説明

L−アミノ酸の製造法

【課題】従来よりもさらに改良された、グリセロールを含む基質を用いた発酵法によるL−アミノ酸の製造法を提供する。
【解決手段】腸内細菌科に属し、L−アミノ酸生産能を有する細菌であって、リボヌクレアーゼGの活性が低下するように改変された細菌を、グリセロールを炭素源として含む培地に培養し、培養物中にL−アミノ酸を生産蓄積させ、該培養物からL−アミノ酸を採取することにより、L−アミノ酸を製造する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、微生物を用いたL−アミノ酸の製造法に関する。L−アミノ酸は、調味料、食品添加物、飼料添加物、化学製品、医薬品などの様々な分野に利用される。
【背景技術】
【0002】
L−アミノ酸は、ブレビバクテリウム属、コリネバクテリウム属、エシェリヒア属等に属する微生物を用いた発酵法により工業生産されている。これらの製造法においては、自然界から分離された菌株または該菌株の人工変異株、さらには、組換えDNA技術により塩基性L−アミノ酸生合成酵素の活性が増大するように改変された微生物などが用いられている。(特許文献1〜9)
【0003】
一般的に、微生物を用いてアミノ酸生産を行う際には、炭素源に糖質を主成分として用いているが、グリセロールも糖質と同様に炭素源として用いることが可能である(特許文献10、11)。
【0004】
リボヌクレアーゼGは、16SrRNAの5'末端の成熟に関わるリボヌクレアーゼとして見出された(非特許文献1、2)。また、リボヌクレアーゼGは一本鎖RNAのAUリッチな領域を切断するといわれているが、切断配列等の詳細に関しては解明されていない(非特許文献3〜5)。
【0005】
リボヌクレアーゼGは、E. coliの主要なリボヌクレアーゼであるリボヌクレアーゼEのN末のキャタリティックドメインと非常に高い相同性を有している。リボヌクレアーゼEは、ほとんどのmRNAの分解やtRNA、rRNAの成熟に関与している(非特許文献6〜11)。しかし、リボヌクレアーゼGは、tRNAの成熟には関与しておらず、リボヌクレアーゼE非存在下でのE. coliの致死性を部分的にしか相補できないことがわかっている(非特許文献1、2)。
【0006】
通常の実験室条件下では、リボヌクレアーゼGをコードするrng遺伝子の欠損は生育になんら影響を与えないことから、リボヌクレアーゼEがリボヌクレアーゼGの機能を相補できると考えられている(非特許文献1、2、12)。
【0007】
リボヌリアーゼGの生理学的役割に関する知見は乏しいが、リボヌクレアーゼGがeno mRNAやadhE mRNAの分解に関与していること、及び、マイクロアレイ解析の結果から、いくつかの解糖系酵素をコードする遺伝子をはじめ、複数の遺伝子のmRNAの特異的な分解に関与することが報告されている(非特許文献13〜15)。
【0008】
また、rng遺伝子とcra遺伝子の両方を欠損した株では、グルコースを炭素源として培養した際にピルビン酸が蓄積するという報告がなされている(非特許文献16)。
【0009】
さらに、エシェリヒア属細菌においてrng遺伝子を欠損させると、ピルビン酸やL−バリンが蓄積することが報告されている(特許文献12)。
【特許文献1】欧州特許公開EP0643135B
【特許文献2】欧州特許公開EP0733712B
【特許文献3】欧州特許公開EP1477565A
【特許文献4】欧州特許公開EP0796912A
【特許文献5】欧州特許公開EP0837134A
【特許文献6】国際公開WO01/53459
【特許文献7】欧州特許公開EP1170376A
【特許文献8】国際公開WO2005/010175
【特許文献9】国際公開WO96/17930
【特許文献10】欧州特許公開EP1715055A
【特許文献11】欧州特許公開EP1715056A
【特許文献12】特開2005-333855
【非特許文献1】EMBO J., 18 (1999) 2878-2885
【非特許文献2】Biochem. Biophys. Res. Commun., 259 (1999) 483-488
【非特許文献3】J. Biol. Chem., 269 (1994) 10797-10803
【非特許文献4】J. Biol. Chem., 269 (1994) 10790-10796
【非特許文献5】J. Biol. Chem., 275 (2000) 8726-8732
【非特許文献6】Genetics, 90 (1978) 659-671
【非特許文献7】J. Mol. Biol., 129 (1979) 343-357
【非特許文献8】Cell, 15 (1978) 1055-1066
【非特許文献9】RNA, 8 (2002) 97-109
【非特許文献10】Genes Dev., 16 (2002) 1102-1115
【非特許文献11】J. Mol. Biol., 352 (2005) 22-27
【非特許文献12】Mol. Gen. Genet., 253 (1997) 515-519
【非特許文献13】Mol. Microbiol., 43 (2002) 1445-1456
【非特許文献14】Genes Cell., 6 (2001) 403-410
【非特許文献15】Biosci. Biotechnol. Biochem., 66 (2002) 2216-2220
【非特許文献16】Appl. Microbiol. Biotechnol., 76 (2007) 183-192
【発明の開示】
【発明が解決しようとする課題】
【0010】
本発明は、従来よりもさらに改良された、グリセロールを含む基質を用いた発酵法によるL−アミノ酸の製造法を提供することを課題とする。
【課題を解決するための手段】
【0011】
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、リボヌクレアーゼGの活性を低下させることによって、腸内細菌のグリセロールからのL−アミノ酸生産能が大幅に向上することを見出し、本発明を完成した。
【0012】
すなわち、本発明は以下のとおりである。
(1)腸内細菌科に属し、L−アミノ酸生産能を有する細菌を、グリセロールを炭素源として含む培地に培養し、培養物中にL−アミノ酸を生産蓄積させ、該培養物からL−アミノ酸を採取することを特徴とするL−アミノ酸の製造法であって、前記細菌が、リボヌクレアーゼGの活性が低下するように改変された細菌である方法。
(2)リボヌクレアーゼGをコードするrng遺伝子が不活化されたことにより、リボヌクレアーゼGの活性が低下した、前記方法。
(3)前記rng遺伝子が、配列番号2のアミノ酸配列をコードするDNA又はそのバリアントである、前記方法。
(4)前記L−アミノ酸がL−リジン、L−グルタミン酸、L−スレオニン、L−アルギニン、L−ヒスチジン、L−イソロイシン、L−バリン、L−ロイシン、L−フェニルアラニン、L−チロシン、L−トリプトファン、L−プロリン、及びL−システインからなる群から選択される一種または二種以上のL−アミノ酸である前記方法。
(5)前記L−アミノ酸がL−リジンであり、前記細菌がジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、フォスフォエノールピルベートカルボキシラーゼ、アスパルテートアミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパルテートセミアルデヒドデヒドロゲナー
ゼ、テトラヒドロジピコリン酸スクシニラーゼ、及び、スクシニルジアミノピメリン酸デアシラーゼからなる群より選択される1種または2種以上の酵素の活性が増強されている、及び/または、リジンデカルボキシラーゼの活性が増強されている前記方法。
(6)前記L−アミノ酸がL−スレオニンであり、前記細菌がアスパルテートセミアルデヒドデヒドロゲナーゼ、thrオペロンにコードされるアスパルトキナーゼI、ホモセリンキナーゼ、アスパルテートアミノトランスフェラーゼ、及び、スレオニンシンターゼからなる群より選択される1種または2種以上の酵素の活性が増強されている前記方法。
(7)前記腸内細菌科に属する細菌が、エシェリヒア属細菌、エンテロバクター属細菌またはパントエア属細菌である前記方法。
(8)前記グリセロールがバイオディーゼル燃料生産において産生される粗グリセロールである前記方法。
【発明の効果】
【0013】
本発明によれば、安価なグリセロールを炭素源として、効率よくL−アミノ酸を製造することができる。
【発明を実施するための最良の形態】
【0014】
<1>本発明で使用するグリセロール
グリセロールは、正式名称Propane-1,2,3-triolである物質を指す。本発明において、粗グリセロールは、工業的に生産される不純物を含むグリセロールをいう。粗グリセロールは、油脂を高温、高圧下で水と接触させ加水分解することによって、あるいは、バイオディーゼル燃料生産のためのエステル化反応によって、工業的に生産される。バイオディーゼル燃料とは、油脂とメタノールからエステル交換反応により生成する脂肪酸メチルエステルのことであり、この反応の副生物として粗グリセロールが生成する(Fukuda, H., Kondo, A., and Noda, H. 2001, J. Biosci. Bioeng. 92, 405-416を参照のこと)。バイオディーゼル燃料生産プロセスでは、エステル交換にはアルカリ触媒法が用いられることが多く、中和時に酸を加えるため、水と不純物を含んだ純度70〜95重量%程度の粗グリセロールが生成する。バイオディーゼル燃料生産において産生される粗グリセロールは、水に加えて、残存メタノールや触媒であるNaOH等のアルカリとその中和に用いられるK2SO4等の酸との塩を不純物として含んでいる。メーカーや製法により差はあるが、このような塩類やメタノールは数パーセントに達する。ここでナトリウム、カリウム、塩化物イオン、硫酸イオン等の、アルカリやその中和に用いられた酸に由来するイオン類は、粗グリセロールの重量に対し、2〜7%、好ましくは3〜6%、さらに好ましくは4〜5.8%含まれていることが好ましい。メタノールは、不純物として含まれていなくてもよいが、望ましくは0.01%以下含まれていることが好ましい。
【0015】
さらに、粗グリセロール中には、微量の金属、有機酸、リン、脂肪酸などを含むことがある。含まれる有機酸としては、蟻酸、酢酸等が挙げられ、不純物として含まれていなくてもよいが、望ましくは0.01%以下含まれていることが好ましい。粗グリセロールに含まれる微量の金属としては、微生物の生育に必要な微量金属が好ましく、例えばマグネシウム、鉄、カルシウム、マンガン、銅、亜鉛等が挙げられる。マグネシウム、鉄、カルシウムは、粗グリセロールの重量に対し、合計で0.00001〜0.1%、好ましくは0.0005〜0.1%、より好ましくは0.004〜0.05%、さらに好ましくは0.007〜0.01%含まれていることが好ましい。マンガン、銅、亜鉛としては、合計で0.000005〜0.01%、より好ましくは0.000007〜0.005%、さらに好ましくは0.00001〜0.001%含まれていることが好ましい。
【0016】
粗グリセロールのグリセロールの純度としては10%以上であればよく、好ましくは50%以上であり、さらに好ましくは70%以上、特に好ましくは80%以上である。不純物の含有量が上記の範囲を満たす限り、グリセロールの純度は90%以上であってもよい。
【0017】
本発明において好ましい粗グリセロールは、バイオディーゼル燃料の生産において産生される粗グリセロールである。また本発明において好ましい粗グリセロールは、炭素源として用いたときに同量の試薬グリセロールと比較して、より多くのL-アミノ酸を生産することが出来るグリセロールを意味する。試薬グリセロールと比較して、より多くのL−アミノ酸を生産するとは、試薬グリセロールを炭素源として用いた場合に比べ、L-アミノ酸の生産量が5%、好ましくは10%、さらに好ましくは20%以上上昇することを意味する。「試薬グリセロール」とは、いわゆる試薬グレードとして市販されているグリセロール又はそれと同等の純度のグリセロールを意味し、純度が99重量%以上であることが好ましく、特に好ましいのは純グリセロールである。「粗グリセロールと同量の試薬グリセロール」とは、粗グリセロールが水を含む場合、水を除いた残部の重量と同量の試薬グリセロールを意味する。
【0018】
本発明において、粗グリセロールは、水等の溶媒で希釈して使用してもよい。その場合、上記のグリセロール及び不純物の含有量に関する記載は、希釈前の粗グリセロールに適用される。すなわち、粗グリセロールが水等の溶媒を含む場合、溶媒の含有量が好ましくは30重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下となるように溶媒を除去したときに、上記のグリセロール及び不純物の含有量の範囲を満たせば、本発明における「粗グリセロール」に該当する。
【0019】
<2>本発明で使用される腸内細菌科に属する細菌
本発明で使用される細菌は、腸内細菌科に属し、L−アミノ酸生産能を有する細菌であり、かつリボヌクレアーゼGの活性が低下するように改変された細菌である。本発明の細菌は、腸内細菌科に属し、L−アミノ酸生産能を有する細菌を、リボヌクレアーゼGの活性が低下するように改変することによって取得することができる。以下に、リボヌクレアーゼGの活性が低下するように改変される、本発明の細菌の親株として使用される細菌、及びL−アミノ酸生産能の付与又は増強の方法を以下に例示する。尚、本発明の細菌は、リボヌクレアーゼGの活性が低下するように改変された腸内細菌科に属する細菌にL−アミノ酸生産能を付与するか、リボヌクレアーゼGの活性が低下するように改変された腸内細菌科に属する細菌のL−アミノ酸生産能を増強することによっても、取得することができる。
【0020】
<2−1>本発明の親株として使用される細菌
本発明の細菌は、腸内細菌科に属し、L−アミノ酸生産能を有する細菌である。
腸内細菌科は、エシェリヒア、エンテロバクター、エルビニア、クレブシエラ、パントエア、フォトルハブドゥス、プロビデンシア、サルモネラ、セラチア、シゲラ、モルガネラ、イェルシニア等の属に属する細菌を含む。特に、NCBI (National Center for Biotechnology Information)のデータベース(http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=91347)で用いられている分類法により腸内細菌科に分類されている細菌が好ましい。
【0021】
エシェリヒア属に属する細菌とは、特に制限されないが、当該細菌が微生物学の専門家に知られている分類により、エシェリヒア属に分類されていることを意味する。本発明において使用されるエシェリヒア属に属する細菌の例としては、エシェリヒア・コリ(E.coli)が挙げられるが、これに限定されない。
【0022】
本発明において使用することができるエシェリヒア属に属する細菌は、特に制限されないが、例えば、ナイトハルトらの著書(Neidhardt, F. C. Ed. 1996. Escherichia coli and Salmonella: Cellular and Molecular Biology/Second Edition pp. 2477-2483. Table 1. American Society for Microbiology Press, Washington, D.C.)に記述されてい
る系統のものが含まれる。具体的には、プロトタイプの野生株K12株由来のエシェリヒア・コリ W3110 (ATCC 27325)、エシェリヒア・コリ MG1655 (ATCC 47076)等が挙げられる。
【0023】
これらの菌株は、例えばアメリカン・タイプ・カルチャー・コレクション(住所 P.O.
Box 1549 Manassas, VA 20108, United States of America)より分譲を受けることが出来る。すなわち各菌株に対応する登録番号が付与されており、この登録番号を利用して分譲を受けることが出来る。各菌株に対応する登録番号は、アメリカン・タイプ・カルチャー・コレクションのカタログに記載されている。
【0024】
パントエア属に属する細菌とは、当該細菌が微生物学の専門家に知られている分類により、パントエア属に分類されていることを意味する。エンテロバクター・アグロメランスのある種のものは、最近、16S rRNAの塩基配列分析等に基づき、パントエア・アグロメランス、パントエア・アナナティス、パントエア・ステワルティイその他に再分類された(Int. J. Syst. Bacteriol., 43, 162-173 (1993))。本発明において、パントエア属に属する細菌には、このようにパントエア属に再分類された細菌も含まれる。
【0025】
本発明に用いる細菌は、グリセロールの資化性を高めるために、glpR遺伝子(EP1715056)の発現が弱化されているか、glpA、glpB、glpC、glpD、glpE、glpF、glpG、glpK、glpQ、glpT、glpX、tpiA、gldA、dhaK、dhaL、dhaM、dhaR、fsa及びtalC遺伝子等のグリセロール代謝遺伝子(EP1715055A)の発現が強化されていてもよい。
【0026】
本発明において、L−アミノ酸生産能を有する細菌とは、培地に培養したとき、L−アミノ酸を生産し、培地中に分泌する能力を有する細菌をいう。また、好ましくは、目的とするL−アミノ酸を好ましくは0.5g/L以上、より好ましくは1.0g/L以上の量を培地に蓄積させることができる細菌をいう。L−アミノ酸は、L−アラニン、L−アルギニン、L−アスパラギン、L−アスパラギン酸、L−システイン、L−グルタミン酸、L−グルタミン、グリシン、L−ヒスチジン、L−イソロイシン、L−ロイシン、L−リジン、L−メチオニン、L−フェニルアラニン、L−プロリン、L−セリン、L−スレオニン、L−トリプトファン、L−チロシン及びL−バリンを含む。これらの中では、L−リジン、L−グルタミン酸、L−スレオニン、L−アルギニン、L−ヒスチジン、L−イソロイシン、L−バリン、L−ロイシン、L−フェニルアラニン、L−チロシン、L−トリプトファン、及びL−システインが好ましく、特に、L−スレオニン、L−リジン及びL−グルタミン酸が好ましい。
【0027】
以下、前記のような細菌にL−アミノ酸生産能を付与する方法、又は前記のような細菌L−アミノ酸生産能を増強する方法について述べる。
【0028】
L−アミノ酸生産能を付与するには、栄養要求性変異株、L−アミノ酸のアナログ耐性株又は代謝制御変異株の取得や、L−アミノ酸の生合成系酵素の発現が増強された組換え株の創製等、従来、コリネ型細菌又はエシェリヒア属細菌等のアミノ酸生産菌の育種に採用されてきた方法を適用することができる(アミノ酸発酵、(株)学会出版センター、1986年5月30日初版発行、第77〜100頁参照)。ここで、L−アミノ酸生産菌の育種において、付与される栄養要求性、アナログ耐性、代謝制御変異等の性質は、単独でもよく、2種又は3種以上であってもよい。また、発現が増強されるL−アミノ酸生合成系酵素も、単独であっても、2種又は3種以上であってもよい。さらに、栄養要求性、アナログ耐性、代謝制御変異等の性質の付与と、生合成系酵素の増強が組み合わされてもよい。
【0029】
L−アミノ酸生産能を有する栄養要求性変異株、アナログ耐性株、又は代謝制御変異株を取得するには、親株又は野生株を通常の変異処理、すなわちX線や紫外線の照射、また
はN−メチル−N'−ニトロ−N−ニトロソグアニジン等の変異剤処理などによって処理し、得られた変異株の中から、栄養要求性、アナログ耐性、又は代謝制御変異を示し、かつL−アミノ酸生産能を有するものを選択することによって得ることができる。
【0030】
また、L−アミノ酸生産能の付与又は増強は、遺伝子組換えによって、酵素活性を増強することによっても行うことが出来る。酵素活性の増強は、例えば、L−アミノ酸の生合成に関与する酵素をコードする遺伝子の発現が増強するように細菌を改変する方法を挙げることができる。遺伝子の発現を増強するための方法としては、遺伝子を含むDNA断片を、適当なプラスミド、例えば微生物内でプラスミドの複製増殖機能を司る遺伝子を少なくとも含むプラスミドベクターに導入した増幅プラスミドを導入すること、または、これらの遺伝子を染色体上で接合、転移等により多コピー化すること、またこれらの遺伝子のプロモーター領域に変異を導入することにより達成することもできる(国際公開パンフレットWO95/34672号参照)。
【0031】
上記増幅プラスミドまたは染色体上に目的遺伝子を導入する場合、これらの遺伝子を発現させるためのプロモーターはコリネ型細菌において機能するものであればいかなるプロモーターであっても良く、用いる遺伝子自身のプロモーターであってもよいし、改変したものでもよい。コリネ型細菌で強力に機能するプロモーターを適宜選択することや、プロモーターの−35、−10領域をコンセンサス配列に近づけることによっても遺伝子の発現量の調節が可能である。以上のような、酵素遺伝子の発現を増強する方法は、WO00/18935号パンフレット、欧州特許出願公開1010755号明細書等に記載されている。
【0032】
以下、細菌にL−アミノ酸生産能を付与する具体的方法、及びL−アミノ酸生産能が付与された細菌について例示する。
【0033】
L−スレオニン生産菌
L−スレオニン生産能を有する微生物として好ましいものは、L−スレオニン生合成系酵素の1種又は2種以上の活性が増強された細菌が挙げられる。L−スレオニン生合成系酵素としては、アスパルトキナーゼIII(lysC)、アスパルテートセミアルデヒドデヒドロゲナーゼ(asd)、thrオペロンにコードされるアスパルトキナーゼI(thrA)、ホモセリンキナーゼ(thrB)、スレオニンシンターゼ(thrC)、アスパルテートアミノトランスフェラーゼ(アスパルテートトランスアミナーゼ)(aspC)が挙げられる。カッコ内は、その遺伝子の略記号である(以下の記載においても同様)。これらの酵素の中では、アスパルテートセミアルデヒドデヒドロゲナーゼ、アスパルトキナーゼI、ホモセリンキナーゼ、アスパルテートアミノトランスフェラーゼ、及びスレオニンシンターゼが特に好ましい。L−スレオニン生合成系遺伝子は、スレオニン分解が抑制されたエシェリヒア属細菌に導入してもよい。スレオニン分解が抑制されたエシェリヒア属細菌としては、例えば、スレオニンデヒドロゲナーゼ活性が欠損したTDH6株(特開2001−346578号)等が挙げられる。
【0034】
L−スレオニン生合成系酵素は、最終産物のL−スレオニンによって酵素活性が抑制される。従って、L−スレオニン生産菌を構築するためには、L−スレオニンによるフィードバック阻害を受けないようにL−スレオニン生合成系遺伝子を改変することが望ましい。また、上記thrA、thrB、thrC遺伝子は、スレオニンオペロンを構成しているが、スレオニンオペロンは、アテニュエーター構造を形成しており、スレオニンオペロンの発現は、培養液中のイソロイシン、スレオニンに阻害を受け、アテニュエーションにより発現が抑制される。この改変は、アテニュエーション領域のリーダー配列あるいは、アテニュエーターを除去することにより達成出来る(Lynn, S. P., Burton, W. S., Donohue, T. J., Gould, R. M., Gumport, R. I., and Gardner, J. F. J. Mol. Biol. 194:59-69 (1987);
国際公開第02/26993号パンフレット; 国際公開第2005/049808号パンフレット参照)。
【0035】
スレオニンオペロンの上流には、固有のプロモーターが存在するが、非天然のプロモーターに置換してもよいし(WO98/04715号パンフレット参照)、スレオニン生合成関与遺伝子の発現がラムダファ−ジのリプレッサーおよびプロモーターにより支配されるようなスレオニンオペロンを構築してもよい。(欧州特許第0593792号明細書参照)また、L−スレオニンによるフィードバック阻害を受けないように細菌を改変するために、α-amino-β-hydroxyvaleric acid (AHV)に耐性な菌株を選抜することも可能である。
【0036】
このようにL−スレオニンによるフィ−ドバック阻害を受けないように改変されたスレオニンオペロンは、宿主内でコピー数が上昇しているか、あるいは強力なプロモーターに連結し、発現量が向上していることが好ましい。コピー数の上昇は、プラスミドによる増幅の他、トランスポゾン、Mu−ファ−ジ等でゲノム上にスレオニンオペロンを転移させることによっても達成出来る。
【0037】
L−スレオニン生合成系酵素以外にも、解糖系、TCA回路、呼吸鎖に関する遺伝子や遺伝子の発現を制御する遺伝子、糖の取り込み遺伝子を強化することも好適である。これらのL−スレオニン生産に効果がある遺伝子としては、トランスヒドロナーゼ(pntAB)遺伝子(欧州特許733712号明細書)、ホスホエノールピルビン酸カルボキシラーゼ遺伝子(pepC)(国際公開95/06114号パンフレット)、ホスホエノールピルビン酸シンターゼ遺伝子(pps)(欧州特許877090号明細書)、コリネ型細菌あるいはバチルス属細菌のピルビン酸カルボキシラーゼ遺伝子(国際公開99/18228号パンフレット、欧州出願公開1092776号明細書)が挙げられる。
【0038】
また、L−スレオニンに耐性を付与する遺伝子、L−ホモセリンに耐性を付与する遺伝子の発現を強化することや、宿主にL−スレオニン耐性、L−ホモセリン耐性を付与することも好適である。耐性を付与する遺伝子としては、rhtA遺伝子(Res. Microbiol. 154:123−135 (2003))、rhtB遺伝子(欧州特許出願公開第0994190号明細書)、rhtC遺伝子(欧州特許出願公開第1013765号明細書)、yfiK、yeaS遺伝子(欧州特許出願公開第1016710号明細書)が挙げられる。また宿主にL−スレオニン耐性を付与する方法は、欧州特許出願公開第0994190号明細書や、国際公開第90/04636号パンフレット記載の方法を参照出来る。
【0039】
L−スレオニン生産菌又はそれを誘導するための親株の例としては、E. coli TDH-6/pVIC40 (VKPM B-3996) (米国特許第5,175,107号、米国特許第5,705,371号)、E. coli 472T23/pYN7 (ATCC 98081) (米国特許第5,631,157号)、E. coli NRRL-21593 (米国特許第5,939,307号)、E. coli FERM BP-3756 (米国特許第5,474,918号)、E. coli FERM BP-3519及びFERM BP-3520 (米国特許第5,376,538号)、E. coli MG442 (Gusyatiner et al., Genetika (in Russian), 14, 947-956 (1978))、E. coli VL643及びVL2055 (EP 1149911 A)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
【0040】
TDH-6株はthrC遺伝子を欠損し、スクロース資化性であり、また、そのilvA遺伝子がリーキー(leaky)変異を有する。この株はまた、rhtA遺伝子に、高濃度のスレオニンまたはホモセリンに対する耐性を付与する変異を有する。B-3996株は、RSF1010由来ベクターに、変異thrA遺伝子を含むthrA*BCオペロンを挿入したプラスミドpVIC40を保持する。この変異thrA遺伝子は、スレオニンによるフィードバック阻害が実質的に解除されたアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする。B-3996株は、1987年11月19日、オールユニオン・サイエンティフィック・センター・オブ・アンチビオティクス(Nagatinskaya Street 3-A, 117105 Moscow, Russia)に、受託番号RIA 1867で寄託されている。この株は、また、1987年4月7日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russi
a) に、受託番号B-3996で寄託されている。
【0041】
E. coli VKPM B-5318 (EP 0593792B)も、L−スレオニン生産菌又はそれを誘導するための親株として使用できる。B-5318株は、イソロイシン非要求性であり、プラスミドpVIC40中のスレオニンオペロンの制御領域が、温度感受性ラムダファージC1リプレッサー及びPRプロモーターにより置換されている。VKPM B-5318は、1990年5月3日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-5318で国際寄託されている。
【0042】
Escherichia coliのアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードするthrA遺伝子は明らかにされている(ヌクレオチド番号337〜2799, GenBank accession NC_000913.2, gi: 49175990)。thrA遺伝子は、E. coli K-12の染色体において、thrL遺伝子とthrB遺伝子との間に位置する。Escherichia coliのホモセリンキナーゼをコードするthrB遺伝子は明らかにされている(ヌクレオチド番号2801〜3733, GenBank accession NC_000913.2, gi: 49175990)。thrB遺伝子は、E. coli K-12の染色体において、thrA遺伝子とthrC遺伝子との間に位置する。Escherichia coliのスレオニンシンターゼをコードするthrC遺伝子は明らかにされている(ヌクレオチド番号3734〜5020, GenBank accession NC_000913.2, gi: 49175990)。thrC遺伝子は、E. coli K-12の染色体において、thrB遺伝子とyaaXオープンリーディングフレームとの間に位置する。これら三つの遺伝子は、全て、単一のスレオニンオペロンとして機能する。スレオニンオペロンの発現を増大させるには、転写に影響するアテニュエーター領域を、好ましくは、オペロンから除去する(WO2005/049808, WO2003/097839)。
【0043】
スレオニンによるフィードバック阻害に耐性のアスパルトキナーゼホモセリンデヒドロゲナーゼIをコードする変異thrA遺伝子、ならびに、thrB遺伝子及びthrC遺伝子は、スレオニン生産株E. coli VKPM B-3996に存在する周知のプラスミドpVIC40から一つのオペロンとして取得できる。プラスミドpVIC40の詳細は、米国特許第5,705,371号に記載されている。
【0044】
rhtA遺伝子は、グルタミン輸送系の要素をコードするglnHPQ オペロンに近いE. coli染色体の18分に存在する。rhtA遺伝子は、ORF1 (ybiF遺伝子, ヌクレオチド番号764〜1651,
GenBank accession number AAA218541, gi:440181)と同一であり、pexB遺伝子とompX遺伝子との間に位置する。ORF1によりコードされるタンパク質を発現するユニットは、rhtA遺伝子と呼ばれている(rht: ホモセリン及びスレオニンに耐性)。また、rhtA23変異が、ATG開始コドンに対して-1位のG→A置換であることが判明している(ABSTRACTS of the 17th
International Congress of Biochemistry and Molecular Biology in conjugation with Annual Meeting of the American Society for Biochemistry and Molecular Biology,
San Francisco, California August 24-29, 1997, abstract No. 457, EP 1013765 A)。
【0045】
E. coliのasd遺伝子は既に明らかにされており(ヌクレオチド番号3572511〜3571408, GenBank accession NC_000913.1, gi:16131307)、その遺伝子の塩基配列に基づいて作製されたプライマーを用いるPCRにより得ることができる(White, T.J. et al., Trends Genet., 5, 185 (1989)参照)。他の微生物のasd遺伝子も同様に得ることができる。
【0046】
また、E. coliのaspC遺伝子も既に明らかにされており(ヌクレオチド番号983742〜984932, GenBank accession NC_000913.1, gi:16128895)、PCRにより得ることができる。他の微生物のaspC遺伝子も同様に得ることができる。
【0047】
L−リジン生産菌
エシェリヒア属に属するL−リジン生産菌の例としては、L−リジンアナログに耐性を有する変異株が挙げられる。L−リジンアナログはエシェリヒア属に属する細菌の生育を阻害するが、この阻害は、L−リジンが培地に共存するときには完全にまたは部分的に解除される。L−リジンアナログの例としては、オキサリジン、リジンヒドロキサメート、S−(2−アミノエチル)−L−システイン(AEC)、γ−メチルリジン、α−クロロカプロラクタムなどが挙げられるが、これらに限定されない。これらのリジンアナログに対して耐性を有する変異株は、エシェリヒア属に属する細菌を通常の人工変異処理に付すことによって得ることができる。L−リジンの生産に有用な細菌株の具体例としては、Escherichia coli AJ11442 (FERM BP-1543, NRRL B-12185; 米国特許第4,346,170号参照)及びEscherichia coli VL611が挙げられる。これらの微生物では、アスパルトキナーゼのL−リジンによるフィードバック阻害が解除されている。
【0048】
WC196株は、Escherichia coliのL−リジン生産菌として使用できる。この菌株は、Escherichia coli K-12に由来するW3110株にAEC耐性を付与することにより育種された。同株は、Escherichia coli AJ13069と命名され、1994年12月6日、工業技術院生命工学工業技術研究所(現 独立行政法人 産業技術総合研究所 特許生物寄託センター、〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に受託番号FERM P-14690として寄託され、1995年9月29日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-5252が付与されている(米国特許第5,827,698号)。
【0049】
L−リジン生産菌又はそれを誘導するための親株の例としては、L−リジン生合成系酵素の1種又は2種以上の活性が増強されている株も挙げられる。かかる酵素の例としては、ジヒドロジピコリン酸シンターゼ(dapA)、アスパルトキナーゼ(lysC)、ジヒドロジピコリン酸レダクターゼ(dapB)、ジアミノピメリン酸デカルボキシラーゼ(lysA)、ジアミノピメリン酸デヒドロゲナーゼ(ddh) (米国特許第6,040,160号)、フォスフォエノールピルビン酸カルボキシラーゼ(ppc)、アスパルテートセミアルデヒドデヒドロゲナーゼ遺伝子、ジアミノピメリン酸エピメラーゼ(dapF)、テトラヒドロジピコリン酸スクシニラーゼ(dapD)、スクシニルジアミノピメリン酸デアシラーゼ(dapE)及びアスパルターゼ(aspA) (EP 1253195 A)が挙げられるが、これらに限定されない。これらの酵素の中では、ジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、フォスフォエノールピルビン酸カルボキシラーゼ、アスパルテートアミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパルテートセミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及び、スクシニルジアミノピメリン酸デアシラーゼが特に好ましい。また、親株は、エネルギー効率に関与する遺伝子(cyo) (EP 1170376 A)、ニコチンアミドヌクレオチドトランスヒドロゲナーゼをコードする遺伝子(pntAB) (米国特許第5,830,716号)、ybjE遺伝子(WO2005/073390)、または、これらの組み合わせの発現レベルが増大していてもよい。
【0050】
L−リジン生産菌又はそれを誘導するための親株の例としては、L−リジンの生合成経路から分岐してL−リジン以外の化合物を生成する反応を触媒する酵素の活性が低下または欠損している株も挙げられる。L−リジンの生合成経路から分岐してL−リジン以外の化合物を生成する反応を触媒する酵素の例としては、ホモセリンデヒドロゲナーゼ、リジンデカルボキシラーゼ(米国特許第5,827,698号)、及び、リンゴ酸酵素(WO2005/010175)が挙げられる。
【0051】
好ましいL−リジン生産菌として、エシェリヒア・コリWC196ΔcadAΔldcC/pCABD2が挙げられる(WO2006/078039)。この菌株は、リジンデカルボキシラーゼをコードするcadA及びldcC遺伝子が破壊されたWC196株に、米国特許第6040160に記載されたプラスミドpCABD2が導入することにより得られた株である。pCABD2は、L−リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のジヒドロジピコリン酸合成酵素
(DDPS)をコードする変異型dapA遺伝子と、L−リジンによるフィードバック阻害が解除された変異を有するエシェリヒア・コリ由来のアスパルトキナーゼIIIをコードする変異型lysC遺伝子と、エシェリヒア・コリ由来のジヒドロジピコリン酸レダクターゼをコードするdapB遺伝子と、ブレビバクテリウム・ラクトファーメンタム由来ジアミノピメリン酸デヒドロゲナーゼをコードするddh遺伝子を含んでいる。
【0052】
L−システイン生産菌
L−システイン生産菌又はそれを誘導するための親株の例としては、フィードバック阻害耐性のセリンアセチルトランスフェラーゼをコードする異なるcysEアレルで形質転換されたE. coli JM15(米国特許第6,218,168号、ロシア特許出願第2003121601号)、細胞に毒性の物質を排出するのに適したタンパク質をコードする過剰発現遺伝子を有するE. coli W3110 (米国特許第5,972,663号)、システインデスルフォヒドラーゼ活性が低下したE. coli株 (JP11155571A2)、cysB遺伝子によりコードされる正のシステインレギュロンの転写制御因子の活性が上昇したE. coli W3110 (WO0127307A1)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
【0053】
L−ロイシン生産菌
L−ロイシン生産菌又はそれを誘導するための親株の例としては、ロイシン耐性のE. coil株 (例えば、57株 (VKPM B-7386, 米国特許第6,124,121号))またはβ−2−チエニルアラニン、3−ヒドロキシロイシン、4−アザロイシン、5,5,5-トリフルオロロイシンなどのロイシンアナログ耐性のE.coli株(特公昭62-34397号及び特開平8-70879号)、WO96/06926に記載された遺伝子工学的方法で得られたE. coli株、E. coli H-9068 (特開平8-70879号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
【0054】
本発明に用いる細菌は、L−ロイシン生合成に関与する遺伝子の1種以上の発現が増大されることにより改良されていてもよい。このような遺伝子の例としては、好ましくはL−ロイシンによるフィードバック阻害が解除されたイソプロピルマレートシンターゼをコードする変異leuA遺伝子(米国特許第6,403,342号)に代表される、leuABCDオペロンの遺伝子が挙げられる。さらに、本発明に用いる細菌は、細菌の細胞からL−アミノ酸を排出するタンパク質をコードする遺伝子の1種以上の発現が増大されることにより改良されていてもよい。このような遺伝子の例としては、b2682遺伝子及びb2683遺伝子(ygaZH遺伝子) (EP 1239041 A2)が挙げられる。
【0055】
L−ヒスチジン生産菌
L−ヒスチジン生産菌又はそれを誘導するための親株の例としては、E. coli 24株 (VKPM B-5945, RU2003677)、E. coli 80株 (VKPM B-7270, RU2119536)、E. coli NRRL B-12116 - B12121 (米国特許第4,388,405号)、E. coli H-9342 (FERM BP-6675)及びH-9343 (FERM BP-6676) (米国特許第6,344,347号)、E. coli H-9341 (FERM BP-6674) (EP1085087)、E. coli AI80/pFM201 (米国特許第6,258,554号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
【0056】
L−ヒスチジン生産菌又はそれを誘導するための親株の例としては、L−ヒスチジン生合成系酵素をコードする遺伝子の1種以上の発現が増大した株も挙げられる。かかる遺伝子の例としては、ATPフォスフォリボシルトランスフェラーゼ遺伝子(hisG)、フォスフォリボシルAMPサイクロヒドロラーゼ遺伝子(hisI)、フォスフォリボシル-ATPピロフォスフォヒドロラーゼ遺伝子(hisI)、フォスフォリボシルフォルミミノ-5-アミノイミダゾールカルボキサミドリボタイドイソメラーゼ遺伝子(hisA)、アミドトランスフェラーゼ遺伝子(hisH)、ヒスチジノールフォスフェイトアミノトランスフェラーゼ遺伝子(hisC)、ヒスチジノールフォスファターゼ遺伝子(hisB)、ヒスチジノールデヒドロゲナーゼ遺伝子(hisD)などが挙げられる。
【0057】
hisG及びhisBHAFIにコードされるL−ヒスチジン生合成系酵素はL−ヒスチジンにより阻害されることが知られており、従って、L−ヒスチジン生産能は、ATPフォスフォリボシルトランスフェラーゼ遺伝子(hisG)にフィードバック阻害への耐性を付与する変異を導入することにより効率的に増大させることができる(ロシア特許第2003677号及び第2119536号)。
【0058】
L−ヒスチジン生産能を有する株の具体例としては、L−ヒスチジン生合成系酵素をコードするDNAを保持するベクターを導入したE. coli FERM-P 5038及び5048 (特開昭56-005099号)、アミノ酸輸送の遺伝子を導入したE.coli株(EP1016710A)、スルファグアニジン、DL-1,2,4-トリアゾール-3-アラニン及びストレプトマイシンに対する耐性を付与したE. coli 80株(VKPM B-7270, ロシア特許第2119536号)などが挙げられる。
【0059】
L−グルタミン酸生産菌
L−グルタミン酸生産菌又はそれを誘導するための親株の例としては、E. coli VL334thrC+ (EP 1172433)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。E. coli VL334 (VKPM B-1641)は、thrC遺伝子及びilvA遺伝子に変異を有するL−イソロイシン及びL−スレオニン要求性株である(米国特許第4,278,765号)。thrC遺伝子の野生型アレルは、野生型E. coli K12株 (VKPM B-7)の細胞で増殖したバクテリオファージP1を用いる一般的形質導入法により導入された。この結果、L−イソロイシン要求性のL−グルタミン酸生産菌VL334thrC+ (VKPM B-8961) が得られた。
【0060】
L−グルタミン酸生産菌又はそれを誘導するための親株の例としては、L−グルタミン酸生合成系酵素1種又は2種以上の活性が増強された株が挙げられるが、これらに限定されない。かかる遺伝子の例としては、グルタメートデヒドロゲナーゼ(gdhA)、グルタミンシンテターゼ(glnA)、グルタメートシンテターゼ(gltAB)、イソシトレートデヒドロゲナーゼ(icdA)、アコニテートヒドラターゼ(acnA, acnB)、クエン酸シンターゼ(gltA)、メチルクエン酸シンターゼ(prpC)、フォスフォエノールピルベートカルボシラーゼ(ppc)、ピルベートデヒドロゲナーゼ(aceEF, lpdA)、ピルベートキナーゼ(pykA, pykF)、フォスフォエノールピルベートシンターゼ(ppsA)、エノラーゼ(eno)、フォスフォグリセロムターゼ(pgmA, pgmI)、フォスフォグリセレートキナーゼ(pgk)、グリセルアルデヒド-3-フォスフェートデヒドロゲナーゼ(gapA)、トリオースフォスフェートイソメラーゼ(tpiA)、フルクトースビスフォスフェートアルドラーゼ(fbp)、フォスフォフルクトキナーゼ(pfkA, pfkB)、グルコースフォスフェートイソメラーゼ(pgi)などが挙げられる。これらの酵素の中では、グルタメートデヒドロゲナーゼ、クエン酸シンターゼ、フォスフォエノールピルベートカルボキシラーゼ、及びメチルクエン酸シンターゼが好ましい。
【0061】
シトレートシンテターゼ遺伝子、フォスフォエノールピルベートカルボキシラーゼ遺伝子、及び/またはグルタメートデヒドロゲナーゼ遺伝子の発現が増大するように改変された株の例としては、EP1078989A、EP955368A及びEP952221Aに開示されたものが挙げられる。
【0062】
L−グルタミン酸生産菌又はそれを誘導するための親株の例としては、L−グルタミン酸の生合成経路から分岐してL−グルタミン酸以外の化合物の合成を触媒する酵素の活性が低下または欠損している株も挙げられる。このような酵素の例としては、イソシトレートリアーゼ(aceA)、α-ケトグルタレートデヒドロゲナーゼ(sucA)、フォスフォトランスアセチラーゼ(pta)、アセテートキナーゼ(ack)、アセトヒドロキシ酸シンターゼ(ilvG)、アセトラクテートシンターゼ(ilvI)、フォルメートアセチルトランスフェラーゼ(pfl)、ラクテートデヒドロゲナーゼ(ldh)、グルタメートデカルボキシラーゼ(gadAB)などが挙げられる。α-ケトグルタレートデヒドロゲナーゼ活性が欠損した、または、α-ケトグルタ
レートデヒドロゲナーゼ活性が低下したエシェリヒア属に属する細菌、及び、それらの取得方法は米国特許第5,378,616 号及び第5,573,945号に記載されている。
【0063】
具体例としては下記のものが挙げられる。
E. coli W3110sucA::Kmr
E. coli AJ12624 (FERM BP-3853)
E. coli AJ12628 (FERM BP-3854)
E. coli AJ12949 (FERM BP-4881)
【0064】
E. coli W3110sucA::Kmr は、E. coli W3110のα-ケトグルタレートデヒドロゲナーゼ遺伝子(以下、「sucA遺伝子」ともいう)を破壊することにより得られた株である。この株は、α-ケトグルタレートデヒドロゲナーゼを完全に欠損している。
【0065】
L−グルタミン酸生産菌の他の例としては、エシェリヒア属に属し、アスパラギン酸代謝拮抗物質に耐性を有するものが挙げられる。これらの株は、α-ケトグルタレートデヒドロゲナーゼを欠損していてもよく、例えば、E. coli AJ13199 (FERM BP-5807) (米国特許第5.908,768号)、さらにL−グルタミン酸分解能が低下したFFRM P-12379(米国特許第5,393,671号); AJ13138 (FERM BP-5565) (米国特許第6,110,714号)などが挙げられる。
【0066】
パントアエ・アナナティスのL−グルタミン酸生産菌の例としては、パントエア・アナナティスAJ13355株が挙げられる。同株は、静岡県磐田市の土壌から、低pHでL−グルタミン酸及び炭素源を含む培地で増殖できる株として分離された株である。パントエア・アナナティスAJ13355は、1998年2月19日に、独立行政法人 産業技術総合研究所 特許生物寄託センター(住所 〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に、受託番号FERM P-16644として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6614が付与されている。尚、同株は、分離された当時はエンテロバクター・アグロメランス(Enterobacter agglomerans)と同定され、エンテロバクター・アグロメランスAJ13355として寄託されたが、近年16S rRNAの塩基配列解析などにより、パントエア・アナナティス(Pantoea ananatis)に再分類されている。
【0067】
また、パントアエ・アナナティスのL−グルタミン酸生産菌として、α-ケトグルタレートデヒドロゲナーゼ(αKGDH)活性が欠損した、または、αKGDH活性が低下したパントエア属に属する細菌が挙げられる。このような株としては、AJ13355株のαKGDH-E1サブユニット遺伝子(sucA)を欠損させたAJ13356(米国特許第6,331,419号)、及びAJ13355株から粘液質低生産変異株として選択されたSC17株由来のsucA遺伝子欠損株であるSC17sucA(米国特許第6,596,517号)がある。AJ13356は、1998年2月19日、工業技術院生命工学工業技術研究所(現 独立行政法人 産業技術総合研究所 特許生物寄託センター、〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に受託番号FERM P-16645として寄託され、1999年1月11日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-6616が付与されている。AJ13355及びAJ13356は、上記寄託機関にEnterobacter agglomeransとして寄託されているが、本明細書では、Pantoea ananatisとして記載する。また、SC17sucA株は、ブライベートナンバーAJ417株が付与され、2004年2月26日に産業技術総合研究所特許生物寄託センターに受託番号FERM BP-08646として寄託されている。
【0068】
さらに、パントアエ・アナナティスのL−グルタミン酸生産菌として、SC17sucA/RSFCPG+pSTVCB株、AJ13601株、NP106株、及びNA1株が挙げられる。SC17sucA/RSFCPG+pSTVCB株は、SC17sucA株に、エシェリヒア・コリ由来のクエン酸シンターゼ遺伝子(gltA)、ホスホエノールピルビン酸カルボキシラーゼ遺伝子(ppsA)、およびグルタメートデヒドロゲナーゼ遺伝子(gdhA)を含むプラスミドRSFCPG、並びに、ブレビバクテリウム・ラクトファーメンタム由来のクエン酸シンターゼ遺伝子(gltA)を含むプラスミドpSTVCBを導入し
て得た株である。AJ13601株は、このSC17sucA/RSFCPG+pSTVCB株から低pH下で高濃度のL−グルタミン酸に耐性を示す株として選択された株である。また、NP106株は、実施例に記載したように、AJ13601株からプラスミドRSFCPG+pSTVCBを脱落させた株である。AJ13601株は、1999年8月18日に、独立行政法人 産業技術総合研究所 特許生物寄託センター(〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に受託番号FERM P-17516として寄託され、2000年7月6日にブダペスト条約に基づく国際寄託に移管され、受託番号FERM BP-7207が付与されている。
【0069】
L−フェニルアラニン生産菌
L−フェニルアラニン生産菌又はそれを誘導するための親株の例としては、コリスミ酸ムターゼ−プレフェン酸デヒドロゲナーゼ及びチロシンリプレッサーを欠損したE.coli AJ12739 (tyrA::Tn10, tyrR) (VKPM B-8197)(WO03/044191)、フィードバック阻害が解除されたコリスミ酸ムターゼ−プレフェン酸デヒドラターゼをコードする変異型pheA34遺伝子を保持するE.coli HW1089 (ATCC 55371) (米国特許第 5,354,672号)、E.coli MWEC101-b (KR8903681)、E.coli NRRL B-12141, NRRL B-12145, NRRL B-12146及びNRRL B-12147 (米国特許第4,407,952号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。また、親株として、フィードバック阻害が解除されたコリスミ酸ムターゼ−プレフェン酸デヒドラターゼをコードする遺伝子を保持するE. coli K-12 [W3110 (tyrA)/pPHAB] (FERM BP-3566)、E. coli K-12 [W3110 (tyrA)/pPHAD] (FERM BP-12659)、E. coli K-12 [W3110 (tyrA)/pPHATerm] (FERM BP-12662)及びAJ 12604と命名されたE. coli K-12 [W3110 (tyrA)/pBR-aroG4, pACMAB] (FERM BP-3579)も使用できる(EP 488424 B1)。さらに、yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属するL−フェニルアラニン生産菌も使用できる(米国特許出願公開2003/0148473 A1及び2003/0157667 A1、WO03/044192)。
【0070】
L−トリプトファン生産菌
L−トリプトファン生産菌又はそれを誘導するための親株の例としては、変異trpS遺伝子によりコードされるトリプトファニル-tRNAシンテターゼが欠損したE. coli JP4735/pMU3028 (DSM10122)及びJP6015/pMU91 (DSM10123) (米国特許第5,756,345号)、セリンによるフィードバック阻害を受けないフォスフォグリセリレートデヒドロゲナーゼをコードするserAアレル及びトリプトファンによるフィードバック阻害を受けないアントラニレートシンターゼをコードするtrpEアレルを有するE. coli SV164 (pGH5) (米国特許第6,180,373号)、トリプトファナーゼが欠損したE. coli AGX17 (pGX44) (NRRL B-12263)及びAGX6(pGX50)aroP (NRRL B-12264) (米国特許第4,371,614号)、フォスフォエノールピルビン酸生産能が増大したE. coli AGX17/pGX50,pACKG4-pps (WO9708333, 米国特許第6,319,696号)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。yedA遺伝子またはyddG遺伝子にコードされるタンパク質の活性が増大したエシェリヒア属に属するL−トリプトファン生産菌も使用できる(米国特許出願公開2003/0148473 A1及び2003/0157667
A1)。
【0071】
L−トリプトファン生産菌又はそれを誘導するための親株の例としては、アントラニレートシンターゼ(trpE)、フォスフォグリセレートデヒドロゲナーゼ(serA)、3−デオキシ−D−アラビノヘプツロン酸−7−リン酸シンターゼ(aroG)、3−デヒドロキネートシンターゼ(aroB)、シキミ酸デヒドロゲナーゼ(aroE)、シキミ酸キナーゼ(aroL)、5−エノール酸ピルビルシキミ酸3−リン酸シンターゼ(aroA)、コリスミ酸シンターゼ(aroC)、プレフェン酸デヒドラターゼ、コリスミ酸ムターゼ及び、トリプトファンシンターゼ(trpAB)から選ばれる1種又は2種以上の酵素の活性が増強された株も挙げられる。プレフェン酸デヒドラターゼ及びコリスミ酸ムターゼは、2機能酵素(CM-PD)としてpheA遺伝子によってコードされている。これらの酵素の中では、フォスフォグリセレートデヒドロゲナーゼ、3−デオキシ−D−アラビノヘプツロン酸−7−リン酸シンターゼ、3−デヒドロキ
ネートシンターゼ、シキミ酸デヒドラターゼ、シキミ酸キナーゼ、5−エノール酸ピルビルシキミ酸3−リン酸シンターゼ、コリスミ酸シンターゼ、プレフェン酸デヒドラターゼ、コリスミン酸ムターゼ−プレフェン酸デヒドロゲナーゼが特に好ましい。アントラニレートシンターゼ及びフォスフォグリセレートデヒドロゲナーゼは共にL−トリプトファン及びL−セリンによるフィードバック阻害を受けるので、フィードバック阻害を解除する変異をこれらの酵素に導入してもよい。このような変異を有する株の具体例としては、脱感作型アントラニレートシンターゼを保持するE. coli SV164、及び、フィードバック阻害が解除されたフォスフォグリセレートデヒドロゲナーゼをコードする変異serA遺伝子を含むプラスミドpGH5 (WO 94/08031)をE. coli SV164に導入することにより得られた形質転換株が挙げられる。
【0072】
L−トリプトファン生産菌又はそれを誘導するための親株の例としては、阻害解除型アントラニレートシンターゼをコードする遺伝子を含むトリプトファンオペロンが導入された株(特開昭57-71397号, 特開昭62-244382号, 米国特許第4,371,614号)も挙げられる。さらに、トリプトファンオペロン(trpBA)中のトリプトファンシンターゼをコードする遺伝子の発現を増大させることによりL−トリプトファン生産能を付与してもよい。トリプトファンシンターゼは、それぞれtrpA及びtrpB遺伝子によりコードされるα及びβサブユニットからなる。さらに、イソシトレートリアーゼ-マレートシンターゼオペロンの発現を増大させることによりL−トリプトファン生産能を改良してもよい(WO2005/103275)。
【0073】
L−プロリン生産菌
L−プロリン生産菌又はそれを誘導するための親株の例としては、ilvA遺伝子が欠損し、L−プロリンを生産できるE. coli 702ilvA (VKPM B-8012) (EP 1172433)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
【0074】
本発明に用いる細菌は、L−プロリン生合成に関与する遺伝子の一種以上の発現を増大することにより改良してもよい。L−プロリン生産菌に好ましい遺伝子の例としては、L−プロリンによるフィードバック阻害が解除されたグルタメートキナーゼをコードするproB遺伝子(ドイツ特許第3127361号)が挙げられる。さらに、本発明に用いる細菌は、細菌の細胞からL−アミノ酸を排出するタンパク質をコードする遺伝子の一種以上の発現が増大することにより改良してもよい。このような遺伝子としては、b2682 遺伝子及びb2683遺伝子(ygaZH遺伝子) (EP1239041 A2)が挙げられる。
【0075】
L−プロリン生産能を有するエシェリヒア属に属する細菌の例としては、NRRL B-12403及びNRRL B-12404 (英国特許第2075056号)、VKPM B-8012 (ロシア特許出願2000124295)、ドイツ特許第3127361号に記載のプラスミド変異体、Bloom F.R. et al (The 15th Miami winter symposium, 1983, p.34)に記載のプラスミド変異体などのE. coli 株が挙げられる。
【0076】
L−アルギニン生産菌
L−アルギニン生産菌又はそれを誘導するための親株の例としては、E. coli 237株 (VKPM B-7925) (米国特許出願公開2002/058315 A1)、及び、変異N-アセチルグルタメートシンターゼを保持するその誘導株(ロシア特許出願第2001112869号)、E. coli 382株 (VKPM B-7926) (EP1170358A1)、N-アセチルグルタメートシンテターゼをコードするargA遺伝子が導入されたアルギニン生産株(EP1170361A1)などのエシェリヒア属に属する株が挙げられるが、これらに限定されない。
【0077】
L−アルギニン生産菌又はそれを誘導するための親株の例としては、L−アルギニン生合成系酵素をコードする遺伝子の1種以上の発現が増大した株も挙げられる。かかる遺伝子の例としては、N-アセチルグルタミルフォスフェートレダクターゼ遺伝子(argC)、オル
ニチンアセチルトランスフェラーゼ遺伝子(argJ)、N-アセチルグルタメートキナーゼ遺伝子(argB)、アセチルオルニチントランスアミナーゼ遺伝子(argD)、オルニチンカルバモイルトランスフェラーゼ遺伝子(argF)、アルギノコハク酸シンテターゼ遺伝子(argG)、アルギノコハク酸リアーゼ遺伝子(argH)、カルバモイルフォスフェートシンテターゼ遺伝子(carAB)が挙げられる。
【0078】
L−バリン生産菌
L−バリン生産菌又はそれを誘導するための親株の例としては、ilvGMEDAオペロンを過剰発現するように改変された株(米国特許第5,998,178号)が挙げられるが、これらに限定されない。アテニュエーションに必要なilvGMEDAオペロンの領域を除去し、生産されるL−バリンによりオペロンの発現が減衰しないようにすることが好ましい。さらに、オペロンのilvA遺伝子が破壊され、スレオニンデアミナーゼ活性が減少することが好ましい。
L−バリン生産菌又はそれを誘導するための親株の例としては、アミノアシルt-RNAシンテターゼの変異を有する変異株(米国特許第5,658,766号)も挙げられる。例えば、イソロイシンtRNAシンテターゼをコードするileS 遺伝子に変異を有するE. coli VL1970が使用できる。E. coli VL1970は、1988年6月24日、ルシアン・ナショナル・コレクション・オブ・インダストリアル・マイクロオルガニズムズ(VKPM) (1 Dorozhny proezd., 1 Moscow 117545, Russia)に、受託番号VKPM B-4411で寄託されている。
さらに、生育にリポ酸を要求する、及び/または、H+-ATPaseを欠失している変異株(WO96/06926)を親株として用いることができる。
【0079】
L−イソロイシン生産菌
L−イソロイシン生産菌又はそれを誘導するための親株の例としては、6−ジメチルアミノプリンに耐性を有する変異株(特開平5-304969号)、チアイソロイシン、イソロイシンヒドロキサメートなどのイソロイシンアナログに耐性を有する変異株、さらにDL-エチオニン及び/またはアルギニンヒドロキサメートに耐性を有する変異株(特開平5-130882号).が挙げられるが、これらに限定されない。さらに、スレオニンデアミナーゼ、アセトヒドロキシ酸シンターゼなどのL−イソロイシン生合成に関与するタンパク質をコードする遺伝子で形質転換された組換え株もまた親株として使用できる(特開平2-458号, FR 0356739, 及び米国特許第5,998,178号)。
【0080】
L−チロシン生産菌
チロシン生産菌としては、チロシンによる阻害を受けない脱感作型のプレフェン酸デヒドラターゼ遺伝子(tyrA)を有するエシェリヒア属細菌(欧州特許出願公開1616940号公報)が挙げられる。
【0081】
遺伝子組換えにより、上記のL−アミノ酸生産菌を育種する場合、使用する遺伝子は、上述した遺伝子情報を持つ遺伝子や、公知の配列を有する遺伝子に限られず、それらの遺伝子のバリアント、すなわち、コードされるタンパク質の機能が損なわれない限り、それらの遺伝子のホモログや人為的な改変体等、保存的変異を有する遺伝子も使用することができる。すなわち、公知のタンパク質のアミノ酸配列において、1若しくは数個の位置での1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードする遺伝子であってもよい。
【0082】
ここで、「1若しくは数個」とは、アミノ酸残基のタンパク質の立体構造における位置やアミノ酸残基の種類によっても異なるが、具体的には好ましくは1〜20個、より好ましくは1〜10個、さらに好ましくは1〜5個を意味する。また、保存的変異とは、置換部位が芳香族アミノ酸である場合には、Phe、Trp、Tyr間で、置換部位が疎水性アミノ酸である場合には、Leu、Ile、Val間で、極性アミノ酸である場合には、Gln、Asn間で、塩基性アミノ酸である場合には、Lys、Arg、His間で、酸性アミノ酸である場合には、Asp、Glu間
で、ヒドロキシル基を持つアミノ酸である場合には、Ser、Thr間でお互いに置換する変異である。保存的変異の代表的なものは、保存的置換であり、保存的置換とみなされる置換としては、具体的には、AlaからSer又はThrへの置換、ArgからGln、His又はLysへの置換、AsnからGlu、Gln、Lys、His又はAspへの置換、AspからAsn、Glu又はGlnへの置換、CysからSer又はAlaへの置換、GlnからAsn、Glu、Lys、His、Asp又はArgへの置換、GluからGly、Asn、Gln、Lys又はAspへの置換、GlyからProへの置換、HisからAsn、Lys、Gln、Arg又はTyrへの置換、IleからLeu、Met、Val又はPheへの置換、LeuからIle、Met、Val又はPheへの置換、LysからAsn、Glu、Gln、His又はArgへの置換、MetからIle、Leu、Val又はPheへの置換、PheからTrp、Tyr、Met、Ile又はLeuへの置換、SerからThr又はAlaへの置換、ThrからSer又はAlaへの置換、TrpからPhe又はTyrへの置換、TyrからHis、Phe又はTrpへの置換、及び、ValからMet、Ile又はLeuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、遺伝子が由来する微生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。このような遺伝子は、例えば、部位特異的変異法によって、コードされるタンパク質の特定の部位のアミノ酸残基が置換、欠失、挿入または付加を含むように公知の遺伝子の塩基配列を改変することによって取得することができる。
【0083】
さらに、上記のような保存的変異を有する遺伝子は、コードされるアミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%以上、特に好ましくは97%以上の相同性を有し、かつ、野生型タンパク質と同等の機能を有するタンパク質をコードする遺伝子であってもよい。
また、遺伝子の配列におけるそれぞれのコドンは、遺伝子が導入される宿主で使用しやすいコドンに置換したものでもよい。
【0084】
保存的変異を有する遺伝子は、変異剤処理等、通常変異処理に用いられる方法によって取得されたものであってもよい。
【0085】
また、遺伝子は、公知の遺伝子配列の相補配列又はその相補配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズし、公知の遺伝子産物と同等の機能を有するタンパク質をコードするDNAであってもよい。ここで、「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。一例を示せば、相同性が高いDNA同士、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、特に好ましくは97%以上の相同性を有するDNA同士がハイブリダイズし、それより相同性が低いDNA同士がハイブリダイズしない条件、あるいは通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC、0.1% SDS、好ましくは、0.1×SSC、0.1% SDS、さらに好ましくは、68℃、0.1×SSC、0.1% SDSに相当する塩濃度、温度で、1回、より好ましくは2〜3回洗浄する条件が挙げられる。
【0086】
プローブとしては、遺伝子の相補配列の一部を用いることもできる。そのようなプローブは、公知の遺伝子配列に基づいて作製したオリゴヌクレオチドをプライマーとし、これらの塩基配列を含むDNA断片を鋳型とするPCRによって作製することができる。例えば、プローブとして、300 bp程度の長さのDNA断片を用いる場合には、ハイブリダイゼーションの洗いの条件は、50℃、2×SSC、0.1% SDSが挙げられる。
【0087】
上記した遺伝子のバリアントに関する記載は、下記のrng遺伝子についても同様に適用される。
【0088】
<2−2>リボヌクレアーゼG活性の低下
次に、腸内細菌科の属する細菌のリボヌクレアーゼGの活性を低下させる改変について説明する。
【0089】
本発明において「リボヌクレアーゼG(RNaseG)活性」とは、RNaseGの基質となるRNAを分解する活性をいう。
RNaseGの基質となるRNAとしては、例えば、エノラーゼをコードする遺伝子eno(GenBank Accession No.X82400)やアルコールデヒドロゲナーゼをコードする遺伝子adhE(GenBank Accession No.M33504)から転写されたRNAなどを挙げることができる。活性測定は、例えば、リファンピシンによりRNA合成を抑制した菌株よりRNAを抽出し、eno遺伝子又はadhE遺伝子のmRNAの分解半減期を測定することで、その活性を間接的に知ることができる。また、RNaseGを単離精製し、RNaseG切断部位を含むオリゴリボヌクレオチドのような人工基質の切断反応を測定することにより、その活性を知ることもできる。このような活性測定方法は既に開示されている(J. Biol. Chem., 275, 8726-8732, 2000)。
【0090】
「RNaseG活性が低下するように改変された」とは、細菌の細胞あたりのRNaseG活性が、非改変株、例えば野生型の腸内細菌科に属する菌株よりも低くなったことをいう。例えば、細胞あたりのRNaseGの分子数が低下した場合や、分子あたりのRNaseG活性が低下した場合等が該当する。細胞あたりのRNaseG活性の比較は、例えば、同じ条件で培養した細菌の細胞抽出液に含まれるRNaseG活性を比較することによって、行うことができる。尚、活性の「低下」には、活性が完全に消失した場合も含まれる。比較の対照となる野生型のエシェリヒア属細菌としては、例えば、エシェリヒア・コリMG1655株などが挙げられる。
【0091】
RNaseGの活性の低下は、RNaseGをコードする遺伝子(rng)を不活化することによって達成される。rng遺伝子の「不活化」とは、同遺伝子によってコードされるRNaseGの活性が低下又は消失するように、同遺伝子を遺伝子組換えにより改変するか、又は、同遺伝子に変異を導入することをいう。
【0092】
rng遺伝子としては、GenBankに登録されているエシェリヒア・コリのrng遺伝子(GenBank Accession No. NC_000913.2の塩基番号3394348〜3395817の相補鎖:配列番号1)が挙げられる。このrng遺伝子がコードするRNaseGのアミノ酸配列を配列番号2に示す。rng遺伝子は、これらの配列に基づき、合成オリゴヌクレオチドを合成し、エシェリヒア・コリの染色体を鋳型としてPCR反応を行うことによってクローニングすることができる。また、相同組換えによってrng遺伝子を欠損させる場合には、染色体上のrng遺伝子と一定以上の相同性、例えば、80%以上、好ましくは90%以上、より好ましくは95%以上の相同性を有する遺伝子を用いることもできる。また、染色体上のrng遺伝子とストリンジェントな条件下でハイブリダイズする遺伝子を用いることもできる。ストリンジェントな条件としては、例えば、60℃、1×SSC,0.1%SDS、好ましくは、0.1×SSC、0.1%SDSに相当する塩濃度で、1回より好ましくは2〜3回洗浄する条件が挙げられる。
【0093】
rng遺伝子の不活化は、具体的には例えば、染色体上のrng遺伝子のコード領域の一部又は全部を欠損させたり、コード領域中に他の配列を挿入することによって達成される。これらの手法は、遺伝子破壊とも呼ばれる。
また、rng遺伝子のプロモーターやシャインダルガルノ(SD)配列等の発現調節配列を改変することなどによって、rng遺伝子の発現を低下させることによっても、rng遺伝子を不活化することができる。発現の低下には、転写の低下と翻訳の低下が含まれる。また、発現調節配列以外の非翻訳領域の改変によっても、遺伝子の発現を低下させることができる。
【0094】
さらには、染色体上の標的遺伝子の前後の配列を含めて、標的遺伝子全体を欠失させてもよい。また、rng遺伝子の不活化は、染色体上のrng遺伝子のコード領域にアミノ酸置換(ミスセンス変異)を導入すること、また終始コドンを導入すること(ナンセンス変異)
、あるいは一〜二塩基付加・欠失するフレームシフト変異を導入することによっても達成出来る(Journal of Biological Chemistry 272:8611-8617(1997) Proceedings of the
National Academy of Sciences,USA 95 5511-5515(1998), Journal of Biological Chemistry 266, 20833-20839(1991))。
【0095】
各遺伝子の改変は、遺伝子組換えにより行われることが好ましい。遺伝子組換えによる方法として具体的には、相同組換えを利用して、染色体上の標的遺伝子の発現調節配列、例えばプロモーター領域、又はコード領域、もしくは非コード領域の一部又は全部を欠損させること、又はこれらの領域に他の配列を挿入することが挙げられる。
【0096】
発現調節配列の改変は、好ましくは1塩基以上、より好ましくは2塩基以上、特に好ましくは3塩基以上である。また、コード領域を欠失させる場合は、各遺伝子が産生するタンパク質の機能が低下又は欠失するのであれば、欠失させる領域は、N末端領域、内部領域、C末端領域のいずれの領域であってもよく、コード領域全体であってよい。通常、欠失させる領域は長い方が確実に標的遺伝子を不活化することができる。また、欠失させる領域の上流と下流のリーディングフレームは一致しないことが好ましい。
【0097】
コード領域に他の配列を挿入する場合も、挿入する位置は標的遺伝子のいずれに領域であってもよいが、挿入する配列は長い方が、確実に標的遺伝子を不活化することができる。挿入部位の前後の配列は、リーディングフレームが一致しないことが好ましい。他の配列としては、標的遺伝子がコードするタンパク質の機能を低下又は欠損させるものであれば特に制限されないが、例えば、抗生物質耐性遺伝子やL−グルタミン酸生産に有用な遺伝子を搭載したトランスポゾン等が挙げられる。
【0098】
染色体上の標的遺伝子を上記のように改変するには、例えば、標的遺伝子の部分配列を欠失し、正常に機能するタンパク質を産生しないように改変した欠失型遺伝子を作製し、該遺伝子を含むDNAで細菌を形質転換して、欠失型遺伝子と染色体上の標的遺伝子とで相同組換えを起こさせることにより、染色体上の標的遺伝子を欠失型遺伝子に置換することによって達成できる。欠失型標的遺伝子によってコードされるタンパク質は、生成したとしても、野生型タンパク質とは異なる立体構造を有し、機能が低下又は消失する。このような相同組換えを利用した遺伝子置換による遺伝子破壊は既に確立しており、「Redドリブンインテグレーション(Red-driven integration)」と呼ばれる方法(Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A. 97:6640-6645 (2000))、又は、Redドリブンインテグレーション法とλファージ由来の切り出しシステム(Cho, E. H., Gumport, R. I., Gardner, J. F. J. Bacteriol. 184: 5200-5203 (2002))とを組合わせた方法(WO2005/010175号参照)等の直鎖状DNAを用いる方法や、温度感受性複製起点を含むプラスミド、接合伝達可能なプラスミドを用いる方法、宿主内で複製起点を持たないスイサイドベクターを利用する方法などがある(米国特許第6303383号明細書、または特開平05-007491号公報)。
【0099】
標的遺伝子の転写量が低下したことの確認は、標的遺伝子から転写されるmRNAの量を野生株、あるいは非改変株と比較することによって行うことが出来る。mRNAの量を評価する方法としては、ノーザンハイブリダイゼーション、RT−PCR等が挙げられる(Molecular cloning(Cold spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。転写量の低下は、野生株あるいは非改変株と比較して低下していれば、いずれでもよいが、例えば野生株、非改変株と比べて少なくとも75%以下、50%以下、25%以下、又は10%以下に低下していることが望ましく、全く発現していないことが特に好ましい。
【0100】
標的遺伝子がコードするタンパク質の量が低下したことの確認は、同タンパク質に結合する抗体を用いてウェスタンブロットによって行うことが出来る(Molecular cloning(C
old spring Harbor Laboratory Press, Cold spring Harbor (USA), 2001))。タンパク質量の低下は、野生株あるいは非改変株と比較して、低下していればいずれでもよいが、例えば野生株、非改変株と比べて、野生株あるいは非改変株と比べて少なくとも75%以下、50%以下、25%以下、又は10%以下以下に減少していることが望ましく、全くタンパク質を産生していない(完全に活性が消失している)ことが特に好ましい。
【0101】
また、rng遺伝子を変異処理して、低活性のRNaseGをコードする遺伝子を取得することもできる。例えば、アルコールデヒドロゲナーゼをコードする遺伝子adhEの発現はrng遺伝子の機能に依存するため(Biochem. Biophys. Res. Commun., 295 (2002) 92-97)、adhEのプロモーターとβガラクトシダーゼのようなレポーター遺伝子を結合したプラスミドを細胞内で変異型rng遺伝子と共存させ、βガラクトシダーゼ活性を測定することにより、活性低下型のrng遺伝子をスクリーニングすることもできる。
【0102】
RNaseGの活性を低下させるには、上述の遺伝子操作法以外に、例えば、エシェリヒア属細菌を紫外線照射または、N-メチル−N'−ニトロ−N-ニトロソグアニジン(NTG)もしくは亜硝酸等の通常変異処理に用いられている変異剤によって処理し、RNaseGの活性が低下した菌株を選択する方法が挙げられる。RNaseG活性が低下した変異株としては、16S rRNAの5'末端の成熟活性は残存しながらmRNAの分解活性のみが低下したような株、例えば、変異株DC430株やGM1430株など(Biochem. Biophys. Res. Commun., 289(5),1301-1306, 201) が挙げられる。
【0103】
<3>本発明のL−アミノ酸の製造法
本発明のL−アミノ酸の製造法においては、グリセロールを炭素源として含む培地で、腸内細菌科に属し、L−アミノ酸生産能を有し、かつ、RNaseGの活性が低下するように改変された細菌を培養して、培養物中にL−アミノ酸を生産蓄積させ、該培養物からL−アミノ酸を採取する。
使用するグリセロールは、L−アミノ酸を製造するのに適した濃度であればどのような濃度で用いてもかまわない。培地中の単独の炭素源として用いる場合、好ましくは0.1w/v%〜50w/v%程度、より好ましくは0.5w/v%〜40w/v%程度、特に好ましくは1w/v%〜30w/v%程度培地に含有させる。グリセロールは、グルコース、フラクトース、スクロース、廃糖蜜、澱粉加水分解物などの他の炭素源と組み合わせて用いることも出来る。この場合、グリセロールと他の炭素源は任意の比率で混合することが可能であるが、炭素源中のグリセロールの比率は、10重量%以上、より好ましくは50重量%以上、より好ましくは70重量%であることが望ましい。他の炭素原として好ましいのは、グルコース、フラクトース、スクロース、ラクトース、ガラクトース、廃糖蜜、澱粉加水分解物やバイオマスの加水分解により得られた糖液などの糖類、エタノールなどのアルコール類、フマール酸、クエン酸、コハク酸等の有機酸類である。これらの中ではグルコースが好ましい。また、特に好ましいのは、粗グリセロールとグルコースを50:50〜90:10の重量比で含む混合物である。
培養開始時のグリセロールの好ましい初発濃度は上記のとおりであるが、培養中のグリセロールの消費に応じて、グリセロールを添加してもよい。
【0104】
本発明において好ましい培地は、粗グリセロールを添加した培地である。粗グリセロールを用いる場合は、グリセロールの純度に応じて、グリセロールの量として上記濃度となるように粗グリセロールを培地に添加すればよい。
また、グリセロール及び粗グリセロールの両方を培地に添加してもよい。
【0105】
使用する培地は、微生物を用いたL−アミノ酸の発酵生産において従来より用いられてきた培地を用いることができる。すなわち、炭素源に加えて、窒素源、無機イオン及び必要に応じその他の有機成分を含有する通常の培地を用いることができる。ここで、窒素源
としては、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム等の無機アンモニウム塩、大豆加水分解物などの有機窒素、アンモニアガス、アンモニア水等を用いることができる。有機微量栄養源としては、ビタミンB1、L−ホモセリンなどの要求物質または酵母エキス等を適量含有させることが望ましい。これらの他に、必要に応じて、リン酸カリウム、硫酸マグネシウム、鉄イオン、マンガンイオン等が少量添加される。なお、本発明で用いる培地は、炭素源、窒素源、無機イオン及び必要に応じてその他の有機微量成分を含む培地であれば、天然培地、合成培地のいずれでもよい。
【0106】
培養は好気的条件下で1〜7日間実施するのがよく、培養温度は24℃〜45℃、培養中のpHは5〜9がよい。尚、pH調整には無機あるいは有機の酸性あるいはアルカリ性物質、更にアンモニアガス等を使用することができる。培養液からのL−アミノ酸の回収は通常イオン交換樹脂法、沈殿法その他の公知の方法を組み合わせることにより実施できる。なお、菌体内にL−アミノ酸が蓄積する場合には、例えば菌体を超音波などにより破砕し、遠心分離によって菌体を除去して得られる上清からイオン交換樹脂法などによって、L−アミノ酸を回収することができる。
【実施例】
【0107】
以下、本発明を実施例により更に具体的に説明する。
【0108】
〔実施例1〕リボヌクレアーゼG活性が低下したL−リジン生産菌の構築
<1−2>WC196ΔcadAΔldcC株からのリボヌクレアーゼG非産生株(rng遺伝子欠損株WC196ΔcadAΔldcΔrng株)の構築
【0109】
L−リジン生産菌として、WC196ΔcadAΔldcC株を用いた。WC196ΔcadAΔldcC株におけるrng遺伝子の欠失は、WO2005/010175に記載の、DatsenkoとWannerによって最初に開発された「Red-driven integration」と呼ばれる方法(Proc. Natl. Acad. Sci. USA, 2000, vol. 97, No. 12, p6640-6645)とλファージ由来の切り出しシステム(J. Bacteriol. 2002 Sep; 184(18): 5200-3. Interactions between integrase and excisionase in the phage lambda excisive nucleoprotein complex. Cho EH, Gumport RI, Gardner JF.)によって行った。「Red-driven integration」方法によれば、目的とする遺伝子の一部を合成オリゴヌクレオチドの5’側に、抗生物質耐性遺伝子の一部を3’側にデザインした合成オリゴヌクレオチドをプライマーとして用いて得られたPCR産物を用いて、一段階で遺伝子破壊株を構築することができる。さらにλファージ由来の切り出しシステムを組合わせることにより、遺伝子破壊株に組み込んだ抗生物質耐性遺伝子を除去することが出来る。
rng遺伝子の欠失用プライマーとして、配列番号3及び4のプライマーを使用して行うことができる。これによって、リボヌクレアーゼG非産生株WC196ΔcadAΔldcCΔrng::Cm株を得た。尚、WC196ΔcadAΔldcC株も、同様にしてcadA遺伝子及びldcC遺伝子を欠失させることにより得られた株である。
【0110】
WC196ΔcadAΔldcC株、WC196ΔcadAΔldcCΔrng::Cm株を、dapA、dapB及びLysC遺伝子を搭載したLys生産用プラスミドpCABD2(国際公開第WO01/53459号パンフレット)で常法に従い形質転換し、WC196ΔcadAΔldcC /pCABD2株、WC196ΔcadAΔldcCΔrng::Cm/pCABD2を得た。また、これらの株を20mg/Lのストレプトマイシンを含むL培地にて終OD600≒0.6となるように37℃にて培養した後、培養液と等量の40%グリセロール溶液を加えて攪拌した後、適当量ずつ分注し-80℃に保存した。これをグリセロールストックと呼ぶ。
【0111】
〔実施例2〕リボヌクレアーゼG非産生株のL−リジン生産能の評価
これらの株のグリセロールストックを融解し、各100μLを、20mg/Lのストレプトマイシンを含むLプレートに均一に塗布し、37℃にて24時間培養した。得られたプレートのおよ
そ1/8量の菌体を、500mL坂口フラスコの、20mg/Lのストレプトマイシンを含む発酵培地の20 mLに接種し、往復振とう培養装置で、攪拌115rpmの条件下、37℃において24時間培養した。培養後、培地中に蓄積したリジンの量を公知の方法(サクラ精機 バイオテックアナライザーAS210)により測定した。
発酵培地の組成を以下に示す(単位g/L)。
【0112】
[L−リジン発酵培地組成]
グルコース または グリセロール 40
(NH4)2SO4 24
K2HPO4 1.0
MgSO4・7H2O 1.0
FeSO4・7H2O 0.01
MnSO4・5H2O 0.01
イーストエキストラクト 2.0
CaCO3(日本薬局方) 30
蒸留水 最終量1L
KOHでpH7.0に調整し、115℃で10分オートクレーブを行った。但しグルコースまたはグリセロール、及びMgSO4・7H2Oは別に殺菌した。CaCO3は、180℃で2時間乾熱滅菌したものを入れた。
抗生物質として、20mg/Lのストレプトマイシンを添加した。
【0113】
結果を表1に示す。yield(%)は、グルコース又はグリセロールからのL−リジン収率を示す。表1から分かるように、WC196ΔcadAΔldcCΔrng::Cm/pCABD2株は、rng遺伝子を欠損していないWC196ΔcadAΔldcC::Cm/pCABD2株と比較して多量のリジンを蓄積した。
【0114】
【表1】

【0115】
〔実施例3〕リボヌクレアーゼG活性が低下したL−スレオニン生産株の構築及びL−スレオニンの生産
<3−1>エシェリヒア・コリのL−スレオニン生産株B-3996、B-5318からのリボヌクレアーゼG非産生株の構築
【0116】
スレオニン生産菌B-3996株(E. coli TDH-6/pVIC40 (VKPM B-3996))、B-5318株(E. coli VKPM B-5318)からのリボヌクレアーゼG非産生株の構築は、実施例1と同様の方法で構築することができる。
【0117】
<3−2>エシェリヒア・コリのスレオニン生産株B-3996、B-3996リボヌクレアーゼG非産生株のL−スレオニン生産能の評価
B-3996株、及び、B-3996株由来のリボヌクレアーゼG非産生株を、下記のようにして培養した後、培養液のL−スレオニンを定量し、対照の非増幅株と比べてスレオニン収率が高いことを示すことができる。
【0118】
[培地組成]
グルコース 40.0 g/l (A), K2HPO4 0.7 g/l (B), Thiamine HCl 0.2mg/l (C), MgSO4・7H2O 1.0 g/l (D), (NH4)2SO4 16.0 g/l (D), FeSO4・7H2O 0.01 g/l (D), MnSO4・5H2O 0.01 g/l,イーストエキストラクト2.0 g/l (D), L-イソロイシン0.05 g/l (D)。A, B, Dは、それぞれKOHでpH7.0に合わせ、別々に殺菌 (115℃,10分オートクレーブ) した後混合し、フィルター滅菌した(C) を添加する。
【0119】
[培養方法]
上記各菌株をLB培地で一晩培養した培養液1 mlを、20 mlの上記培地に植菌し、500 ml坂口フラスコにて37℃で振とう培養する。
【0120】
[分析方法]
培養液を15,000rpmで5分間遠心し、その上清液を適当倍率に水で希釈し、アミノ酸アナライザーL-8500で測定する。

【特許請求の範囲】
【請求項1】
腸内細菌科に属し、L−アミノ酸生産能を有する細菌を、グリセロールを炭素源として含む培地に培養し、培養物中にL−アミノ酸を生産蓄積させ、該培養物からL−アミノ酸を採取することを特徴とするL−アミノ酸の製造法であって、前記細菌が、リボヌクレアーゼGの活性が低下するように改変された細菌である方法。
【請求項2】
リボヌクレアーゼGをコードするrng遺伝子が不活化されたことにより、リボヌクレアーゼGの活性が低下した、請求項1に記載の方法。
【請求項3】
前記rng遺伝子が、配列番号2のアミノ酸配列をコードするDNA又はそのバリアントである、請求項2に記載の方法。
【請求項4】
前記L−アミノ酸がL−リジン、L−グルタミン酸、L−スレオニン、L−アルギニン、L−ヒスチジン、L−イソロイシン、L−バリン、L−ロイシン、L−フェニルアラニン、L−チロシン、L−トリプトファン、L−プロリン、及びL−システインからなる群から選択される一種または二種以上のL−アミノ酸である請求項1〜3のいずれか一項に記載の方法。
【請求項5】
前記L−アミノ酸がL−リジンであり、前記細菌がジヒドロジピコリン酸レダクターゼ、ジアミノピメリン酸デカルボキシラーゼ、ジアミノピメリン酸デヒドロゲナーゼ、フォスフォエノールピルベートカルボキシラーゼ、アスパルテートアミノトランスフェラーゼ、ジアミノピメリン酸エピメラーゼ、アスパルテートセミアルデヒドデヒドロゲナーゼ、テトラヒドロジピコリン酸スクシニラーゼ、及び、スクシニルジアミノピメリン酸デアシラーゼからなる群より選択される1種または2種以上の酵素の活性が増強されている、及び/または、リジンデカルボキシラーゼの活性が増強されている請求項4に記載の方法。
【請求項6】
前記L−アミノ酸がL−スレオニンであり、前記細菌がアスパルテートセミアルデヒドデヒドロゲナーゼ、thrオペロンにコードされるアスパルトキナーゼI、ホモセリンキナーゼ、アスパルテートアミノトランスフェラーゼ、及び、スレオニンシンターゼからなる群より選択される1種または2種以上の酵素の活性が増強されている請求項4に記載の方法。
【請求項7】
前記腸内細菌科に属する細菌が、エシェリヒア属細菌、エンテロバクター属細菌またはパントエア属細菌である請求項1〜6のいずれか一項に記載の方法。
【請求項8】
前記グリセロールがバイオディーゼル燃料生産において産生される粗グリセロールである請求項1〜7のいずれか一項に記載の方法。

【公開番号】特開2010−226957(P2010−226957A)
【公開日】平成22年10月14日(2010.10.14)
【国際特許分類】
【出願番号】特願2007−270272(P2007−270272)
【出願日】平成19年10月17日(2007.10.17)
【出願人】(000000066)味の素株式会社 (887)
【Fターム(参考)】