説明

顔料微粒子分散体、これを用いたカラーフィルタ、及び顔料微粒子分散体の製造方法

【課題】微粒子の粒径が小さく、かつ粒度分布ピークがシャープであり、カラーフィルタ用の色材として特に適しており、そのコントラストを著しく高め、しかも良好な分散性を示す顔料微粒子分散体、これを用いたカラーフィルタ、及びその効率の良い製造方法を提供する。
【解決手段】顔料の微粒子と下記一般式(1)で表される化合物とを含有する顔料微粒子分散体。


(式中、Ar及びArは、各々独立にアリール基又は複素環基を表す。Rはアルキレン基を表し、Tは置換基を表す。lは1〜4の整数を表す。mは0〜4の整数を表し、nは1〜6の整数を表す。)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、カラーフィルタ等の色材としての用途に特に適した顔料微粒子分散体、これを用いたカラーフィルタ、及び顔料微粒子分散体の製造方法に関する。
【背景技術】
【0002】
カラーフィルタについては、高性能・高品質が求められており、その作製に用いられる有機顔料の改良が試みられている。具体的には、顔料分散体の調製において貯蔵安定性に優れるもの、これを使用したカラーフィルタ着色画素部の塗膜のコントラストに優れるものなどが要求されている。そういったニーズに応えるべく、例えば顔料粒子を10〜100nmの範囲にまで小サイズ化し、しかも分散安定化する研究が精力的に進められている。これにより、ナノメートルサイズにすることで初めて発現する作用効果を活かし、従来予想できなかった新たな特性を効果的に引き出すことができる可能性がある。上述のカラーフィルタ用途はもとより、例えば、塗料、印刷インク、電子写真用トナー、インクジェットインク等においても、その研究開発が進められている。とりわけ上述のカラーフィルタやインクジェットインクについては、精密化学技術を用いた高性能化のための取り組みがなされ、その成果が期待されている。
【0003】
ここで有機顔料の分散方法についていうと、ビーズミル法やソルトミリング法などの各種ミリング法(ブレイクダウン法)や液相法などがあるが、上記ミリング法で有機顔料を十分に微細化し組成物中で分散させることは、ナノメートルオーダーにまですることを考慮すると手間や時間がかかりすぎるなど実際的ではない(特許文献1参照)。また、未リング材料の不可避的な混入も避けがたい。液相法は微細な顔料粒子を得るのに適しており、具体的に、顔料を良溶媒(第1溶媒)に溶解した顔料溶液と貧溶媒(第2溶媒)とを混合してナノ粒子を析出させ、所定の高分子化合物を添加する方法が提案されている(特許文献2〜5参照)。しかし、上記従来技術において、第1溶媒及び第2溶媒を効率的に取り除き、これらとは異なる第3溶媒に生成させた顔料微粒子を十分に再分散させること、そしてこの第3溶媒に対する生成微粒子の自発的な分散性(自己分散性)を与えることは開示されていない。例えば特許文献5ではポリビニルピロリドンを顔料溶液に溶解して粒子形成を行っているが、これは第2溶媒(貧溶媒)として用いられた水性媒体に対して溶解性があるため、上記顔料溶液と第2溶媒とを混合して得られた微粒子分散液から上記ポリマーを取り出すことがかえって難しくなる。そして、新たな第3溶媒に対して顔料微粒子を分散させるには、通常、上記ポリマーとは別の分散剤の添加が必要となる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2000−239554号公報
【特許文献2】国際公開第WO2006/121016号パンフレット
【特許文献3】特開2004−43776号公報
【特許文献4】特開2007−119586号公報
【特許文献5】特開2007−23169号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、顔料微粒子の粒径が小さく、かつ粒度分布ピークがシャープであり、しかも良好な分散性を示すためカラーフィルタ用の色材として特に適しており、これを用いてカラーフィルタの画素を形成したときにそのコントラスト及び諸特性、さらには製造適性を高めることができる顔料微粒子分散体、これを用いたカラーフィルタ、及びその効率の良い製造方法の提供を目的とする。
【課題を解決するための手段】
【0006】
上記の課題は下記の手段により解決された。
(1)顔料の微粒子と下記一般式(1)で表される化合物とを含有することを特徴とする顔料微粒子分散体。
【0007】
【化1】

【0008】
(式中、Ar及びArは各々独立にアリール基又は複素環基を表す。Rはアルキレン基を表す。Tは置換基を表す。lは1〜4の整数を表す。mは0〜4の整数を表す。nは1〜6の整数を表す。)
(2)前記顔料微粒子に前記一般式(1)で表される化合物が取り込まれていることを特徴とする(1)に記載の顔料微粒子分散体。
(3)前記顔料微粒子が、顔料を良溶媒に溶解させた前記顔料に対して貧溶媒となり良溶媒に相溶する媒体と混合して、前記顔料を微粒子として生成させるに当たり、前記一般式(1)で表される化合物の共存下で生成させたものであることを特徴とする(1)又は(2)に記載の顔料微粒子分散体。
(4)前記置換基Tが、ハロゲン、アルキル基、アルコキシ基、アミノ基、カルボキシル基、ニトロ基、及びアミド基からなる群から選ばれることを特徴とする(1)〜(3)のいずれか1項に記載の顔料微粒子分散体。
(5)前記Ar及びArは、各々独立に、アリール基又はヘテロ環基であることを特徴とする(1)〜(4)のいずれか1項に記載の顔料微粒子分散体。
(6)前記顔料が、ジケトピロロピロール化合物であることを特徴とする(1)〜(5)のいずれか1項に記載の顔料微粒子分散体。
(7)さらにポリカプロラクトン構造を有する分散剤を含有することを特徴とする(1)〜(6)のいずれか1項に記載の顔料微粒子分散体。
(8)さらに下記一般式(I)及び(II)のいずれかで表される繰り返し単位から選択される少なくとも1種の繰り返し単位を含む高分子化合物を含有することを特徴とする(1)〜(7)のいずれか1項に記載の顔料微粒子分散体。
【0009】
【化2】

【0010】
(一般式(I)及び(II)中、R〜Rは、各々独立に、水素原子、又は1価の有機基を表す。X及びXは、各々独立に、−CO−、−C(=O)O−、−CONH−、−OC(=O)−、又はフェニレン基を表す。L及びLは、各々独立に、単結合、又は2価の有機連結基を表す。A及びAは、各々独立に、1価の有機基を表す。m及びnは各々独立に2〜8の整数を表す。p及びqは各々独立に1〜100の整数を表す。)
(9)カラーフィルタ用色材である(1)〜(8)のいずれか1項に記載の顔料微粒子分散体。
(10)(1)〜(9)のいずれか1項に記載の分散体と、重合性化合物と、光重合開始剤と、を含有する光硬化性組成物。
(11)(10)に記載の光硬化性組成物を硬化させて形成した画素を有してなるカラーフィルタ。
(12)顔料を良溶媒に溶解させた溶解液を調製し、前記顔料に対して貧溶媒となり良溶媒に相溶する媒体と混合して、該混合液中に前記顔料の微粒子を生成させるに当たり、下記一般式(1)で表される化合物の共存下で前記顔料の微粒子を生成させることを特徴とする顔料微粒子分散体の製造方法。
【0011】
【化3】

【0012】
(式中、Ar及びArは、各々独立にアリール基又は複素環基を表す。Rはアルキレン基を表し、Tは置換基を表す。lは1〜4の整数を表す。mは0〜4の整数を表し、nは1〜6の整数を表す。)
【発明の効果】
【0013】
本発明の顔料微粒子分散体は、そこに含有する微粒子の粒径が小さく、かつ粒度分布ピークがシャープであり、しかも良好な分散性(2次凝集しにくい性質)を示すためカラーフィルタ用の色材として特に適しており、これを用いてカラーフィルタの画素を形成したときにそのコントラスト及び耐熱性、さらには現像性が向上するという優れた作用効果を奏する。
また、上記顔料微粒子分散体を用いて作製したカラーフィルタは極めて高いコントラストを実現し、かつ現像性に優れる。
さらにまた、本発明の製造方法によれば、上記の優れた顔料微粒子分散体を効率良く製造することができ、工業的規模での生産にも好適に対応することができる。
【発明を実施するための形態】
【0014】
本発明の顔料微粒子分散体は、顔料の微粒子と、上記一般式(1)で表される化合物とを含有することを特徴とする。両者の分散体中での共存状態は特に限定されないが、後述する共沈法により顔料微粒子が前記化合物を取り込みんだ状態で媒体中に分散していることが好ましい。
【0015】
本発明の一実施態様によれば、一般式(1)で表される化合物がジケトピロロピロールの母核を有するため、ビルドアップ法により顔料が生成してくる際に結晶成長するに当たり、前記母核が強い相互作用により顔料分子に強く吸着する。このとき、前記ジケトピロロピロールの母核には置換フタルイミド基がアルキレン基を介して導入され、他方で必要によりスルホン酸基が導入されているため、顔料分子の結晶成長を適切なところで抑制するものと考えられる。これにより、所望の粒径の微細な顔料を形成することができ、例えばその分散体を用いてカラーフィルタとしたときに極めて高いコントラストとすることが可能となると考えられる。
また、本発明の一実施態様によれば、上記一般式(1)で表される化合物が効果的なシナジストとして働き顔料に強く吸着することで、顔料同士の凝集を抑制する効果があり、熱による顔料自体の昇華や凝集を抑制する作用を示し、例えばカラーフィルタの画素における耐熱性や品質を改善することができると考えられる。
【0016】
[一般式(1)で表される化合物]
前記一般式(1)中、Ar及びArは各々独立にアリール基又は複素環基を表す。Rはアルキレン基を表す。Tは置換基を表す。mは0〜4の整数を表し、nは1〜6の整数を表す。lは1〜4の整数を表す。
【0017】
Ar及びArにおいて、アリール基は、フェニル基、ビフェニル基、ナフチル基、トリル基、キシリル基、メシチル基、クメニル基、フルオロフェニル基、クロロフェニル基、ブロモフェニル基、クロロメチルフェニル基、ヒドロキシフェニル基、メトキシフェニル基、エトキシフェニル基、フェノキシフェニル基、アセトキシフェニル基、ベンゾイロキシフェニル基、メチルチオフェニル基、フェニルチオフェニル基、メチルアミノフェニル基、ジメチルアミノフェニル基、アセチルアミノフェニル基、カルボキシフェニル基、メトキシカルボニルフェニル基、エトキシカルボニルフェニル基、フェノキシカルボニルフェニル基、N−フェニルカルバモイルフェニル基、フェニル基、ニトロフェニル基、シアノフェニル基、スルホフェニル基、スルホナトフェニル基、ホスホノフェニル基、ホスホナトフェニル基などを挙げることができる。好ましくは、フェニル基、ビフェニル基、ナフチル基、トリル基である。
【0018】
複素環基としては、ピリジン環、ピラジン環、ピリミジン環、ピロール環、イミダゾール環、トリアゾール環、テトラゾール環、インドール環、キノリン環、アクリジン環、フェノチアジン環、フェノキサジン環、アクリドン環、アントラキノン環、ベンズイミダゾール構造、ベンズトリアゾール構造、ベンズチアゾール構造、環状アミド構造、環状ウレア構造、および環状イミド構造を有するものが挙げられる。好ましくは、ピリジン環、ピラジン環、ピリミジン環である。
【0019】
Rで表されるアルキレンについては、直鎖または分岐の炭化水素基であって水酸基を有してもよい。好ましくは、直鎖の炭化水素である。炭素数は1〜3が好ましく、メチレン、エチレン、プロピレン、イソプロピレンが挙げられる。特に好ましくはメチレン基である。
【0020】
Tで表される置換基としては、ハロゲン(−F、−Br、−Cl、−I)、アルキル基、ヒドロキシル基、アルコキシ基、アリーロキシ基、メルカプト基、シアノ基、ニトロ基、アミド基、カルボン酸基、スルホンアミド基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、アミノ基、N−アルキルアミノ基、N,N−ジアルキルアミノ基、N−アリールアミノ基、N,N−ジアリールアミノ基、N−アルキル−N−アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、N−アルキルカルバモイルオキシ基、N−アリールカルバモイルオキシ基、N,N−ジアルキルカルバモイルオキシ基、N,N−ジアリールカルバモイルオキシ基、N−アルキル−N−アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N−アルキルアシルアミノ基、N−アリールアシルアミノ基、のうちそれぞれカルボン酸基またはスルホン酸基が含まれても良い。ウレタン基、ウレイド基、N’−アルキルウレイド基、N’,N’−ジアルキルウレイド基、N’−アリールウレイド基、N’,N’−ジアリールウレイド基、N′−アルキル−N’−アリールウレイド基、N−アルキルウレイド基、N−アリールウレイド基、N’−アルキル−N−アルキルウレイド基、N’−アルキル−N−アリールウレイド基、N’,N’−ジアルキル−N−アルキルウレイド基、N’,N’−ジアルキル−N−アリールウレイド基、N’−アリール−N−アルキルウレイド基、N’−アリール−N−アリールウレイド基、N’,N’−ジアリール−N−アルキルウレイド基、N’,N’−ジアリール−N−アリールウレイド基、N’−アルキル−N’−アリール−N−アルキルウレイド基、N’−アルキル−N’−アリール−N−アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N−アルキル−N−アルコキシカルボニルアミノ基、N−アルキル−N−アリーロキシカルボニルアミノ基、N−アリール−N−アルコキシカルボニルアミノ基、N−アリール−N−アリーロキシカルボニルアミノ基、ホルミル基、アシル基、カルボキシル基及びその共役塩基基(以下、カルボキシラートと称す)、エステル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N−アルキルカルバモイル基、N,N−ジアルキルカルバモイル基、N−アリールカルバモイル基、N,N−ジアリールカルバモイル基、N−アルキル−N−アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(−SOH)及びその共役塩基基(以下、スルホナト基と称す)、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N−アルキルスルフィナモイル基、N,N−ジアルキルスルフィナモイル基、N−アリールスルフィナモイル基、N,N−ジアリールスルフィナモイル基、N−アルキル−N−アリールスルフィナモイル基、スルファモイル基、N−アルキルスルファモイル基、N,N−ジアルキルスルファモイル基、N−アリールスルファモイル基、N,N−ジアリールスルファモイル基、N−アルキル−N−アリールスルファモイル基、N−アシルスルファモイル基及びその共役塩基基、N−アルキルスルホニルスルファモイル基(−SONHSO(alkyl))及びその共役塩基基、N−アリールスルホニルスルファモイル基(−SONHSO(allyl))及びその共役塩基基、N−アルキルスルホニルカルバモイル基(−CONHSO(alkyl))及びその共役塩基基、N−アリールスルホニルカルバモイル基(−CONHSO(allyl))及びその共役塩基基、アルコキシシリル基(−Si(Oalkyl))、アリーロキシシリル基(−Si(Oallyl))、ヒドロキシシリル基(−Si(OH))及びその共役塩基基、ホスホノ基(−PO)及びその共役塩基基(以下、ホスホナト基と称す)、ジアルキルホスホノ基(−PO(alkyl))、ジアリールホスホノ基(−PO(aryl))、アルキルアリールホスホノ基(−PO(alkyl)(aryl))、モノアルキルホスホノ基(−POH(alkyl))及びその共役塩基基(以後、アルキルホスホナト基と称す)、モノアリールホスホノ基(−POH(aryl))及びその共役塩基基(以後、アリールホスホナト基と称す)、ホスホノオキシ基(−OPO)及びその共役塩基基(以後、ホスホナトオキシ基と称す)、ジアルキルホスホノオキシ基(−OPO(alkyl))、ジアリールホスホノオキシ基(−OPO(aryl))、アルキルアリールホスホノオキシ基(−OPO(alkyl)(aryl))、モノアルキルホスホノオキシ基(−OPOH(alkyl))及びその共役塩基基(以後、アルキルホスホナトオキシ基と称す)、モノアリールホスホノオキシ基(−OPOH(aryl))及びその共役塩基基(以後、アリールホスホナトオキシ基と称す)が挙げられる。
なかでも好ましい置換基として、ハロゲン、アルキル、アルコキシ、アミノ基、カルボキシル基、シアノ基、ニトロ基、アミド基、スルホンアミド基、エステル基、ウレタン基、ウレイド基、スルホ基、ホスホノ基が挙げられる。
【0021】
Ar、Arは上記の範囲で適宜選ばれる基であればよいが、これがアリール基であることにより、例えば顔料母核をなすジケトピロロピロール骨格と共役することができる。さらにアリール基に置換基を導入することで様々な色相に調整でき好ましい。また、Ar、Arが複素環基であっても同様に共役することから、用途に応じた顔料誘導体の化合物設計できるという利点がある。この基の好ましい実施態様における作用について述べれば、アリール基または複素環基であることから、顔料のアリール構造に対してπ−πスタッキング相互作用することができ、これにより、Ar、Arの置換基により顔料吸着能を制御することができると考える。
【0022】
mは0が好ましく、nは1〜4が好ましい。lは1〜2が好ましい。
【0023】
以下に一般式(1)で表される化合物の具体例を挙げるが、本発明がこれに限定して解釈されるものではない。
【0024】
【化4】

【0025】
【化5】

【0026】
【化6】

【0027】
【化7】

【0028】
【化8】

【0029】
【化8】

【0030】
本発明の顔料微粒子分散体において前記一般式(1)で表される化合物の含有量は特に限定されないが、顔料100質量部に対して、0.1〜100質量部であることが好ましく、1〜50質量部であることがより好ましい。上記下限値以上とすることで、顔料分子の結晶成長を効果的に抑制することができ、上記上限値以下とすることで有効色素顔料の色味を保持することができる。
本発明の一実施態様においては、上述する顔料微粒子の生成過程において、その他の添加剤を用いずに行うことができ好ましい。特に、添加剤の量を減らすことによりカラーフィルタの構成成分(固形分)として許容される総量との関係で顔料をより豊富にすることができる。昨今、色濃度の高いカラーフィルタや光学濃度(OD値)を高くする要求が高まっており、本発明の好ましい実施態様によれば上記のように着色成分の濃度を高めることができ有利である。
前記一般式(1)で表される化合物は定法によって合成することができ、後記実施例においてその合成例を詳しく示す。本発明において化合物とは当該化合物そのもののほか、酸性基や塩基性基を有する場合にはその塩であってもよい。
【0031】
なお、本明細書における基の表記において、置換及び無置換を記していない表記は、置換基を有さないものとともに置換基を有するものをも包含することを意味する。例えば、「アルキル基」との表記は、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。このときの置換基としては、上記置換基Tが挙げられる。
【0032】
[有機顔料]
有機顔料は、色相的に限定されるものではなく、例えば、ペリレン、ペリノン、キナクリドン、キナクリドンキノン、アントラキノン、アントアントロン、ベンズイミダゾロン、ジスアゾ縮合、ジスアゾ、アゾ、インダントロン、フタロシアニン、トリアリールカルボニウム、ジオキサジン、アミノアントラキノン、ジケトピロロピロール、チオインジゴ、イソインドリン、イソインドリノン、ピラントロンもしくはイソビオラントロン顔料、またはそれらの混合物などが挙げられる。本発明においては、上記の有機顔料または有機顔料の固溶体を組み合わせて用いることもできる。また、その他の化合物と組み合わせた複合材料としてよい。
【0033】
本発明においては、特にジケトピロロピロール顔料を用いることが好ましい。C.I.P.R.254に代表されるジケトピロロピロール化合物顔料は、カラーフィルタを構成する赤画素の色純度を高めるのに適した吸収域を有し、色再現域を広げられるため、そのカラーフィルタへの利用が試みられている。しかしながら、例えばインクジェット用インクを転用したり、アシッドペースト法、ビーズ分散やソルトミリングによる方法で得たりしたものなどでは色純度やコントラスト等に対する要求に応えにくく、十分に良好なカラーフィルタは得がたい。これに対し、本発明の好ましい実施態様によれば、ナノサイズのジケトピロロピロール化合物顔料微粒子を粒径分布がシャープな状態で生成させることができる。また、その顔料微粒子の分散物をカラーフィルタの製造に用いたとき、所望の色純度と高いコントラストを両立できる。そしてそのカラーフィルタを備えた液晶表示装置は、黒のしまりおよび赤の描写力に優れ、表示ムラが抑えられる。
【0034】
上記ジケトピロロピロール化合物顔料においては、中でもC.I.P.R.254(下記式(Z)で表される化合物)、255(下記式(W)で表される化合物)、264(下記式(V)で表される化合物)が好ましく、C.I.P.R.254が吸収スペクトルの観点でより好ましい。なお、C.I.P.R.254としては、Irgaphor Red B−CF、Irgaphor Red BT−CF、Cromophtal DPP Red BO、Irgazin DPP Red BO、Microlen DPP RED BP(いずれも商品名、Ciba Specialty Chemicals社製)など市販されているあらゆるものを用いることが可能である。C.I.P.R.255としては、Cromophtal Coral Red C、Irgazin DPP Red 5G(いずれも商品名、Ciba Specialty Chemicals社製)などを用いることができる。C.I.P.R.264としては、Irgazin DPP Rubin TR(商品名、Ciba Specialty Chemicals社製)などを用いることができる。
【0035】
【化6】

【0036】
本発明の顔料微粒子分散体において、顔料微粒子の含有量は特に限定されないが、カラーフィルタ用の色材とすることを考慮したときには、顔料微粒子分散体中に含有する濃度が、1〜40質量%であることが好ましく、5〜20質量%であることがより好ましい。
【0037】
[再沈法]
本発明の顔料微粒子分散体において、そこに含有させる有機顔料粒子は、有機材料を良溶媒(以下、これを第1溶媒ということがある)に溶解した有機顔料の溶解液と、前記良溶媒に対して相溶性を有し、有機顔料に対して貧溶媒(以下、これを第2溶媒ということがある)となる溶媒とを混合することにより生成させたものであることが好ましい。以下、この方法を「再沈法」ということもあり、このとき得られる有機顔料粒子を含有する分散液を「顔料再沈液」ということもある。さらに、上記有機顔料の溶解液に上記一般式(1)で表される化合物や、分散剤を共溶解させて再沈法を行うことを、再沈法なかでも区別して特に「共沈法」ということがある。
【0038】
1.貧溶媒
先に、有機顔料の貧溶媒について説明する。貧溶媒は、有機顔料を溶解する良溶媒と相溶するもしくは均一に混ざるものであれば特に限定されない。貧溶媒としては、有機顔料の溶解度が0.02質量%以下であることが好ましく、0.01質量%以下であることがより好ましい。貧溶媒に対する有機顔料の溶解度にとくに下限はないが、通常用いられる有機顔料を考慮すると0.000001質量%以上が実際的である。この溶解度は酸またはアルカリ存在下での溶解度であってもよく、特に水素イオン濃度(pH)によって溶解度が顕著に変化する顔料種の場合、酸またはアルカリを適宜貧溶媒に混合して用いることが好ましい。
良溶媒の貧溶媒に対する溶解量は30質量%以上であることが好ましく、50質量%以上であることがより好ましい。良溶媒の貧溶媒に対する溶解量に特に上限はないが、任意の割合で混じり合うことが実際的である。
貧溶媒としては、水性溶媒(例えば、水、または塩酸、水酸化ナトリウム水溶液)、アルコール化合物溶媒、ケトン化合物溶媒、エーテル化合物溶媒、芳香族化合物溶媒、二硫化炭素溶媒、脂肪族化合物溶媒、ニトリル化合物溶媒、ハロゲン化合物溶媒、エステル化合物溶媒、イオン性液体、これらの混合溶媒などが挙げられ、水性溶媒、アルコール化合物溶媒、ケトン化合物溶媒、エーテル化合物溶媒、エステル化合物溶媒、またはこれらの混合物が好ましく、水性溶媒、アルコール化合物溶媒またはエステル化合物溶媒がより好ましい。
アルコール化合物溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、n−プロピルアルコール、1−メトキシ−2−プロパノールなどが挙げられる。ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンが挙げられる。エーテル化合物溶媒としては、例えば、ジメチルエーテル、ジエチルエーテル、テトラヒドロフランなどが挙げられる。芳香族化合物溶媒としては、例えば、ベンゼン、トルエンなどが挙げられる。脂肪族化合物溶媒としては、例えば、ヘキサンなどが挙げられる。ニトリル化合物溶媒としては、例えば、アセトニトリルなどが挙げられる。ハロゲン化合物溶媒としては、例えば、ジクロロメタン、トリクロロエチレンなどが挙げられる。エステル化合物溶媒としては、例えば、酢酸エチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート(MMPGAc)などが挙げられる。イオン性液体としては、例えば、1−ブチル−3−メチルイミダゾリウムとPFとの塩などが挙げられる。
貧溶媒は複数の溶媒を混合して用いても良く、系によっては良溶媒を混合して用いることも可能である。但しこの場合、顔料粒子の析出及び微細化、結晶化の妨げにならない範囲で混合することが必要である。
【0039】
2.良溶媒
次に、有機顔料を溶解する良溶媒について説明する。良溶媒は用いる顔料を溶解することが可能で、前記貧溶媒と相溶するもしくは均一に混ざるものであれば特に限定されない。有機顔料の良溶媒への溶解度は0.2質量%以上であることが好ましく、0.5質量%以上であることがより好ましい。溶解度に特に上限はないが、通常用いられる有機顔料を考慮すると50質量%以下であることが実際的である。この溶解度は酸またはアルカリの存在下で溶解された場合の溶解度であってもよい。貧溶媒と良溶媒との溶解度もしくは相溶性の好ましい範囲は前述のとおりである。
良溶媒としては、例えば、水性溶媒(例えば、水、または塩酸、水酸化ナトリウム水溶液)、アルコール化合物溶媒、アミド化合物溶媒、ケトン化合物溶媒、エーテル化合物溶媒、芳香族化合物溶媒、二硫化炭素溶媒、脂肪族化合物溶媒、ニトリル化合物溶媒、スルホキシド化合物溶媒、ハロゲン化合物溶媒、エステル化合物溶媒、イオン性液体、これらの混合溶媒などが挙げられ、水性溶媒、アルコール化合物溶媒、ケトン化合物溶媒、エーテル化合物溶媒、スルホキシド化合物溶媒、エステル化合物溶媒、アミド化合物溶媒、またはこれらの混合物が好ましく、水性溶媒、アルコール化合物溶媒、エステル化合物溶媒、スルホキシド化合物溶媒またはアミド化合物溶媒が好ましく、水性溶媒、スルホキシド化合物溶媒またはアミド化合物溶媒がさらに好ましく、スルホキシド化合物溶媒またはアミド化合物溶媒が特に好ましい。
スルホキシド化合物溶媒としては、例えば、ジメチルスルホキシド、ジエチルスルホキド、ヘキサメチレンスルホキシド、スルホランなどが挙げられる。アミド化合物溶媒としては、例えば、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、2−ピロリジノン、1,3−ジメチル−2−イミダゾリジノン、2−ピロリジノン、ε−カプロラクタム、ホルムアミド、N−メチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロパンアミド、ヘキサメチルホスホリックトリアミドなどが挙げられる。
また、良溶媒に有機顔料を溶解した有機顔料溶液の濃度としては、溶解時の条件における有機顔料の良溶媒に対する飽和濃度ないしこれの1/100程度の範囲が好ましい。有機顔料溶液の調製条件に特に制限はなく、常圧から亜臨界、超臨界条件の範囲を選択できる。常圧での温度は−10〜150℃が好ましく、−5〜130℃がより好ましく、0〜100℃が特に好ましい。
【0040】
本発明において有機顔料は、良溶媒に酸性でもしくはアルカリ性で溶解することも可能である。一般に分子内にアルカリ性で解離可能な基を有する顔料の場合はアルカリ性が、アルカリ性で解離する基が存在せず、プロトンが付加しやすい窒素原子を分子内に多く有するときは酸性が用いられる。例えば、キナクリドン、ジケトピロロピロール、ジスアゾ縮合化合物顔料はアルカリ性で、フタロシアニン化合物顔料は酸性で溶解される。
【0041】
アルカリ性で溶解させる場合に用いられる塩基は、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、もしくは水酸化バリウムなどの無機塩基、またはトリアルキルアミン、ジアザビシクロウンデセン(DBU)、金属アルコキシドなどの有機塩基であるが、好ましくは有機塩基である。使用される塩基の量は、顔料を均一に溶解可能な量であり、特に限定されないが、無機塩基の場合、好ましくは有機顔料に対して1.0〜30モル当量であり、より好ましくは1.0〜25モル当量であり、さらに好ましくは1.0〜20モル当量である。有機塩基の場合、好ましくは有機顔料に対して1.0〜100モル当量であり、より好ましくは1.0〜50モル当量であり、さらに好ましくは1.0〜20モル当量である。
【0042】
酸性で溶解させる場合に用いられる酸は、硫酸、塩酸、もしくは燐酸などの無機酸、または酢酸、トリフルオロ酢酸、シュウ酸、メタンスルホン酸、もしくはトリフルオロメタンスルホン酸などの有機酸であるが好ましくは無機酸である。特に好ましくは硫酸である。使用される酸の量は、有機顔料を均一に溶解可能な量であり、特に限定されないが、塩基に比べて過剰量用いられる場合が多い。無機酸および有機酸の場合を問わず、好ましくは有機顔料に対して3〜500モル当量であり、より好ましくは10〜500モル当量であり、さらに好ましくは30〜200モル当量である。
【0043】
アルカリまたは酸を有機溶媒と混合して、有機顔料の良溶媒として用いる際は、アルカリまたは酸を完全に溶解させるため、若干の水や低級アルコールなどのアルカリまたは酸に対して高い溶解度をもつ溶剤を、有機溶媒に添加することができる。水や低級アルコールの量は、有機顔料溶液全量に対して、50質量%以下が好ましく、30質量%以下がより好ましい。具体的には、水、メタノール、エタノール、n−プロパノール、イソプロパノール、ブチルアルコールなどを用いることができる。
【0044】
3.混合条件
有機粒子作製時、すなわち有機粒子を析出し、形成する際の貧溶媒の使用条件に特に制限はなく、常圧から亜臨界、超臨界条件の範囲を選択できる。常圧での温度は−30〜100℃が好ましく、−10〜60℃がより好ましく、0〜30℃が特に好ましい。
顔料溶液と貧溶媒の混合比(再沈液中の良溶媒/貧溶媒比)は体積比で1/50〜1/1が好ましく、1/40〜1/1がより好ましく、1/10〜1/1が特に好ましい。これは、フロー式リアクターの流路内における顔料溶液と貧溶媒の体積流量比と同じであってもよく、異なっていてもよい。例えば、混合比を1/2とする場合、具体例として以下のような方法をとることができる。
(i)良溶媒と貧溶媒の体積流量比を1/2とする
(ii)貧溶媒にあらかじめ良溶媒を(良溶媒/貧溶媒の体積比)=(1/4)の割合で混合した溶媒Aを用いて、顔料溶液と溶媒Aの体積流量比を1/5とする。この場合、顔料溶液中の良溶媒と、溶媒A中の良溶媒を足した量は、1+1=2となり、一方で溶媒A中の貧溶媒量は4であるので、良溶媒と貧溶媒の最終的な混合比は1/2となる
顔料再沈液中の顔料濃度は顔料粒子を生成することができれば特に制限されないが、再沈液1000mlに対して顔料粒子が10〜40000mgの範囲であることが好ましく、より好ましくは20〜30000mgの範囲であり、特に好ましくは40〜25000mgの範囲である。
【0045】
本発明においては、顔料溶液と貧溶媒の混合を迅速に行うことが好ましく、特にこの部分においては混合を促進する手段が好ましい。その方法のひとつに、混合場を乱流化することで混合を促進する、例えば、高速の流体を対向流の状態で流し、狭い空間内で衝突させるような手法が考えられる。ただし、混合様式は乱流支配下に限定されるものではなく、例えば特開2006−104448号公報に示されるようにY字型をなした流路の交点にて流体同士を層流状態で接触させ、分子拡散によって混合を図る手法も考えられる。例えば図1に示したリアクターの場合、流路13、14および15から顔料溶液を、流路12および16から貧溶媒を、小流量で流すことで層流による混合方式を取ることができる。
【0046】
本発明において流体の流動状態が乱流であるか層流であるかの判定は、管レイノルズ数をもって行う。すなわち、管代表長さ(本発明においては代表径という)をD[m]、流通する液の線流速をu[m/s](定義は後述)、液の密度及び粘度をそれぞれρ[kg/m]、η[Pa・s]とした場合、管レイノルズ数Re[−]は
Re=Duρ/η
によって定義される。本発明においては、Reが1000以上の状態が乱流、100以上1000未満の状態が遷移域、100未満の状態が層流であるとする。
上式の代表長さDとは、管内の流動に最も影響を与えるような管の物性のことであり、円筒管の場合はその直径、そうでない場合は以下の式によって定義される。
D=4A/p
ここで、A[m]は流路の断面積、p[m]は流路内において流体が壁に接する部分の長さ(浸辺長)である。
このDを用い、前述の線流速uは以下の様に定義される。
u=Q/{(D/2)×π}
ここでQは線流速を定義する流路を流れる流体の体積流量[m]である
流路途中で直径や断面形状を変化させた場合の代表径はその変化させた後の断面形状に応じて算出し、その代表径に応じて線流速及びレイノルズ数を求めればよい。
なお、本発明においては混合場の流動状態が重要となるが、混合場の状態を適切に測定することは困難であるため、以下の2条件を共に満たす場合に混合場の状態を乱流支配と推定する。
(i)混合される流体それぞれの混合直前の管レイノルズ数Reから、少なくとも混合場に接続する一流路内の流動状態が乱流とみなされる。
(ii)混合後の流体の混合直後の管レイノルズ数Reから、混合直後の流動状態が乱流とみなされる。
【0047】
上記粒子形成工程において、析出した顔料粒子の平均粒径が所望の範囲となるよう、リアクターの代表径、流量などを調整することが好ましい。本実施態様で用いるリアクターにおいては、各流路の流量を比較的大きくすることができ、かつ、このときに作られる混合場の混合状態が顔料粒子形成に適していると考えられる。リアクターの各原料供給用流路での顔料溶液および貧溶媒の線流速は、1〜30m/sであることが好ましい。
【0048】
[再沈法に用いる分散剤]
本発明においては、顔料を良溶媒に溶解させる際、顔料分散剤や顔料誘導体を共に溶解させてもよい。有機溶剤中では、分子鎖のエントロピー斥力を利用した反発作用により分散性を確保する観点から、分散剤としては高分子分散剤が好ましく用いられる。顔料誘導体の使用によっても粒子表面の修飾が可能であり、特に他の分散剤との相互作用力の向上、あるいは粒子の溶解性や結晶型などの制御が可能であることから、これらの観点で前記一般式(1)で表される化合物ないしはこれとは別の顔料誘導体も好ましく用いられる。
【0049】
用いることのできる分散剤として、例えば、アニオン性、カチオン性、両イオン性、ノニオン性もしくは顔料誘導体の、低分子または高分子分散剤を使用することができる。なお、高分子分散剤の分子量は溶液に均一に溶解できるものであれば制限なく用いることができるが、好ましくは分子量1,000〜2,000,000であり、5,000〜1,000,000がより好ましく、10,000〜500,000がさらに好ましく、10,000〜100,000が特に好ましい。また、高分子分散剤としては、後述する分散剤A及びBにおいて例示したものなどが挙げられる。
【0050】
アニオン性分散剤(アニオン性界面活性剤)としては、N−アシル−N−アルキルタウリン塩、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等を挙げることができる。これらアニオン性分散剤は、単独であるいは2種以上を組み合わせて用いることができる。
【0051】
カチオン性分散剤(カチオン性界面活性剤)には、四級アンモニウム塩、アルコキシル化ポリアミン、脂肪族アミンポリグリコールエーテル、脂肪族アミン、脂肪族アミンと脂肪族アルコールから誘導されるジアミンおよびポリアミン、脂肪酸から誘導されるイミダゾリンおよびこれらのカチオン性物質の塩が含まれる。これらカチオン性分散剤は、単独であるいは2種以上を組み合わせて用いることができる。
【0052】
両イオン性分散剤は、前記アニオン性分散剤が分子内に有するアニオン基部分とカチオン性分散剤が分子内に有するカチオン基部分を共に分子内に有する分散剤である。ノニオン性分散剤(ノニオン性界面活性剤)としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステルなどを挙げることができる。これらノニオン性分散剤は、単独であるいは2種以上を組み合わせて用いることができる。
【0053】
顔料誘導体型分散剤とは、親物質としての有機顔料から誘導され、その親構造を化学修飾することで製造される顔料誘導体型分散剤、あるいは化学修飾された顔料前駆体の顔料化反応により得られる顔料誘導体型分散剤と定義する。例えば、糖含有顔料誘導体型分散剤、ピペリジル含有顔料誘導体型分散剤、ナフタレンまたはペリレン誘導顔料誘導体型分散剤、メチレン基を介して顔料親構造に連結された官能基を有する顔料誘導体型分散剤、ポリマーで化学修飾された顔料親構造、スルホン酸基を有する顔料誘導体型分散剤、スルホンアミド基を有する顔料誘導体型分散剤、エーテル基を有する顔料誘導体型分散剤、あるいはカルボン酸基、カルボン酸エステル基またはカルボキサミド基を有する顔料誘導体型分散剤などがある。
【0054】
[顔料微粒子]
微粒子の粒径に関しては、計測法により数値化して集団の平均の大きさを表現する方法があるが、よく使用されるものとして、分布の最大値を示すモード径、積分分布曲線の中央値に相当するメジアン径、各種の平均径(数平均、長さ平均、面積平均、質量平均、体積平均等)などがあり、本発明においては、特に断りのない限り、平均粒径とは数平均径をいう。本発明の分散体中の微粒子(一次粒子)の平均粒径は100nm以下が好ましく、75nm以下がより好ましく、50nm以下である50nm以下であることが特に好ましい。本発明の分散体中の微粒子は、その大きさの単結晶または多結晶、会合体であっても、これを含むものであってもよい。
【0055】
粒子の均一性(単分散性)を表す指標として、本発明においては、特に断りのない限り、体積平均粒径(Mv)と数平均粒径(Mn)の比(Mv/Mn)を用いる。本発明の有機ナノ粒子(一次粒子)の単分散性(本発明において、単分散性とは粒径が揃っている度合いをいう。)、つまりMv/Mnは1.0〜2.0であることが好ましく、1.0〜1.8であることがより好ましく、1.0〜1.5であることが特に好ましい。
【0056】
有機粒子の粒径の測定方法としては、顕微鏡法、質量法、光散乱法、光遮断法、電気抵抗法、音響法、動的光散乱法が挙げられ、顕微鏡法、動的光散乱法が特に好ましい。顕微鏡法に用いられる顕微鏡としては、例えば、走査型電子顕微鏡、透過型電子顕微鏡などが挙げられる。動的光散乱法による粒子測定装置として、例えば、日機装社製ナノトラックUPA−EX150、大塚電子社製ダイナミック光散乱光度計DLS−7000シリーズ(いずれも商品名)などが挙げられる。本発明において粒径に関する値は、特に断らない限り、実施例で採用した方法により測定したものをいう。
【0057】
本発明の分散液中の微粒子は分散媒中での微粒子の結晶化度が65%以上であることが好ましいが、この結晶化度は80〜100%であることが好ましく、90〜100%であることがより好ましい。本発明の分散液中の微粒子の結晶子径は特に限定されないが、20〜500オングストロームであることが好ましく、20〜200オングストロームであることがより好ましい。
【0058】
本発明の微粒子においては、微粒子形成時に系内に投入された前記一般式(1)で表される化合物が微粒子内に取り込まれていることが好ましい。このとき、添加した化合物の質量(A)に対して、粒子に取り込まれた化合物の質量(B)の割合の百分率((B)/(A)×100)(以下、この率を「取込率」ということがある。)が10質量%以上であることが好ましく、20質量%以上がより好ましく、30質量%以上であることが特に好ましい。分散取込率の上限は特にないが計算上の上限が100質量%であり、98質量%以下であることが実際的である。
上記の取り込まれた化合物の質量(X)を、微粒子における該化合物以外の顔料成分の質量(Y)に対する比率の百分率((X)/(Y)×100)(以下、この比率を「埋包率」ということがある。)としていうと、5〜200質量%であり、8〜160質量%であることがより好ましい。
なお、一般式(1)で表される化合物が微粒子内に取り込まれている状態は、以下のようにして測定し評価することができる。
【0059】
(化合物の取り込み評価)
特定の化合物が粒子内に取り込まれているか否かの確認は、固体13C CP/MAS NMR測定(ブルカー・バイオスピン社製AVANCE DSX−300分光器と4 mmΦ HFX CP/MAS probe)を用いて行う。固体13C CP/MAS NMR測定は以下の通りに行うことができる。
顔料微粒子分散体を、それぞれメンブレンフィルター(MILLIPORE製 カットサイズ:0.05μm)を用いて吸引ろ過し、濃縮ペーストを作製する。前記濃縮ペーストを固体13C CP/MAS NMRの試料台にセットし、Goldman−shenパルス系列に基づき、H90°パルス幅4.5μs、初期の溶媒選択のための待ち時間200μs、CPコンタクトタイム1msとし、スピン拡散時間を0.5〜200msまで変化させて測定を行う。積算回数は4096回、繰り返し時間は試料のHスピン−格子緩和時間の5倍を目安に3〜10秒とする。マジックアングルスピニングの回転数は、試料により8000〜10000Hzとする。
各々のスピン拡散時間におけるスペクトルをピーク分離によって顔料及び分散剤のピーク面積を算出し、一次元拡散モデルを仮定した拡散距離Lは、スピン拡散時間tmに対して、 L=1.1(tm)1/2 の関係にあることを用いて、溶媒分子からの距離に対するピーク面積のプロットから粒子構造を判断する。
【0060】
[濃縮及び再分散]
1.分散体の濃縮
有機顔料微粒子析出後の混合液からの溶媒分の除去工程としては、特に限定されないが、例えば、フィルタなどによりろ過する方法、遠心分離によって有機顔料微粒子を沈降させて濃縮する方法などが挙げられる。フィルタろ過の装置は、例えば、減圧あるいは加圧ろ過のような装置を用いることができる。好ましいフィルタとしては、ろ紙、ナノフィルタ、ウルトラフィルタなどを挙げることができる。遠心分離機は水不溶性化合物微粒子を沈降させることができればどのような装置を用いてもよい。例えば、汎用の装置の他にもスキミング機能(回転中に上澄み層を吸引し、系外に排出する機能)付きのものや、連続的に固形物を排出する連続遠心分離機などが挙げられる。遠心分離条件は、遠心力(重力加速度の何倍の遠心加速度がかかるかを表す値)で50〜10000が好ましく、100〜8000がより好ましく、150〜6000が特に好ましい。遠心分離時の温度は、分散液の溶剤種によるが、−10〜80℃が好ましく、−5〜70℃がより好ましく、0〜60℃が特に好ましい。また、溶媒分の除去工程として、真空凍結乾燥により溶媒を昇華させて濃縮する方法、加熱ないし減圧による溶媒を乾燥させて濃縮する方法、それらを組合せた方法などを用いることもできる。
【0061】
2.再分散
有機顔料の微粒子は例えばビヒクル中で分散させた状態で用いることができる。前記ビヒクルとは、塗料でいえば、液体状態にあるときに有機顔料を分散させている媒質の部分をいい、液状であって前記水不溶性化合物と結合して塗膜を固める部分(バインダー)と、これを溶解希釈する成分(有機溶媒)とを含む。なお本発明においては、微粒子形成時に用いる高分子化合物および/または再分散化に用いる有機顔料分散剤を総称してバインダーと称する。
【0062】
再分散化後の微粒子の分散体の微粒子濃度は目的に応じて適宜定められるが、好ましくは分散体全量に対して微粒子が2〜30質量%であることが好ましく、4〜20質量%であることがより好ましく、5〜15質量%であることが特に好ましい。上記のようなビヒクル中に分散させる場合に、バインダーおよび溶解希釈成分の量は水不溶性化合物の種類などにより適宜定められるが、分散体全量に対して、バインダーは1〜30質量%であることが好ましく、3〜20質量%であることがより好ましく、5〜15質量%であることが特に好ましい。溶解希釈成分は5〜80質量%であることが好ましく、10〜70質量%であることがより好ましい。
【0063】
有機顔料の微粒子を貧溶媒液に用いたのと同一の有機溶媒に再分散させることができ、別の分散剤等を添加しなくても、貧溶媒と同一の有機溶媒中で有機顔料微粒子の凝集状態が自発的に解かれ媒体中に分散する性質を有することが好ましく、この性質があることを「自己分散しうる」ないし「自己分散性を有する」という。ただし、本発明において再分散性を一層向上させるために、微粒子の再分散時に顔料分散剤等を添加してもよい。かかる観点から再分散困難な凝集(aggregate)と再分散可能な軟凝集(agglomerate)を区別していうことがある。
【0064】
このような軟凝集状態(agglomerate)にある微粒子を再分散する方法として、例えば超音波による分散方法や物理的なエネルギーを加える方法を用いることができる。用いられる超音波照射装置は10kHz以上の超音波を印加できる機能を有することが好ましく、例えば、超音波ホモジナイザー、超音波洗浄機などが挙げられる。超音波照射中に液温が上昇すると、ナノ粒子の熱凝集が起こるため、液温を1〜100℃とすることが好ましく、5〜60℃がより好ましい。温度の制御方法は、分散液温度の制御、分散液を温度制御する温度調整層の温度制御、などによって行うことができる。物理的なエネルギーを加えて顔料ナノ粒子を分散させる際に使用する分散機としては、特に制限はなく、例えば、ニーダー、ロールミル、アトライダー、スーパーミル、ディゾルバ、ホモミキサー、サンドミル等の分散機が挙げられる。また、高圧分散法や、微小粒子ビーズの使用による分散方法も好適なものとして挙げられる。
【0065】
[高分子分散剤]
本発明においては、上述のとおり再沈法で調製した分散体の水系の溶媒分を除去することが好ましい。上記の水相を除去する工程の後には乾燥工程を有しないことが好ましい。このとき顔料の分散性をより向上させる目的で、特定の顔料分散剤や界面活性剤等の分散剤などを本発明の効果を損なわない限りにおいて加えることもできる。なお、ここで用いる分散剤を先に述べた再沈法において使用し、例えば、顔料微粒子の析出時に共存させてもよい。なお、下記分散剤として主に高分子化合物を例示するが、本発明において、分子量というとき特に断らない限り質量平均分子量を意味し、分子量及び分散度は下記の測定方法で測定した値をいう。
【0066】
[高分子化合物の分子量・分散度の測定方法]
分子量及び分散度は特に断らない限りGPC(ゲルろ過クロマトグラフィー)法を用いて測定する。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン−ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2〜6本連結させて用いることが好ましい。用いる溶媒は、テトラヒドロフラン等のエーテル系溶媒、N−メチルピロリジノン等のアミド系溶媒が挙げられるが、テトラヒドロフラン等のエーテル系溶媒が好ましい。測定は、溶媒の流速が0.1〜2mL/minの範囲で行うことが好ましく、0.5〜1.5mL/minの範囲で行うことが最も好ましい。この範囲内で測定を行うことで、装置に負荷がかからず、さらに効率的に測定ができる。測定温度は10〜50℃で行うことが好ましく、20〜40℃で行うことが最も好ましい。
【0067】
以下に分子量測定の具体的な条件を示す。
装置:HLC−8220GPC(東ソー(株)製)
検出器:示差屈折計(RI検出器)
プレカラム:TSKGUARDCOLUMN MP(XL)
6mm×40mm(東ソー(株)製)
サンプル側カラム:以下の2本を直結(全て東ソー(株)製)
・TSK−GEL Multipore−HXL−M 7.8mm×300mm
リファレンス側カラム:サンプル側カラムに同じ
恒温槽温度:40℃
移動層:テトラヒドロフラン
サンプル側移動層流量:1.0mL/分
リファレンス側移動層流量:0.3mL/分
試料濃度:0.1重量%
試料注入量:100μL
データ採取時間:試料注入後16分〜46分
サンプリングピッチ:300msec
【0068】
1.分散剤A
本発明の顔料分散体には、加工顔料の分散性をより向上させる目的で、顔料分散剤や界面活性剤等の分散剤を加えることもできる。分散剤(顔料分散剤)としては、高分子分散剤〔例えば、ポリアミドアミンとその塩、ポリカルボン酸とその塩、高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、ナフタレンスルホン酸ホルマリン縮合物〕、及び、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンアルキルアミン、アルカノールアミン、顔料誘導体等を挙げることができる。高分子分散剤は、その構造からさらに直鎖状高分子、末端変性型高分子、グラフト型高分子、ブロック型高分子に分類することができる。
【0069】
高分子分散剤は顔料の表面に吸着し、再凝集を防止する様に作用する。そのため、顔料表面へのアンカー部位を有する末端変性型高分子、グラフト型高分子、ブロック型高分子が好ましい構造として挙げることができる。一方で、顔料誘導体は顔料表面を改質することで、高分子分散剤の吸着を促進させる効果を有する。前記高分子分散剤は、分散工程において、顔料の表面に吸着し、再凝集を防止する様に作用する。そのため、顔料表面へのアンカー部位を有するブロック型高分子、グラフト型高分子、末端変性型高分子が好ましい構造として挙げることができる。一方で、顔料誘導体は顔料表面を改質することで、高分子分散剤の吸着を促進させる効果を有する。
【0070】
(グラフト型高分子)
グラフト型高分子については、特に制限されないが、特開昭54−37082号公報、特開昭61−174939号公報などに記載のポリアルキレンイミンとポリエステル化合物を反応させた化合物、特開平9−169821号公報に記載のポリアリルアミンの側鎖のアミノ基をポリエステルで修飾した化合物、特開昭60−166318号公報に記載のポリエステルポリオール付加ポリウレタン等が好適に挙げられ、更に、特開平9−171253号公報や、マクロモノマーの化学と工業(アイピーシー出版部、1989年)などにあるように、重合性オリゴマー(以下、マクロモノマーと称する)を共重合成分とするグラフト型高分子も好適に挙げることができる。また、顔料に吸着して、良好な分散性を与えるという点において、特開2003−238837に記載の有機色素部分を有するグラフト型高分子が好ましい。グラフト型高分子の枝部は、ポリスチレン、ポリエチレンオキシド、ポリプロピレンオキシド、ポリ(メタ)アクリル酸エステル、ポリカプロラクトン等が好適に挙げられるが、ポリカプロラクトン鎖を有するグラフト型高分子がより好ましい。前記グラフト型高分子の市販品としては、ソルスパース24000、同28000、同32000、同38500、同39000、同55000(以上ルーブリゾール社製)、Disperbyk−161、同−171、同−174(以上BYK Chemie社製)等[いずれも商品名]が挙げられる。
【0071】
(末端変性型高分子)
末端変性型高分子としては、例えば、特開平9−77994号公報や、特開2002−273191号公報、特開2007−277514公報、特開2007−140487公報などに記載されているポリマーの末端に官能基を有する高分子を挙げることができる。
【0072】
(ブロック型高分子)
ブロック型高分子としては、特に限定されないが、顔料吸着ブロックと、顔料に吸着しないブロックとからなるブロック型高分子が挙げられる。顔料吸着ブロックを構成する単量体としては、特に制限されないが、例えば、顔料に吸着し得る官能基を有するモノマーが挙げられる。具体的には、有機色素構造あるいは複素環構造を有するモノマー、酸性基を有するモノマー、塩基性窒素原子を有するモノマーなどを挙げることができる。有機色素構造あるいは複素環構造を有するモノマーとしては、例えば、特開2003−238837に記載の有機色素骨格やマレイミド誘導体などが挙げられる。ブロック型高分子としては、市販品を利用することも可能である。具体的な例としては、Disperbyk−2000、同−2001(以上BYK Chemie社製)、EFKA4330、同4340(以上EFKA社製)等[いずれも商品名]を挙げることができる。
【0073】
分散体中の分散剤Aの使用量は特に限定されないが、カラーフィルタとの色材としての利用を考慮すると例えば、顔料100質量部に対して、10〜400質量部であることが好ましく、20〜200質量部であることがより好ましい。
【0074】
2.分散剤B
本発明においては、下記一般式(I)及び(II)のいずれかで表される繰り返し単位から選択される少なくとも1種の繰り返し単位を含む高分子化合物(以下、「分散剤B」ということがある)を含有することが好ましい。
【0075】
【化7】

【0076】
上記一般式(I)及び(II)中、R〜Rは、各々独立に、水素原子、又は1価の有機基を表し、X及びXは、各々独立に、−CO−、−C(=O)O−、−CONH−、−OC(=O)−、又はフェニレン基を表し、L及びLは、各々独立に、単結合、又は2価の有機連結基を表し、A及びAは、各々独立に、1価の有機基を表し、m及びnは、各々独立に、2〜8の整数を表し、p及びqは、各々独立に、1〜100の整数を表す。
【0077】
〜Rは、各々独立に、水素原子、又は1価の有機基を表す。1価の有機基としては、置換若しくは無置換のアルキル基が好ましい。アルキル基としては、炭素数1〜12のアルキル基が好ましく、炭素数1〜8のアルキル基がより好ましく、炭素数1〜4のアルキル基が特に好ましい。アルキル基が置換基を有する場合、該置換基としては、例えば、ヒドロキシ基、アルコキシ基(好ましくは炭素数1〜5、より好ましくは炭素数1〜3がより好ましい。)メトキシ基、エトキシ基、シクロヘキシロキシ基等が挙げられる。好ましいアルキル基として、具体的には、例えば、メチル基、エチル基、プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、n−ヘキシル基、シクロヘキシル基、2−ヒドロキシエチル基、3−ヒドロキシプロピル基、2−ヒドロキシプロピル基、2−メトキシエチル基が挙げられる。R、R、R、及びRとしては、水素原子が好ましく、R及びRとしては、水素原子又はメチル基が、顔料表面への吸着効率の点からも最も好ましい。
【0078】
及びXは、各々独立に、−CO−、−C(=O)O−、−CONH−、−OC(=O)−、又はフェニレン基を表す。中でも、−C(=O)O−、−CONH−、フェニレン基が、顔料への吸着性の観点で好ましく、−C(=O)O−が最も好ましい。
【0079】
及びLは、各々独立に、単結合、又は2価の有機連結基を表す。2価の有機連結基としては、置換若しくは無置換のアルキレン基や、該アルキレン基とヘテロ原子又はヘテロ原子を含む部分構造とからなる2価の有機連結基が好ましい。ここで、アルキレン基としては、炭素数1〜12のアルキレン基が好ましく、炭素数1〜8のアルキレン基が更に好ましく、炭素数1〜4のアルキレン基が特に好ましい。また、ヘテロ原子を含む部分構造におけるヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子があげられ、中でも、酸素原子、窒素原子が好ましい。好ましいアルキレン基として、具体的には、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基が挙げられる。アルキレン基が置換基を有する場合、該置換基としては、例えば、ヒドロキシ基等が挙げられる。2価の有機連結基としては、上記のアルキレン基の末端に、−C(=O)−、−OC(=O)−、−NHC(=O)−から選ばれるヘテロ原子又はヘテロ原子を含む部分構造を有し、該ヘテロ原子又はヘテロ原子を含む部分構造を介して、隣接した酸素原子と連結したものが、顔料への吸着性の点から好ましい。ここで、隣接した酸素原子とは、一般式(I)におけるL、及び一般式(II)におけるLに対し、側鎖末端側で結合する酸素原子を意味する。
【0080】
及びAとしては、分散安定性、現像性の点から、炭素原子数1〜20までの直鎖状、炭素原子数3から20までの分岐状、及び炭素原子数5〜20までの環状のアルキル基から選ばれる基が好ましく、炭素原子数4〜15までの直鎖状、炭素原子数4〜15までの分岐状、及び炭素原子数6〜10までの環状のアルキル基から選ばれる基がより好ましく、炭素原子数6〜10までの直鎖状及び炭素原子数6〜12までの分岐状のアルキル基から選ばれる基が更に好ましい。
【0081】
m及びnは、各々独立に、2〜8の整数を表す。分散安定性、現像性の点から、4〜6が好ましく、5が特に好ましい。
【0082】
p及びqは、各々独立に、1〜100の整数を表す。pの異なるもの、qの異なるものが2種以上、混合されてもよい。p及びqは、分散安定性、現像性の点から、5〜60が好ましく、5〜40がより好ましく、5〜20が更に好ましい。
【0083】
本実施態様における分散剤Bとしては、分散安定性の点から、前記一般式(I)で表される繰り返し単位を含むものが好ましい。
【0084】
また、一般式(I)で表される繰り返し単位としては、下記一般式(I)−2で表される繰り返し単位であることがより好ましい。
【0085】
【化8】

【0086】
上記一般式(I)−2中、R〜Rは、各々独立に、水素原子、又は1価の有機基を表し、Laは、炭素数2〜10のアルキレン基を表し、Lbは、−C(=O)−、又は−NHC(=O)−を表し、Aは、1価の有機基を表し、mは、2〜8の整数を表し、pは、1〜100の整数を表す。
【0087】
一般式(I)、(II)、又は、(I)−2で表される繰り返し単位は、それぞれ、下記一般式(i)、(ii)、又は、(i)−2で表される単量体を、重合あるいは共重合することにより、高分子化合物の繰り返し単位として導入される。
【0088】
【化9】

【0089】
上記一般式(i)、(ii)、及び(i)−2中、R〜Rは、各々独立に、水素原子、又は1価の有機基を表し、X及びXは、各々独立に、−CO−、−C(=O)O−、−CONH−、−OC(=O)−、又はフェニレン基を表し、L及びLは、各々独立に、単結合、又は2価の有機連結基を表し、Laは、炭素数2〜10のアルキレン基を表し、Lbは、−C(=O)−、又は−NHC(=O)−を表し、A及びAは、各々独立に、1価の有機基を表し、m及びnは、各々独立に、2〜8の整数を表し、p及びqは、各々独立に、1〜100の整数を表す。
【0090】
以下に、一般式(i)、(ii)、又は(i)−2で表される単量体の好ましい具体例〔単量体(A−1)〜(A−23)〕を以下に挙げるが、本発明はこれらに制限されるものではない。
【0091】
【化10】

【0092】
【化11】

【0093】
【化12】

【0094】
【化13】

【0095】
本実施態様における分散剤Bは、一般式(I)及び(II)のいずれかで表される繰り返し単位から選択される少なくとも1種の繰り返し単位を含んでいればよく、1種のみ含むものであってもよいし、2種以上を含んでもよい。
【0096】
また、分散剤Bにおいて、一般式(I)及び(II)のいずれかで表される繰り返し単位の含有量は、特に制限はないが、重合体に含有される全繰り返し単位を100質量%とした場合に、一般式(I)及び(II)のいずれかで表される繰り返し単位を5質量%以上含有することが好ましく、50質量%含有することがより好ましく、50質量%〜80質量%含有することが更に好ましい。
【0097】
本実施態様における分散剤Bは、顔料への吸着を高める目的で、顔料に吸着し得る官能基を有する単量体と、前述の一般式(i)、(ii)、(i)−2で表される単量体と、を共重合した高分子化合物であることが好ましい。顔料に吸着し得る官能基を有する単量体としては、具体的には、有機色素構造あるいは複素環構造を有するモノマー、酸性基を有するモノマー、塩基性窒素原子を有するモノマー、イオン性基を有するモノマーなどを挙げることができる。中でも、顔料への吸着力の点で、有機色素構造あるいは複素環構造を有するモノマーが好ましい。
【0098】
有機色素構造あるいは複素環構造を有するモノマーとしては、下記一般式(11)で表される単量体、マレイミド、及びマレイミド誘導体からなる群より選択される1種であることが好ましい。中でも、下記一般式(11)で表される単量体であることが特に好ましい。
【0099】
【化14】

【0100】
上記一般式(11)中、Rは、水素原子、又はアルキル基を表す。Rは、単結合、又は2価の連結基を表す。Yは、−CO−、−C(=O)O−、−CONH−、−OC(=O)−、又はフェニレン基を表す。Zは、含窒素複素環基を有する基を表す。
【0101】
一般式(11)におけるRで表されるアルキル基としては、炭素数1〜12のアルキル基が好ましく、炭素数1〜8のアルキル基がより好ましく、炭素数1〜4のアルキル基が特に好ましい。Rで表されるアルキル基が置換基を有する場合、該置換基としては、例えば、ヒドロキシ基や、メトキシ基、エトキシ基、シクロヘキシロキシ基等のアルコキシ基が好ましい。該アルコキシ基としては、炭素数1〜5であるものが好ましく、炭素数1〜3のものが好ましい。
【0102】
一般式(11)におけるRで表される好ましいアルキル基として、具体的には、例えば、メチル基、エチル基、プロピル基、n−ブチル基、i−ブチル基、t−ブチル基、n−ヘキシル基、シクロヘキシル基、2−ヒドロキシエチル基、3−ヒドロキシプロピル基、2−ヒドロキシプロピル基、2−メトキシエチル基が挙げられる。中でも、Rとしては、水素原子又はメチル基が最も好ましい。
【0103】
一般式(11)におけるRで表される2価の連結基としては、アルキレン基、又はアルキレン基を含む2価の基が好ましい。該アルキレン基としては、炭素数1〜12のアルキレン基が好ましく、炭素数1〜12のアルキレン基がより好ましく、炭素数1〜8のアルキレン基が更に好ましく、炭素数1〜4のアルキレン基が特に好ましい。また、このアルキレン基が置換基を有する場合、該置換基としては、例えば、ヒドロキシ基等が挙げられる。Rで表される好ましいアルキレン基として、具体的には、例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基が挙げられる。
【0104】
一般式(11)におけるRで表されるアルキレン基を含む2価の基としては、上記アルキレン基がヘテロ原子(例えば、酸素原子、窒素原子、又は硫黄原子)を介して2以上連結したものであってもよい。また、Rで表されるアルキレン基を含む2価の基としては、上記アルキレン基におけるZに結合する方の末端に、−O−、−S−、−C(=O)O−、−CONH−、−C(=O)S−、−NHCONH−、−NHC(=O)O−、−NHC(=O)S−、−OC(=O)−、−OCONH−、及び−NHCO−から選ばれるヘテロ原子又はヘテロ原子を含む部分構造が結合したものであってもよい。
【0105】
一般式(11)におけるZで表される含窒素複素環基を構成する含窒素複素環構造として、具体的には、例えば、ピリジン環、ピラジン環、ピリミジン環、ピロール環、イミダゾール環、トリアゾール環、テトラゾール環、インドール環、キノリン環、アクリジン環、フェノチアジン環、フェノキサジン環、アクリドン環、アントラキノン環、ベンズイミダゾール構造、ベンズトリアゾール構造、ベンズチアゾール構造、環状アミド構造、環状ウレア構造、及び環状イミド構造を有するものが挙げられる。これらの含窒素複素環構造は、置換基を有していてもよく、該置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、脂肪族エステル基、芳香族エステル基、アルコキシカルボニル基等が挙げられる。
【0106】
Zで表される含窒素複素環基は、中でも、炭素数が6以上である含窒素複素環構造を有する基であることがより好ましく、炭素数が6以上12以下である含窒素複素環構造を有する基であることが特に好ましい。炭素数が6以上である含窒素複素環構造として、具体的には、フェノチアジン環、フェノキサジン環、アクリドン環、アントラキノン環、ベンズイミダゾール構造、ベンズトリアゾール構造、ベンズチアゾール構造、環状アミド構造、環状ウレア構造、及び環状イミド構造が好ましく、下記一般式(12)、(13)又は(14)で表される構造であることが特に好ましい。
【0107】
【化15】

【0108】
一般式(12)中、Xは、単結合、アルキレン基(例えば、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基など)、−O−、−S−、−NR−、及び−C(=O)−からなる群より選ばれるいずれかである。ここでRは、水素原子又はアルキル基を表す。Rがアルキル基を表す場合のアルキル基は、好ましくは炭素数1〜18のアルキル基、より好ましくは炭素数1〜6のアルキル基であり、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、n−オクチル基、2−エチルヘキシル基、n−オクタデシル基などが挙げられる。上記した中でも、一般式(12)におけるXとしては、単結合、メチレン基、−O−、又は−C(=O)−が好ましく、−C(=O)−が特に好ましい。
【0109】
一般式(14)中、Y及びZは、各々独立に、−N=、−NH−、−N(R)−、−S−、又は−O−を表す。Rはアルキル基を表し、該アルキル基は、好ましくは炭素数1〜18のアルキル基、より好ましくは炭素数1〜6のアルキル基であり、例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、n−オクチル基、2−エチルヘキシル基、n−オクタデシル基などが挙げられる。上記した中でも、一般式(14)における、Y及びZとしては、−N=、−NH−、及び−N(R)−が特に好ましい。Y及びZの組み合わせとしては、Y及びZのいずれか一方が−N=であり他方が−NH−である組み合わせ(イミダゾリル基)が好ましいものとして挙げられる。
【0110】
一般式(12)、(13)、又は(14)中、環A、環B、環C、及び環Dは、各々独立に、芳香環を表す。該芳香環としては、例えば、ベンゼン環、ナフタレン環、インデン環、アズレン環、フルオレン環、アントラセン環、ピリジン環、ピラジン環、ピリミジン環、ピロール環、イミダゾール環、インドール環、キノリン環、アクリジン環、フェノチアジン環、フェノキサジン環、アクリドン環、アントラキノン環等が挙げられ、中でも、ベンゼン環、ナフタレン環、アントラセン環、ピリジン環、フェノキサジン環、アクリジン環、フェノチアジン環、フェノキサジン環、アクリドン環、アントラキノン環が好ましく、ベンゼン環、ナフタレン環、ピリジン環が特に好ましい。
【0111】
具体的には、一般式(12)における環A及び環Bとしては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピラジン環、等が挙げられる。一般式(13)における環Cとしては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピラジン環、等が挙げられる。一般式(14)における環Cとしては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピラジン環、等が挙げられる。一般式(12)、(13)又は(14)で表される構造の中でも、分散性、分散液の経時安定性の点からは、ベンゼン環、ナフタレン環がより好ましく、一般式(12)又は(14)においては、ベンゼン環が更に好ましく、一般式(13)においては、ナフタレン環が更に好ましい。
【0112】
また、本発明におけるマレイミド誘導体とは、N位がアルキル基やアリール基などの置換基により置換されているマレイミドを意味する。
【0113】
以下、一般式(11)で表される単量体、マレイミド、及びマレイミド誘導体の好ましい具体例(単量体M−1〜M−33)を以下に挙げるが、本発明はこれらに制限されるものではない。
【0114】
【化16】

【0115】
【化17】

【0116】
【化18】

【0117】
【化19】

【0118】
本実施態様における分散剤Bは、一般式(11)で表される単量体、マレイミド、及びマレイミド誘導体からなる群より選択された1種の単量体に由来する繰り返し単位を、1種のみ含むものであってもよいし、2種以上を含んでもよい。
【0119】
本実施態様における分散剤B中、一般式(11)で表される単量体、マレイミド、及びマレイミド誘導体からなる群より選択された1種の単量体に由来する繰り返し単位の含有量は、重合体に含有される全繰り返し単位を100質量%とした場合に、5質量%以上含有することが好ましく、10質量%〜50質量%含有することがより好ましい。すなわち、顔料の1次粒子の凝集体である2次凝集体の生成を効果的に抑制、或いは、2次凝集体の凝集力を効果的に弱めるためには、一般式(11)で表される単量体、マレイミド、及びマレイミド誘導体からなる群より選択された1種の単量体に由来する重合単位の含有量は5質量%以上であることが好ましい。また、顔料分散体を含有する着色感光性組成物によりカラーフィルタを製造する際の現像性の観点からは、一般式(1)で表される単量体、マレイミド、及びマレイミド誘導体からなる群より選択された1種の単量体に由来する重合単位の含有量は50質量%以下であることが好ましい。
【0120】
酸性基を有するモノマーの例としては、カルボキシル基を有するビニルモノマーやスルホン酸基を有するビニルモノマーが挙げられる。カルボキシル基を有するビニルモノマーとして、(メタ)アクリル酸、ビニル安息香酸、マレイン酸、マレイン酸モノアルキルエステル、フマル酸、イタコン酸、クロトン酸、桂皮酸、アクリル酸ダイマーなどが挙げられる。また、2−ヒドロキシエチル(メタ)アクリレートなどの水酸基を有する単量体と無水マレイン酸や無水フタル酸、シクロヘキサンジカルボン酸無水物のような環状無水物との付加反応物、ω−カルボキシ−ポリカプロラクトンモノ(メタ)アクリレートなども利用できる。また、カルボキシル基の前駆体として無水マレイン酸、無水イタコン酸、無水シトラコン酸などの無水物含有モノマーを用いてもよい。なおこれらの内では、共重合性やコスト、溶解性などの観点から(メタ)アクリル酸が特に好ましい。
【0121】
また、スルホン酸基を有するビニルモノマーとして、2−アクリルアミド−2−メチルプロパンスルホン酸などが挙げられ、リン酸基を有するビニルモノマーとして、リン酸モノ(2−アクリロイルオキシエチルエステル)、リン酸モノ(1−メチル−2−アクリロイルオキシエチルエステル)などが挙げられる。
【0122】
本実施態様における分散剤Bは、上述のような酸性基を有するモノマーに由来する繰り返し単位を含むことが好ましい。このような繰り返し単位を含むことにより、本発明の顔料分散体を着色感光性組成物に適用した場合において、未露光部の現像除去性に優れる。
【0123】
本実施態様における分散剤Bは、酸性基を有するモノマーに由来する繰り返し単位を、1種のみ含むものであってもよいし、2種以上を含んでもよい。分散剤Bにおいて、酸性基を有するモノマーに由来する繰り返し単位の含有量は、好ましくは50mgKOH/g以上であり、特に好ましくは50mgKOH/g〜200mgKOH/gである。即ち、現像液中での析出物の生成抑制という点では、酸性基を有するモノマーに由来する繰り返し単位の含有量は50mgKOH/g以上であることが好ましい。顔料の1次粒子の凝集体である2次凝集体の生成を効果的に抑制、あるいは、2次凝集体の凝集力を効果的に弱めるためには、酸性基を有するモノマーに由来する繰り返し単位の含有量は50mgKOH/g〜200mgKOH/gであることが好ましい。
【0124】
塩基性窒素原子を有するモノマーとしては、(メタ)アクリル酸エステルとして、(メタ)アクリル酸N,N−ジメチルアミノエチル、(メタ)アクリル酸N,N−ジメチルアミノプロピル、(メタ)アクリル酸1−(N,N−ジメチルアミノ)−1,1−ジメチルメチル、(メタ)アクリル酸N,N−ジメチルアミノヘキシル、(メタ)アクリル酸N,N−ジエチルアミノエチル、(メタ)アクリル酸N,N−ジイソプロピルアミノエチル、(メタ)アクリル酸N,N−ジ−n−ブチルアミノエチル、(メタ)アクリル酸N,N−ジ−i−ブチルアミノエチル、(メタ)アクリル酸モルホリノエチル、(メタ)アクリル酸ピペリジノエチル、(メタ)アクリル酸1−ピロリジノエチル、(メタ)アクリル酸N,N−メチル−2−ピロリジルアミノエチル及び(メタ)アクリル酸N,N−メチルフェニルアミノエチルなどが挙げられ、(メタ)アクリルアミド類として、N−(N’,N’−ジメチルアミノエチル)アクリルアミド、N−(N’,N’−ジメチルアミノエチル)メタクリルアミド、N−(N’,N’−ジエチルアミノエチル)アクリルアミド、N−(N’,N’−ジエチルアミノエチル)メタクリルアミド、N−(N’,N’−ジメチルアミノプロピル)アクリルアミド、N−(N’,N’−ジメチルアミノプロピル)メタクリルアミド、N−(N’,N’−ジエチルアミノプロピル)アクリルアミド、N−(N’,N’−ジエチルアミノプロピル)メタクリルアミド、2−(N,N−ジメチルアミノ)エチル(メタ)アクリルアミド、2−(N,N−ジエチルアミノ)エチル(メタ)アクリルアミド、3−(N,N−ジエチルアミノ)プロピル(メタ)アクリルアミド、3−(N,N−ジメチルアミノ)プロピル(メタ)アクリルアミド、1−(N,N−ジメチルアミノ)−1,1−ジメチルメチル(メタ)アクリルアミド及び6−(N,N−ジエチルアミノ)ヘキシル(メタ)アクリルアミド、モルホリノ(メタ)アクリルアミド、ピペリジノ(メタ)アクリルアミド、N−メチル−2−ピロリジル(メタ)アクリルアミドなどが挙げられ、スチレン類として、N,N−ジメチルアミノスチレン、N,N−ジメチルアミノメチルスチレン等、が挙げられる。
【0125】
また、ウレア基、ウレタン基、配位性酸素原子を有する、炭素数4以上の炭化水素基、アルコキシシリル基、エポキシ基、イソシアネート基、水酸基を有するモノマーを用いることも可能である。具体的には、例えば、以下の構造のモノマーを挙げることができる。
【0126】
【化20】

【0127】
イオン性基を有するモノマーとしては、イオン性基を有するビニルモノマー(アニオン性ビニルモノマー、カチオン性ビニルモノマー)が挙げられる。この例としては、アニオン性ビニルモノマーとして、前記酸性基を有するビニルモノマーのアルカリ金属塩や、有機アミン(例えば、トリエチルアミン、ジメチルアミノエタノール等の3級アミン)との塩などが挙げられ、カチオン性ビニルモノマーとしては、前記含窒素ビニルモノマーを、ハロゲン化アルキル(アルキル基:C1〜18、ハロゲン原子:塩素原子、臭素原子又はヨウ素原子);塩化ベンジル、臭化ベンジル等のハロゲン化ベンジル;メタンスルホン酸等のアルキルスルホン酸エステル(アルキル基:C1〜18);ベンゼンスルホン酸、トルエンスルホン酸等のアリールスルホン酸アルキルエステル(アルキル基:C1〜18);硫酸ジアルキル(アルキル基:C1〜4)等で4級化させたもの、ジアルキルジアリルアンモニウム塩などが挙げられる。
【0128】
顔料に吸着し得る官能基を有するモノマーは、分散する顔料の種類に応じて、適宜選択することができ、これらは単独で用いてもよく、2種以上を併用してもよい。
【0129】
本実施態様における分散剤Bは、その効果を損なわない範囲において、更に、共重合可能なビニルモノマーに由来する繰り返し単位を含んでいてもよい。
【0130】
ここで使用可能なビニルモノマーとしては、特に制限されないが、例えば、(メタ)アクリル酸エステル類、クロトン酸エステル類、ビニルエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、イタコン酸ジエステル類、(メタ)アクリルアミド類、ビニルエーテル類、ビニルアルコールのエステル類、スチレン類、(メタ)アクリロニトリルなどが好ましい。このようなビニルモノマーの具体例としては、例えば以下のような化合物が挙げられる。なお、本明細書において「アクリル、メタクリル」のいずれか或いは双方を示す場合「(メタ)アクリル」と記載することがある。
【0131】
本実施態様における分散剤Bの好ましい態様は、少なくとも一般式(i)、(ii)、又は(i)−2で表される単量体と、有機色素構造あるいは複素環構造を有するモノマーと、を共重合したもので、更に好ましくは、少なくとも前述の一般式(i)−2で表される単量体と、前述の一般式(11)で表される単量体と、酸基を有するモノマーと、を共重合したものである。これにより、顔料吸着に優れ、且つ、現像性に優れた顔料分散体を与えることができる。
【0132】
本実施態様に分散剤Bの好ましい分子量は、質量平均分子量(Mw)で1,000〜100,000の範囲、数平均分子量(Mn)で400〜50,000の範囲であることが好ましい。質量平均分子量(Mw)で5,000〜50,000の範囲、数平均分子量(Mn)で2,000〜30,000の範囲であることがより好ましい。特に、質量平均分子量(Mw)で8,000〜30,000の範囲、数平均分子量(Mn)で4,000〜12,000の範囲であることが最も好ましい。顔料の1次粒子の凝集体である2次凝集体を効果的にほぐし、あるいは、再凝集を効果的に弱めるための観点からは、分散剤Bの質量平均分子量(Mw)は1000以上であることが好ましい。また、顔料分散体を含有する着色感光性組成物によりカラーフィルタを製造する際の現像性の観点からは、分散剤Bの質量平均分子量(Mw)は30000以下であることが好ましい。
【0133】
本実施態様における分散剤Bは、例えば、下記一般式(i)、(ii)、又は、(i)−2で表される単量体と、共重合成分として他のラジカル重合性化合物(前述のような各種モノマー)と、を用い、通常のラジカル重合法によって製造することができる。一般的には、懸濁重合法あるいは溶液重合法などを用いる。このような分散剤Bを合成する際に用いられる溶媒としては、例えば、エチレンジクロリド、シクロヘキサノン、メチルエチルケトン、アセトン、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、2−メトキシエチルアセテート、1−メトキシ−2−プロパノール、1−メトキシ−2−プロピルアセテート、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、トルエン、酢酸エチル、乳酸メチル、乳酸エチルなどが挙げられる。これらの溶媒は単独あるいは2種以上混合してもよい。なお、ラジカル重合の際、ラジカル重合開始剤を使用することができ、また、更に連鎖移動剤(例、2−メルカプトエタノールおよびドデシルメルカプタン)を使用することができる。
【0134】
本実施態様の顔料分散体中、分散剤Bの含有量としては質量比で、顔料:分散剤B=1:0.1〜1:2が好ましく、より好ましくは、1:0.2〜1:1であり、更に好ましくは、1:0.4〜1:0.7である。
【0135】
また、本実施態様の効果を損なわない範囲において、必要に応じて、上述の特定共重合体の他に、他の高分子化合物を同時に使用してもよい。他の高分子化合物としては、天然樹脂、変性天然樹脂、合成樹脂、天然樹脂で変性された合成樹脂等が用いられる。天然樹脂としてはロジンが代表的であり、変性天然樹脂としては、ロジン誘導体、繊維素誘導体、ゴム誘導体、タンパク誘導体およびそれらのオリゴマーが挙げられる。合成樹脂としては、エポキシ樹脂、アクリル樹脂、マレイン酸樹脂、ブチラール樹脂、ポリエステル樹脂、メラミン樹脂、フェノール樹脂、ポリウレタン樹脂等が挙げられる。天然樹脂で変性された合成樹脂としては、ロジン変性マレイン酸樹脂、ロジン変性フェノール樹脂等が挙げられる。合成樹脂としては、ポリアミドアミンとその塩、ポリカルボン酸とその塩、高分子量不飽和酸エステル、ポリウレタン、ポリエステル、ポリ(メタ)アクリレート、(メタ)アクリル系共重合体、ナフタレンスルホン酸ホルマリン縮合物が挙げられる。
【0136】
[光硬化性組成物]
光硬化性組成物は、前記顔料微粒子の分散体と、光重合性化合物と、光重合開始剤とを含み、好ましくは、更に、アルカリ可溶性樹脂を含む。有機顔料微粒子および、その分散体を作製する方法については既に詳細に述べた。光硬化性組成物中の微粒子の含有量は、全固形分(本発明において、全固形分とは、有機溶媒を除く組成物合計をいう。)に対し、3〜90質量%が好ましく、20〜80質量%がより好ましく、25〜60質量%がさらに好ましい。この量が多すぎると分散液の粘度が上昇し製造適性上問題になることがある。少なすぎると着色力が十分でない。また、調色のために通常の顔料と組み合わせて用いてもよい。顔料は上記で記述したものを用いることができる。
【0137】
光重合性化合物(以下、重合性モノマーあるいは重合性オリゴマーと称する場合がある)としては、エチレン性不飽和二重結合を2個以上有し、光の照射によって付加重合する多官能モノマーであることが好ましい。そのような光重合性化合物としては、分子中に少なくとも1個の付加重合可能なエチレン性不飽和基を有し、沸点が常圧で100℃以上の化合物を挙げることができる。その例としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート及びフェノキシエチル(メタ)アクリレートなどの単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート;トリメチロールプロパンやグリセリン等の多官能アルコールにエチレンオキシド又はプロピレンオキシドを付加した後(メタ)アクリレート化したもの等の多官能アクリレートや多官能メタクリレートを挙げることができる。また、特開平10−62986号公報に一般式(1)および(2)に記載のように、多官能アルコールにエチレンオキサイドやプロピレンオキサイドを付加させた後(メタ)アクリレート化した化合物も好適なものとして挙げられる。
【0138】
更に特公昭48−41708号公報、特公昭50−6034号公報及び特開昭51−37193号公報に記載されているウレタンアクリレート類;特開昭48−64183号公報、特公昭49−43191号公報及び特公昭52−30490号公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類等の多官能アクリレー卜やメタクリレートを挙げることができる。
これらの中で、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートが好ましい。
また、この他、特開平11−133600号公報に記載の「重合性化合物B」も好適なものとして挙げることができる。
【0139】
光重合性化合物は、単独でも、二種類以上を混合して用いてもよく、光硬化性組成物の全固形分に対する含有量は5〜50質量%が一般的であり、10〜40質量%が好ましい。この量が多すぎると現像性の制御が困難になり製造適性上問題となる。少なすぎると露光時の硬化力が不足する。
【0140】
光重合開始剤又は光重合開始剤系(本発明において、光重合開始剤系とは複数の化合物の組み合わせで光重合開始の機能を発現する混合物をいう。)としては、米国特許第2367660号明細書に開示されているビシナルポリケタルドニル化合物、米国特許第2448828号明細書に記載されているアシロインエーテル化合物、米国特許第2722512号明細書に記載のα−炭化水素で置換された芳香族アシロイン化合物、米国特許第3046127号明細書及び同第2951758号明細書に記載の多核キノン化合物、米国特許第3549367号明細書に記載のトリアリールイミダゾール二量体とp−アミノケトンの組み合わせ、特公昭51−48516号公報に記載のベンゾチアゾール化合物とトリハロメチル−s−トリアジン化合物、米国特許第4239850号明細書に記載されているトリハロメチル−トリアジン化合物、米国特許第4212976号明細書に記載されているトリハロメチルオキサジアゾール化合物等を挙げることができる。特に、トリハロメチル−s−トリアジン、トリハロメチルオキサジアゾール及びトリアリールイミダゾール二量体が好ましい。
【0141】
また、この他、特開平11−133600号公報に記載の「重合開始剤C」や、オキシム系として、1−フェニル−1,2−プロパンジオン−2−(o−エトキシカルボニル)オキシム、O−ベンゾイル−4’−(ベンズメルカプト)ベンゾイル−ヘキシル−ケトキシム、2,4,6−トリメチルフェニルカルボニル−ジフェニルフォスフォニルオキサイド、ヘキサフルオロフォスフォロ−トリアルキルフェニルホスホニウム塩等も好適なものとしてあげることができる。
【0142】
光重合開始剤又は光重合開始剤系は、単独でも、2種類以上を混合して用いてもよいが、特に2種類以上を用いることが好ましい。少なくとも2種の光重合開始剤を用いると、表示特性、特に表示のムラが少なくできる。光硬化性組成物の全固形分に対する光重合開始剤又は光重合開始剤系の含有量は、0.5〜20質量%が一般的であり、1〜15質量%が好ましい。この量が多すぎると感度が高くなりすぎ制御が困難になる。少なすぎると露光感度が低くなりすぎる。
【0143】
アルカリ可溶性樹脂としては、光硬化性組成物ないし、カラーフィルタ用インクジェットインクの調製時に添加することもできるが、前記微粒子の分散体を製造する際、または微粒子形成時に添加することも好ましい。水不溶性化合物の溶液および水不溶性化合物の溶液を添加して水不溶性化合物の微粒子を生成させるための貧溶媒の両方もしくは一方にアルカリ可溶性樹脂を添加することもできる。またはアルカリ可溶性樹脂溶液を別系統で水不溶性化合物の微粒子形成時に添加することも好ましい。
【0144】
アルカリ可溶性樹脂としては、酸性基を有するバインダーが好ましく、側鎖にカルボン酸基やカルボン酸塩基などの極性基を有するアルカリ可溶性のポリマーが好ましい。その例としては、特開昭59−44615号公報、特公昭54−34327号公報、特公昭58−12577号公報、特公昭54−25957号公報、特開昭59−53836号公報及び特開昭59−71048号公報に記載されているようなメタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等を挙げることができる。また側鎖にカルボン酸基やカルボン酸塩などを有するセルロース誘導体も挙げることができ、またこの他にも、水酸基を有するポリマーに環状酸無水物を付加したものも好ましく使用することができる。また、特に好ましい例として、米国特許第4,139,391号明細書に記載のベンジル(メタ)アクリレートと(メタ)アクリル酸との共重合体や、ベンジル(メタ)アクリレートと(メタ)アクリル酸と他のモノマーとの多元共重合体を挙げることができる。
【0145】
アルカリ可溶性樹脂は、単独で用いてもよく、或いは通常の膜形成性のポリマーと併用する組成物の状態で使用してもよく、水不溶性化合物の微粒子100質量部に対する添加量は10〜200質量部が一般的であり、25〜100質量部が好ましい。
【0146】
その他、架橋効率を向上させるために、アルカリ可溶性樹脂の側鎖に重合性基を有していてもよく、UV硬化性樹脂や、熱硬化性樹脂等も有用である。更に、アルカリ可溶性樹脂として、側鎖の一部に水溶性の原子団を有する樹脂を用いることもできる。有機溶媒の含有量は、光硬化性組成物全量に対して10〜95質量%が好ましい。また、光硬化性組成物中に適切な界面活性剤や、熱重合防止剤、紫外線吸収剤、接着助剤、その他の添加剤等を含有させることができる。
【0147】
光硬化性組成物はその組成を適宜に調節して、インクジェットインクとすることができる。インクジェットインクとしてはカラーフィルタ用以外にも、印字用等、通常のインクジェットインクとしてもよいが、なかでもカラーフィルタ用インクジェットインクとすることが好ましい。
インクジェットインクは前記の水不溶性化合物微粒子を含むものであればよく、重合性モノマーおよび/または重合性オリゴマーを含む媒体に、前記の水不溶性化合物微粒子を含有させたものであることが好ましい。ここで重合性モノマーおよび/または重合性オリゴマーとしては、先に光硬化性組成物において説明したものを用いることができる。
このとき、用いられる射出時のインク特性、インク吹き付け方法、インクジェットヘッド形態や、カラーフィルタのパターン形状およびその形成方法については、特開2008−138194公報に開示されているものと、好ましい範囲についても同様である。
【0148】
光硬化性組成物を用いた塗布膜における含有成分については、既に記載したものと同様である。また、光硬化性組成物を用いた塗布膜の性状、基盤への塗布方法については、特開2008−138194公報に開示されているものと、好ましい範囲についても同様である。
【0149】
[カラーフィルタ]
本発明のカラーフィルタの画素は上述した顔料微粒子分散体ないしその溶媒を切り替えた再分散体を用いて形成されたものであることが好ましく、コントラストに優れることが好ましい。本発明においてコントラストとは、2枚の偏光板の間において、偏光軸が平行のときと、垂直のときとの透過光量の比を表す(「1990年第7回色彩光学コンファレンス、512色表示10.4”サイズTFT−LCD用カラーフィルタ、植木、小関、福永、山中」等参照。)。カラーフィルタのコントラストが高いということは液晶と組み合わせたときの明暗のディスクリミネーションが大きくできるということを意味しており、液晶ディスプレイがCRTに置き換わるためには非常に重要な性能である。
【0150】
カラーフィルタは、テレビ用として用いる場合は、F10光源による、レッド(R)、グリーン(G)、及びブルー(B)のそれぞれ全ての単色の色度が、下表に記載の値(以下、本発明において「目標色度」という。)との差(ΔE)で5以内の範囲であることが好ましく、更に3以内であることがより好ましく、2以内であることが特に好ましい。
【0151】
x y Y
−−−−−−−−−−−−−−−−−−−−−−−−
R 0.656 0.336 21.4
G 0.293 0.634 52.1
B 0.146 0.088 6.90
−−−−−−−−−−−−−−−−−−−−−−−−−
【0152】
本発明において色度は、顕微分光光度計(オリンパス光学社製;OSP100又は200)により測定し、F10光源視野2度の結果として計算して、xyz表色系のxyY値で表す。また、目標色度との差は、La表色系の色差で表す。
【0153】
カラーフィルタを備えた液晶表示装置はコントラストが高く、黒のしまり等の描写力に優れ、とくにVA方式であることが好ましい。ノートパソコン用ディスプレイやテレビモニター等の大画面の液晶表示装置等としても好適に用いることができる。また、上記カラーフィルタはCCDデバイスに用いることができ、優れた性能を発揮する。
【実施例】
【0154】
以下、本発明を実施例に基づきさらに詳しく説明するが、本発明はこれにより限定して解釈されるものではない。なお、本実施例において「部」および「%」とは特に断らない限りいずれも質量基準である。
【0155】
(合成例1) 前記例示化合物a−1の合成
300mL容の三口フラスコに、PR255(Cromophtal DPP Coral Red C[商品名]、チバ・スペシャルティ・ケミカルズ(株)製、同種の顔料について以下の合成例についても同じ)8.65g、ニトロフタルイミド 5.76gおよび硫酸130gを投入し、30℃にて攪拌溶解した。パラホルムアルデヒド 1.0gを投入し、30℃にて、3時間攪拌した。反応液を氷水1Lに放出し、固体を析出させた。析出物を2Lの水で洗浄し、化合物a−1を得た。化合物a−1であることは、H−NMR、MSにより確認した。
【0156】
(合成例2) 前記例示化合物a−2の合成
300mL容の三口フラスコに、PR255 8.65g、フタルイミドカルボン酸 5.73gおよび硫酸130gを投入し、30℃にて攪拌溶解した。パラホルムアルデヒド 1.0gを投入し、30℃にて、3時間攪拌した。反応液を氷水1Lに放出し、固体を析出させた。析出物を2Lの水で洗浄し、化合物a−2を得た。
【0157】
(合成例3) 前記例示化合物a−3の合成
300mL三口フラスコに、PR255 8.65g、アミノフタルイミド 4.87gおよび硫酸130gを投入し、30℃にて攪拌溶解した。パラホルムアルデヒド 1.0gを投入し、30℃にて、3時間攪拌した。反応液を氷水1Lに放出し、固体を析出させた。析出物を2Lの水で洗浄し、化合物a−3を得た。
【0158】
(合成例4) 前記例示化合物a−4の合成
300mL三口フラスコに、PR255 8.65g、ブロモフタルイミド 6.78gおよび硫酸130gを投入し、30℃にて攪拌溶解した。パラホルムアルデヒド 1.0gを投入し、30℃にて、3時間攪拌した。反応液を氷水1Lに放出し、固体を析出させた。析出物を2Lの水で洗浄し、化合物a−4を得た。
【0159】
(合成例5) 前記例示化合物a−9の合成
300mL容の三口フラスコに、PR255 8.65g、4−メチルフタルイミド 4.83gおよび硫酸130gを投入し、30℃にて攪拌溶解した。パラホルムアルデヒド 1.0gを投入し、30℃にて、3時間攪拌した。反応液を氷水1Lに放出し、固体を析出させた。ろ過し、析出物を2Lの水で洗浄し、化合物a−9を9.7g得た。化合物a−9であることは、H−NMR、MSにより確認した。
【0160】
表1−1に記載のように、PR255 8.65gおよび硫酸130gに対して、記載のフタルイミド(i−1〜i−7)とパラホルムアルデヒドと、を用いた他は、合成例5と同様に行い、例示化合物a−26、a−28、a−35、a−43、a−47、a−51、a−66を得た。
【0161】
【表1−1】

【0162】
フタルイミドの合成
(i−1の合成)
1000mLの三口フラスコに、アニリン、27.39g、トリエチルアミン30.36gおよびN−メチルー2−ピロリドン300mLを投入し、攪拌しながら氷水浴に冷却した。塩化トリメリット酸 63.18gを少しずつ添加した後、室温で1時間攪拌した。さらに100℃で2時間反応した後、水600mLに放出し結晶を析出させた。ろ過し、水200mLで2回洗浄した後、乾燥することでフタルイミド(i−1) 44.1gを得た。
(i−2の合成)
500mLの三口フラスコに、4−ニトロフタルイミド 28.82g、4−メルカプトトルエン 18.63gおよびN−メチルー2−ピロリドン150mLを投入し、攪拌しながら氷水浴に冷却した。トリエチルアミン 37.95gを少しずつ添加した後、室温で1時間攪拌した。さらに100℃で2時間反応した後、1N塩酸水溶液500mLに放出し結晶を析出させた。ろ過し、水200mLで2回洗浄した後、乾燥することでフタルイミド(i−2) 37.4gを得た。
(i−3の合成)
200mLの三口フラスコに、2−tertブチルフタル酸無水物30.64g、尿素9.00gおよびN−メチルー2−ピロリドン30mLを投入し、120℃にて5時間攪拌した。室温に冷却し結晶が析出したところに50gの水を添加した。反応液をろ過した後、水100mLで2回洗浄し、乾燥することでフタルイミド(i−3) 26.8gを得た。
【0163】
(i−4の合成)
500mLの三口フラスコに、4−ニトロフタルイミド 28.82g、ベンゼンチオール 16.53gおよびN−メチルー2−ピロリドン150mLを投入し、攪拌しながら氷水浴に冷却した。トリエチルアミン 37.95gを少しずつ添加した後、室温で1時間攪拌した。さらに100℃で2時間反応した後、1N塩酸水溶液500mLに放出し結晶を析出させた。水200mLで2回洗浄した後、乾燥することでフタルイミド体 36.76gを得た。
300mLの三口フラスコに、得られたフタルイミド体30.64g、を投入し氷水浴で冷却する。濃硫酸 55gを少しずつ加え攪拌する。発煙硫酸36.65gを滴下し、冷却したまま2時間攪拌する。その後酢酸エチル1200mLに放出することで結晶を析出させた。ろ過し酢酸エチル400mLで2回洗浄し、乾燥することでスルホ化したフタルイミド体 39.8gを得た。
300mLの三口フラスコに、得られたスルホ化フタルイミド体33.54g、酢酸30g、イオン交換水30gを投入した。氷冷した後、タングステン酸ナトリウム1.0gを加えた。過酸化水素水30.0gをゆっくり滴下し4時間攪拌した。反応液をアセトン400mLに放出し、結晶を析出させた。ろ過し乾燥することでフタルイミド(i−4) 26.8gを得た。
(i−5の合成)
300mlLの三口フラスコに、合成したフタルイミドi−1 13.98gを投入し氷水浴で冷却する。濃硫酸 52.0gを少しずつ加え攪拌する。発煙硫酸19.98gを滴下し、冷却したまま2時間攪拌する。その後酢酸エチル1000mLに放出することで結晶を析出させた。ろ過し酢酸エチル300mLで2回洗浄し、乾燥することでフタルイミド(i−5) 20.2gを得た。
(i−6の合成)
300mLの三口フラスコに、4−ニトロフタルイミド 24.21g、3−メルカプトプロパンスルホン酸ナトリウム 22.46gおよびジメチルスルホキシド100mLを投入し、攪拌しながらトリエチルアミン 63.55gを添加した。80℃にして3時間攪拌した後。室温に冷却しアセトン400mL加え結晶を析出させた。ろ過し、アセトン600mLで洗浄した後、乾燥することでフタルイミド(i−5) 40.4gを得た。
【0164】
(i−7の合成)
300mLの三口フラスコに4−ニトロフタルイミド19.21g、チオサリチル酸15.42g、アセトニトリル50mLを投入し、攪拌しながらトリエチルアミン25.30gを滴下した。加熱還流しながら1時間攪拌した後、室温まで冷却した。1規定塩酸水溶液300mLに放出し、結晶を析出させた。ろ過し、水100mLで2回洗浄した。乾燥することで、フタルイミド(i−7)28.69を得た。
【0165】
(合成例13) 前記例示化合物a−12の合成
300mL容の三口フラスコに、PR272 9.49g、4−ニトロフタルイミド 5.76gおよび硫酸130gを投入し、30℃にて攪拌溶解した。パラホルムアルデヒド 1.0gを投入し、30℃にて、3時間攪拌した。反応液を氷水1Lに放出し、固体を析出させた。ろ過し、析出物を2Lの水で洗浄し、化合物a−12を3.8g得た。化合物a−12であることは、H−NMR、MSにより確認した。
【0166】
(合成例14) 前記例示化合物a−16の合成
300mL容の三口フラスコに、PR264 13.21g、フタルイミドカルボン酸 5.73gおよび硫酸130gを投入し、30℃にて攪拌溶解した。パラホルムアルデヒド 1.0gを投入し、30℃にて、3時間攪拌した。反応液を氷水1Lに放出し、固体を析出させた。ろ過し、析出物を2Lの水で洗浄し、化合物a−16を4.7g得た。化合物a−16であることは、H−NMR、MSにより確認した。
【0167】
(合成例15) 前記例示化合物a−20の合成
2000mL容の3つ口フラスコにt−アミルアルコール750mlとt−ブトキシカリウム56.10gを仕込んだ。5℃に冷却した後、3−シアノピリジン 52.05gを加えて室温下で30分攪拌した。この反応溶液を100℃に加温し、コハク酸ジイソプロピル50.58を2時間かけて滴下した。滴下後さらに2時間加熱攪拌を行った後、反応溶液を室温に戻した。これをアセトン1.5Lに滴下し、得られた赤色個体を濾取してさらに蒸留水750mLで洗浄した。50℃で5時間減圧加熱乾燥することで目的の顔料誘導体R1を10.88g得た。
300mL容の三口フラスコに、顔料誘導体R1 8.71g、4−アミノフタルイミド 4.87gおよび硫酸130gを投入し、30℃にて攪拌溶解した。パラホルムアルデヒド 1.0gを投入し、30℃にて、3時間攪拌した。反応液を氷水1Lに放出し、固体を析出させた。ろ過し、析出物を2Lの水で洗浄し、化合物a−20を3.4g得た。化合物a−20であることは、H−NMR、MSにより確認した。
【0168】
【化A】

【0169】
(実施例I、比較例I)
(実施例1)
<有機顔料ナノ粒子分散液の調製>
ジメチルスルホキシド(和光純薬社製)を良溶媒とし、良溶媒1000gに顔料C.I.ピグメントレッド254(Irgaphor Red イルガジンレッド、商品名、チバ・スペシャルティ・ケミカルズ(株)製)50gを分散させ、前記例示化合物a−1 5gを加え、ここにテトラメチルアンモニウムヒドロキシド25%メタノール溶液52.3gを滴下して顔料溶液を調製した。この顔料溶液を、ビスコメイトVM−10A−L(商品名、CBCマテリアルズ社製)を用いて粘度を測定した結果、顔料溶液の液温が24.5℃の時の粘度が14.3mPa・sであった。これとは別に貧溶媒として、1mol/l塩酸水溶液(和光純薬社製)19gを含有したプロピレングリコールモノメチルエーテルアセテート1000mlを用意した。
ここで、10℃に温度コントロールし、GK−0222−10型ラモンドスターラー(商品名、藤沢薬品工業社製)により500rpmで攪拌した貧溶媒1000mlに、顔料溶液をNP−KX−500型大容量無脈流ポンプ(商品名、日本精密化学社製)を用いて、流路径1.1mmの送液配管から流速400ml/minで100ml注入することにより、下表1の平均粒径の有機顔料粒子を形成し、結晶性有機顔料ナノ粒子の分散液(分散体101)を調製した。前記有機顔料ナノ粒子分散液(分散体101)を5℃に温度コントロールし2時間攪拌した。
【0170】
<有機顔料粉末の調製>
上記の手順で調製した有機顔料ナノ粒子分散液(分散体101)をH−112型(商品名、(株)コクサン社製)遠心濾過機およびP89C型(商品名、敷島カンバス(株)社製)濾布を用いて5000rpmで90分濃縮し、次いでイオン交換水を1100g加え混合し、同様に遠心濾過した。再度、イオン交換水を1100g加え混合し遠心濾過した。得られた有機顔料ナノ粒子濃縮ペースト101を回収した。
前記有機顔料ナノ粒子濃縮ペーストをオーブンにより100℃で2時間乾燥することにより平均粒径15−20nmの有機顔料粉末101を得た。
【0171】
<有機顔料分散組成物の調製>
前記有機顔料粉末1を乳鉢で180μm以下に粉砕した後、下記組成の有機顔料分散組成物101とし、均一に撹拌混合した。
前記有機顔料粉末101 9.7g
顔料誘導体1 2.0g
顔料誘導体2 2.3g
分散樹脂1 11.3g
プロピレングリコールモノメチルエーテルアセテート
24.7g
【0172】
【化21】

【0173】
【化22】

【0174】
主鎖Mn:600、グラフト量 9.3mol%(vs.全アミン)、
酸価 10mgKOH/g、Mw:10000
Ra:−CO−nC15または水素原子
v:40、w:5、x:10、y+z:45
【0175】
上記組成の有機顔料分散組成物1をサンドグラインダーミルBSG−01(商品名、AIMEX社製)で、直径0.5mmのジルコニアビーズを用い、1500rpmで1時間、次いで直径0.05mmのジルコニアビーズを用い、2500rpmで2時間分散し、有機顔料分散組成物101を得た。
【0176】
(実施例2〜20、比較例1,2)
顔料溶液に添加する化合物を例示化合物a−1に代え、下記表1に示したように変えた以外、実施例1と同様にして、顔料分散液(分散体102〜120、c11、c12)を調製した。さらに、それぞれの分散体試料を用いて、ペース、粉末及び有機顔料分散組成物を調製した。なお表1中、分散体c12については、例示化合物a−1を用いずに調製したことを意味する。
【0177】
(実施例21)
C.I.ピグメントレッド254(Irgaphor Red イルガジンレッド、商品名、チバ・スペシャルティ・ケミカルズ(株)製)を40質量部(平均粒子径60nm)、前記例示化合物a−1 4gをプロピレングリコールモノメチルエーテルアセテート 500gに混合し、該混合液を、ビーズミル(ジルコニアビーズ0.3mm)により3時間混合・分散して、顔料分散液(分散体121)を調製した。その後は、実施例1と同様にして、粉末及び有機顔料分散組成物121を調製した。
【0178】
<顔料分散組成物の評価>
得られた顔料分散組成物の各試料について、下記の評価を行った。結果を表1にまとめて示す。
【0179】
○ 顔料微粒子の粒子径分布、数平均一次粒径(Dp)の測定
分散液に含まれる顔料粒子の粒子径分布を下記条件で測定し、粒子径20nm以上30nm以下の粒子数の割合Pおよび数平均一次粒径Dpを算出した。
<TEM撮影>
装置:日立製、H−7650電顕(商品名)
加速電圧:110kV
(トモグラフィー観察を行い、3D再構築データから粒子同士の重なりの少ない面を取り出し、粒子の投影面積を得た。)
<画像計測>
装置:カールツァイス社製、KS−400(商品名)
(ランダムに選択した5000個の顔料粒子のTEM画像を計測し投影面積から円相当径を算出し、上記の割合PおよびDpを算出した。)
【0180】
○ 粘度の測定、評価
得られた顔料分散組成物について、E型粘度計(東機産業(株)社製、RE−85L[商品名]、測定温度25℃)を用いて、分散直後の顔料分散組成物の粘度η1及び分散後室温にて1週間経過した後の顔料分散組成物の粘度η2を測定し、増粘の程度を評価した。ここで、粘度が低いことは、分散剤に起因する粘度の上昇が抑制されており、顔料の分散性及び分散安定性が良好であることを示す。
【0181】
○ コントラストの測定、評価
得られた顔料分散組成物を、ガラス基板上に塗布し、乾燥後の塗布膜の厚さが1μmになるようにサンプルを作製した。2枚の偏光板の間にこのサンプルを置き、偏光軸が平行のときと垂直のときとの透過光量を測定し、その比をコントラストとした(この評価法は、「1990年第7回 色彩光学コンファレンス、512色表示10.4“サイズTFT−LCD用カラーフィルタ、植木、小関、福永、山中」を参考にした)。ここで、コントラストが高いことは、顔料が高度に微細化された状態で均一に分散されているため、透過率すなわち着色力が高いことを示す。
【0182】
【表1−2】

【0183】
【表1−3】

【0184】
上表に示される結果により、本発明の一般式(1)で表される化合物を用いた分散体は、平均粒径が極めて小さくしかも粒径がそろっており、粘度が低く抑えられ、高コントラストの良好な性質を有することがわかる。
【0185】
(実施例II、比較例II)
<着色感光性組成物の調製>
上記の顔料分散組成物をそれぞれ用いて下記の着色感光性組成物を調製した。
【0186】
・顔料分散組成物 2000部
・ジペンタエリスリトールペンタヘキサアクリレート(光重合性化合物)
100部
・4−[o−ブロモ−p−N,N−ジ(エトキシカルボニル)
アミノフェニル]−2,6−ジ(トリクロロメチル)−S−
トリアジン(光重合開始剤) 30部
・メタクリル酸ベンジル/メタクリル酸(=75/25[質量比])
共重合体(重量平均分子量:12,000)のプロピレングリコール
モノメチルエーテルアセテート溶液(固形分30%)
(アルカリ可溶性樹脂) 400部
・1−メトキシ−2−プロピルアセテート(溶剤) 390部
【0187】
<着色感光性組成物を用いたカラーフィルタの作製>
調製された着色感光性組成物(カラーレジスト液)を、100mm×100mmのガラス基板(1737、コーニング社製)上に、色濃度の指標となるx値が0.650となるように塗布し、90℃のオーブンで60秒間乾燥させた(プリベーク)。その後、塗布膜の全面に200mJ/cmにて(照度20mW/cm)露光し、露光後の塗布膜をアルカリ現像液CDK−1(富士フイルムエレクトロニクスマテリアルズ(株)製)の1%水溶液にて覆い、60秒間静止した。静止後、純水をシャワー状に散布して現像液を洗い流した。そして、上記のように露光及び現像が施された塗布膜を220℃のオーブンで1時間加熱処理し(ポストベーク)、ガラス基板上にカラーフィルタ用の着色パターン(着色領域)を形成し、着色フィルタ基板(カラーフィルタ)を作製した。
【0188】
<着色感光性組成物及びカラーフィルタの評価>
作製された着色感光性組成物及び着色フィルタ基板(カラーフィルタ)について、以下のようにして評価を行った。結果を前記表にまとめて示す。
【0189】
○ カラーフィルタ(CF)のコントラスト
カラーフィルタの着色基盤上に偏光板を置いて着色基盤を挟み込み、偏光板が平行時の輝度と直交時の輝度とをトプコン社製のBM−5(商品名)を用いて測定し、平行時の輝度を直交時の輝度で除して得られる値(=平行時の輝度/直交時の輝度)を、コントラストを評価するための指標とした。値が大きいほど高コントラストであることを示す。
【0190】
○ 耐熱性の評価
作製したカラーフィルタを、強制的に250℃のオーブンで1時間加熱処理し、処理前後でのコントラスト保持率を評価した。
【0191】
○ 現像性
露光工程において、光が照射されなかった領域(未露光部)の残渣の有無を観察し、現像性を評価した。
−評価基準−
3:未露光部には、残渣がまったく確認されなかった。
2:未露光部に、残渣がわずかに確認されたが、実用上問題のない程度であった。
1:未露光部に、残渣が著しく確認された。
【0192】
上表に示される各実施例・比較例の結果により、本発明の一般式(1)で表される化合物を含有する分散体を用いて作製したカラーフィルタは、コントラストが極めて高く、耐熱性、現像性において優れた性能を発揮することがわかる。また、上記実施例で得られた本発明のカラーフィルタのR(赤)画素はいずれも目標色度の範囲内にあることを確認した。なお、ブレイクダウン法で得た分散組成物121を用いたカラーフィルタは、ブレイクダンウン法で得たもので顔料誘導体を用いない分散組成物より作成したものに対し、各性能の向上が見られることを確認した。

【特許請求の範囲】
【請求項1】
顔料の微粒子と下記一般式(1)で表される化合物とを含有することを特徴とする顔料微粒子分散体。
【化1】

(式中、Ar及びArは各々独立にアリール基又は複素環基を表す。Rはアルキレン基を表す。Tは置換基を表す。lは1〜4の整数を表す。mは0〜4の整数を表す。nは1〜6の整数を表す。)
【請求項2】
前記顔料微粒子に前記一般式(1)で表される化合物が取り込まれていることを特徴とする請求項1に記載の顔料微粒子分散体。
【請求項3】
前記顔料微粒子が、顔料を良溶媒に溶解させた前記顔料に対して貧溶媒となり良溶媒に相溶する媒体と混合して、前記顔料を微粒子として生成させるに当たり、前記一般式(1)で表される化合物の共存下で生成させたものであることを特徴とする請求項1又は2に記載の顔料微粒子分散体。
【請求項4】
前記置換基Tが、ハロゲン、アルキル基、アルコキシ基、アミノ基、カルボキシル基、ニトロ基、及びアミド基からなる群から選ばれることを特徴とする請求項1〜3のいずれか1項に記載の顔料微粒子分散体。
【請求項5】
前記Ar及びArは、各々独立に、アリール基又はヘテロ環基であることを特徴とする請求項1〜4のいずれか1項に記載の顔料微粒子分散体。
【請求項6】
前記顔料が、ジケトピロロピロール化合物であることを特徴とする請求項1〜5のいずれか1項に記載の顔料微粒子分散体。
【請求項7】
さらにポリカプロラクトン構造を有する分散剤を含有することを特徴とする請求項1〜6のいずれか1項に記載の顔料微粒子分散体。
【請求項8】
さらに下記一般式(I)及び(II)のいずれかで表される繰り返し単位から選択される少なくとも1種の繰り返し単位を含む高分子化合物を含有することを特徴とする請求項1〜7のいずれか1項に記載の顔料微粒子分散体。
【化2】

(一般式(I)及び(II)中、R〜Rは、各々独立に、水素原子、又は1価の有機基を表す。X及びXは、各々独立に、−CO−、−C(=O)O−、−CONH−、−OC(=O)−、又はフェニレン基を表す。L及びLは、各々独立に、単結合、又は2価の有機連結基を表す。A及びAは、各々独立に、1価の有機基を表す。m及びnは各々独立に2〜8の整数を表す。p及びqは各々独立に1〜100の整数を表す。)
【請求項9】
カラーフィルタ用色材である請求項1〜8のいずれか1項に記載の顔料微粒子分散体。
【請求項10】
請求項1〜9のいずれか1項に記載の分散体と、重合性化合物と、光重合開始剤と、を含有する光硬化性組成物。
【請求項11】
請求項10に記載の光硬化性組成物を硬化させて形成した画素を有してなるカラーフィルタ。
【請求項12】
顔料を良溶媒に溶解させた溶解液を調製し、前記顔料に対して貧溶媒となり良溶媒に相溶する媒体と混合して、該混合液中に前記顔料の微粒子を生成させるに当たり、下記一般式(1)で表される化合物の共存下で前記顔料の微粒子を生成させることを特徴とする顔料微粒子分散体の製造方法。
【化3】

(式中、Ar及びArは、各々独立にアリール基又は複素環基を表す。Rはアルキレン基を表し、Tは置換基を表す。lは1〜4の整数を表す。mは0〜4の整数を表し、nは1〜6の整数を表す。)

【公開番号】特開2011−63786(P2011−63786A)
【公開日】平成23年3月31日(2011.3.31)
【国際特許分類】
【出願番号】特願2010−18857(P2010−18857)
【出願日】平成22年1月29日(2010.1.29)
【国等の委託研究の成果に係る記載事項】(出願人による申告)国等の委託研究の成果に係る特許出願(平成17年度独立行政法人新エネルギー・産業技術総合開発機構 ナノテクノロジープログラム「ナノテク・先端部材実用化研究開発」/「有機顔料ナノ結晶の新規製造プロセスの研究開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】