重極成分を含むイオントラップ電界を生成することと、
(b) 付加AC電位を前記電極構造に印加して、前記トラップ電界の中心軸を前記電極構造の中心軸から偏位させることと
を含むイオン運動の制御のための方法。
【請求項2】
前記主AC電位と前記付加AC電位とが、実質的に同じ周波数で印加される請求項1に記載の方法。
【請求項3】
前記トラップ電界の前記中心軸が、前記電極構造の前記中心軸に直交する軸に沿って偏位し、
前記トラップ電界におけるイオン運動の振幅を前記偏位軸に実質的に沿って増加させることをさらに含む請求項1に記載の方法。
【請求項4】
前記電極構造の前記中心軸に直交する軸に沿って配置された対向電極対を前記電極構造に設けることと、
前記付加AC電位を前記電極対に印加して、前記トラップ電界に非線形共鳴条件を導入する多重極成分を前記トラップ電界に付加し、前記トラップ電界の前記中心軸を前記電極対の軸に沿って偏位させることと、
前記非線形共鳴条件を満たすポイントにイオンの動作ポイントを調節することによって、イオンを前記トラップ電界から排出することと
を更に含む請求項1に記載の方法。
【請求項5】
前記電界の成分のパラメータを走査することによって、m/z値の異なる複数のイオンを前記トラップ電界から同じ方向に排出することを含み、これによって、当該m/z値の異なるイオンが、前記非線形共鳴条件を満たす動作ポイントに順次到達する請求項4に記載の方法。
【請求項6】
補足AC電位を前記電極対に印加して、共鳴双極成分を前記トラップ電界に付加することを含み、前記補足AC電位が、前記非線形共鳴条件に対応する周波数に一致する周波数を有する請求項4に記載の方法。
【請求項7】
DCオフセット電位を前記電極対に印加して、イオン振動を前記電極対の前記軸に沿って主に一方向に増加させるためにイオンを共鳴励起可能なポイントへとイオンのa−q動作ポイントを移行することを含む請求項6に記載の方法。
【請求項8】
前記トラップ電界に曝される前記電極構造によって規定される内部にイオンを供給して、前記付加AC電位の印加中またはその前に、前記電極構造の前記中心軸に実質的に沿ってイオンを前記内部に導入することを含み、これによって、当該イオンを前記電極構造の前記中心軸から偏位させて、偏位した前記トラップ電界中心軸を中心として振動させるように制約する請求項1に記載の方法。
【請求項9】
前記トラップ電界に曝される前記電極構造によって規定される内部にイオンを供給して、多重周波数波形を前記電極構造に適用することを含み、前記波形が、共鳴排出によって不所望なm/z値のイオンを前記電極構造から共鳴して排出させるような周波数構成を有する請求項1に記載の方法。
【請求項10】
前記電極構造が、前記中心軸に沿って前部、中央部、および後部に分割されており、前記主AC電位が、前記前部、前記中央部、および前記後部に印加され、前記付加AC電位が、少なくとも前記中央部に印加される請求項1に記載の方法。
【請求項11】
前記前部、前記中央部、および前記後部において、前記電極構造の対向電極対にDCオフセット電位を印加することを含む請求項10に記載の方法。
【請求項12】
前記トラップ電界に曝される前記電極構造によって規定される内部にイオンを供給し、その後、前記付加AC電位を前記前部および前記後部に印加することを含み、これによって、前記前部、前記中央部、および前記後部において前記トラップ電界の前記中心軸を均一に偏位させる請求項10に記載の方法。
【請求項13】
(a) 中心軸に沿って細長い構造体積を規定し、前記中心軸に対して径方向に配置された第1の対向電極対と、前記中心軸に対して径方向に配置された第2の対向電極対とを備えた電極構造と、
(b) 主直交軸に沿って前記中心軸から偏位した電界中心を有する非対称四重極トラップ電界を生成する手段と
を備えた線形イオントラップ装置。
【請求項14】
前記生成する手段が、主AC電位を前記第1および第2の電極対の間に印加し、前記主AC電位と同じ周波数を有するトラップ電界双極電位を前記電極対のうちの一方の間に印加する手段と、前記電極対のうちの一方にDCオフセット成分を印加する手段とを備えた請求項13に記載の装置。
【請求項15】
前記トラップ電界において非線形共鳴状態を確立する手段を備えた請求項13に記載の装置。
【請求項16】
ある範囲のm/z値の全てのイオンを前記直交軸に沿って単一方向に排出する手段を備え、非線形共鳴励起によってイオンを排出する手段を備えた請求項13に記載の装置。
【請求項17】
前記非線形共鳴状態を確立する手段が、前記電極対のうちの一方の間に付加AC電位を印加する手段を備えた請求項15に記載の装置。
【請求項18】
前記非線形共鳴状態を達成する周波数を有するAC励起電位を、前記電極対のうちの一方の間に印加する手段を備えた請求項15に記載の装置。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図13】
image rotate

【図14A】
image rotate

【図14B】
image rotate

【図15A】
image rotate

【図15B】
image rotate

【図15C】
image rotate

【図15D】
image rotate


【公表番号】特表2008−500700(P2008−500700A)
【公表日】平成20年1月10日(2008.1.10)
【国際特許分類】
【出願番号】特願2007−515184(P2007−515184)
【出願日】平成17年5月19日(2005.5.19)
【国際出願番号】PCT/US2005/017549
【国際公開番号】WO2005/119738
【国際公開日】平成17年12月15日(2005.12.15)
【出願人】(599060928)バリアン・インコーポレイテッド (81)
【Fターム(参考)】