説明

MEMS型RFスイッチ

【課題】スイッチを切り替えるための駆動力を低減し、小型化、低コスト化を図ることができ、加えて、長寿命化を図り、耐久性を向上させることができるようにする。
【解決手段】マイクロマシニング技術を用いて製作され、内部に空洞16が形成された構造部材12、13、14を備え、構造部材12の空洞16に面する面において、互いに離間されて2つの信号用接点22a、23aが形成される。空洞16内には、空洞16内において構造部材のいずれの部分とも連結されない可動部材20が配置される。可動部材20は空洞16内で移動駆動され、可動部材20の導体20aが2つの信号用接点22a、23aに対して接触した第1スイッチ切替状態と、2つの信号用接点22a、23aに対して離反した第2スイッチ切替状態とに、切替可能となっている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロマシニング技術を用いて製作されるMEMS型(Micro Electro Mechanical Systems)RFスイッチに関する。
【背景技術】
【0002】
高周波電流を断続する手段として、従来から数多くの種類のスイッチが提案されている。
【0003】
例えば電子式スイッチとしては、PINダイオードやトランジスタなどの半導体素子を用いたスイッチがある。これらの電子式スイッチは、半導体素子の電極間インピーダンスが外部からの印加電圧によって大きく変化する現象を利用している。
【0004】
これらの電子式スイッチは、小型で高速動作が可能であるという特長を有するが、ダイオードやトランジスタの素子中での電流流路となる半導体基板の抵抗値や周辺インピーダンスの削減に限界があるという問題がある。このため、スイッチON状態での高周波挿入損失の低下に限界を生じている。加えて、理想的には無限大のインピーダンスであるスイッチOFF状態でも無視できない値のインピーダンスとなり、アイソレーションにも限界がある。このため、低損失且つ高アイソレーションを実現させることが困難で、特に周波数が高い高周波領域(例えばミリ波帯)では、実用的性能を実現することが極めて困難である。
【0005】
一方、機械式スイッチとしては、巻線に電流を通じることで電磁力を発生させ、この電磁力でレバーを機械的に駆動し、そのレバーの先端付近に設けられた移動接点の空間的移動で同接点近傍に設けられている固定接点との間の接触または非接触という状態を切り替えて、高周波電流の断続を行うスイッチがある。この代表的な例としては、同軸リレーとして良く知られている部品を挙げることができる。
【0006】
この機械式スイッチは、金属間の接触/非接触状態でのインピーダンス変化を用いているとも言えるが、電子式スイッチに比べて、その変化幅が飛躍的に大きい。特に接点が接触状態にあるときには、電流流路の抵抗値が電子式スイッチに比して非常に小さくなるために、挿入損失の極めて小さいスイッチを得ることができる。しかしながら、部品として従来の機械加工を用いて製作されるため、寸法の大型化、質量の増大が不可避であり、動作速度も遅いという問題がある。加えて、寸法の大型化の結果として、電流流路とその周囲の導体との間に、比較的大きな分布容量が形成されてしまい、ミリ波帯などの高周波領域では反射特性やアイソレーションの悪化が生じ、実用的性能を得にくいという問題がある。
【0007】
近年、フォトリソグラフィー技術を用いて製作された微小な機械的構造を有する部品、即ちMEMS(Micro Electro Mechanical Systems)が実用可能となっており、この技術を用いたRFスイッチも幾つか提案されている(特許文献1〜4)。
【0008】
これら提案された代表的なMEMS型RFスイッチの構成としては、図5に示すものがある。図において、構造部材52に固定接点54が形成されており、該固定接点54に対して接離可能となったカンチレバー等の可動レバー56の先端付近には可動接点58が形成されている。
【0009】
また、図示しないが、可動レバー56に変形を与える駆動力発生手段(例えば、静電力発生のための電極)が設けられており、駆動力が発生していないときには、可動レバー56は、図5(a)に示すように変形せず、接点間は非接触状態となり、スイッチとしてはOFF状態にある。電圧を印加する等の手段で駆動力を発生させると、可動レバー56は、図5(b)のように図中下方に吸引され、その結果、接点同士が接触してON状態になる。
【0010】
このMEMS型RFスイッチでは、インピーダンス変化は機械式と同様に、金属の接触/非接触状態を利用できるため、挿入損失の低減が可能であり、加えて寸法の微細化が可能であるため小型化が可能である。小型化の結果、実用上限周波数を高周波化することができ、ミリ波帯でも使用可能な性能が得られる。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】米国特許第6,768,403明細書
【特許文献2】特許第3935477号公報
【特許文献3】特開2007−42644号公報
【特許文献4】特開2006−210265号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
しかしながら、従来のMEMS型RFスイッチにおいては、OFF状態を維持するためには、カンチレバー等の可動レバーが通常想定される外力で変形し接点が接触することを避けなければならない。そのため、可動レバーには一定以上の硬さを与えることになる。一方、ON状態にするためには、可動レバーに弾性変形を与え、加えて接点間の電気的接続を確実にするための接触圧を与えなければならない。
【0013】
以上の結果、この構造でのスイッチで必要な駆動力は比較的大きなものとなる。これは、駆動力発生のために高電圧または大電流が必要で、駆動のための回路規模が大きくなってしまうということを意味し、スイッチ全体の小型化と低コスト化にとって、大きな障害となる。
【0014】
更には、カンチレバー等の可動レバーの一部に大きな変形が繰り返し作用する構造であるため、寿命、耐久性に問題が生じる。
【0015】
本発明は、上記の従来の課題に鑑みなされたもので、スイッチを切り替えるための駆動力を低減し、小型化、低コスト化を図ることができ、加えて、長寿命化を図り、耐久性を向上させることができるMEMS型RFスイッチを提供することをその目的とする。
【課題を解決するための手段】
【0016】
上記目的を達成するために請求項1記載の本発明は、マイクロマシニング技術を用いて製作されるMEMS型RFスイッチであって、
内部に空洞が形成された構造部材と、
前記空洞を介して対向する構造部材の2つの対向面の少なくとも1つの面において、互いに離間されて形成された2つの信号用接点と、
構造部材の前記空洞よりも僅かに小さい寸法を持ち、空洞内において該構造部材のいずれの部分とも連結されずに空洞内に配置されて空洞内で移動可能となっており、その表面の少なくとも一部が導体となった可動部材と、
前記可動部材を空洞内で移動させる駆動手段と、
を備え、駆動手段の駆動により、前記可動部材の導体が前記2つの信号用接点に対して接触した第1スイッチ切替状態と、前記2つの信号用接点に対して離反した第2スイッチ切替状態とを切り替えるように可動部材が移動可能となっている。
【0017】
請求項2記載の発明は、請求項1記載のスイッチにおいて、前記駆動手段は、前記2つの対向面側のそれぞれに設けられた駆動電極対と、この2つの駆動電極対のいずれかの駆動電極対に選択的に電圧を印加する切替手段とを備えることを特徴とする。
【0018】
請求項3記載の発明は、請求項1または2記載のスイッチにおいて、前記2つの対向面の両方にそれぞれ2つの信号用接点が形成され、前記可動部材の導体が一方の面に形成された2つの信号用接点に対して接触した第1スイッチ切替状態と、他方の面に形成された2つの信号用接点に対して接触した第2スイッチ切替状態とに、切替可能となっていることを特徴とする。
【0019】
請求項4記載の発明は、請求項3記載のスイッチにおいて、前記可動部材の導体が一方の面に形成された一方の信号用接点と他方の面に形成された一方の信号用接点に対してそれぞれ接触した第3スイッチ切替状態と、前記可動部材の導体が一方の面に形成された他方の信号用接点と他方の面に形成された他方の信号用接点に対してそれぞれ接触した第4スイッチ切替状態とに切替可能となっていることを特徴とする。
【発明の効果】
【0020】
本発明によれば、空洞内に配置される可動部材が2つの信号用接点に対して接触することで、2つの信号用接点間を導通させることができて、あるスイッチ切替状態とすることができ、または、可動部材が2つの信号用接点に対して離反することで、2つの信号用接点間を非導通とさせることができて、別のスイッチ切替状態とすることができる。
【0021】
導体によって2つの信号用接点の導通が行われるので、挿入損失を極めて小さくすることができる。また、非導通時には、導体が信号用接点から離反することで、アイソレーションを確実にすることができる。
【0022】
マイクロマシニング技術で製作されるので、スイッチ自体の微小化を図ることができる。さらには、可動部材が空洞内において構造部材のいずれの部分とも連結されておらず、大きく弾性変形させる部位が存在しないので、可動部材を動かすための駆動力を低減させることができる。よって、駆動手段を小型化することができ、スイッチ全体の小型化、低コスト化を図ることができる。また、大きく弾性変形させる部位が存在しないので、高寿命化を図り、耐久性を向上させることができる。
【図面の簡単な説明】
【0023】
【図1】本発明の第1実施形態によるMEM型RFスイッチの説明断面図であり、OFF状態を表す。
【図2】本発明の第1実施形態によるMEM型RFスイッチの説明断面図であり、ON状態を表す。
【図3A】本発明の第2実施形態によるMEM型RFスイッチの説明断面図である。
【図3B】本発明の第2実施形態によるMEM型RFスイッチの説明断面図であり、或るスイッチ切替状態を示す。
【図3C】本発明の第2実施形態によるMEM型RFスイッチの説明断面図であり、別のスイッチ切替状態を示す。
【図4A】本発明の第3実施形態によるMEM型RFスイッチの説明断面図であり、或るスイッチ切替状態を示す。
【図4B】本発明の第3実施形態によるMEM型RFスイッチの説明断面図であり、別のスイッチ切替状態を示す。
【図4C】本発明の第3実施形態によるMEM型RFスイッチの説明断面図であり、さらに別のスイッチ切替状態を示す。
【図4D】本発明の第3実施形態によるMEM型RFスイッチの説明断面図であり、さらに別のスイッチ切替状態を示す。
【図5】従来のカンチレバーを用いたMEM型RFスイッチの説明断面図である。
【発明を実施するための形態】
【0024】
以下、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
図1は、本発明の第1実施形態によるMEMS型RFスイッチを表している。図に示すように、MEMS型RFスイッチ10は、主として絶縁材料から構成される構造部材12、13、14によって空洞16が形成されており、空洞16内には可動部材20が配置されている。
【0025】
構造部材12の下面にはRF信号のためのグランド電極21が設けられており、上面には、RF信号のための信号用電極22、23が互いに離間して設けられる。一方の信号用電極22は入力用でありRF信号源に接続され、他方の信号用電極23は出力用でありRF負荷に接続される。信号用電極22と信号用電極23の互いに近接する端部は、空洞16内に延びており、それぞれ接点22a、23aが空洞16内へと突設される。構造部材12と、信号用電極22、23、グランド電極21とは、マイクロストリップ線路を構成している。但し、信号用電極22、23は、任意の高周波伝送線路とすることができる。
【0026】
可動部材20は、空洞16に対してやや小さい大きさとなっており、空洞16内のどこにも連結または支持されずに空洞16内に配置される。図では誇張して示されているが、実際には、空洞16とは僅かな隙間を残す寸法で製作される。そして、可動部材20の構造部材12に対向する面に、良導体である金属層20aが設けられている。
【0027】
よって、可動部材20の金属層20aが、信号用電極22、23の接点22a、23aに同時に接触することで、接点22aと接点23aが導通するON状態となり、金属層20aが接点22a、23aから離反することで、接点22aと接点23aとが非導通となるOFF状態となる。
【0028】
そして、構造部材12及び構造部材12に対向する構造部材14には、それぞれ可動部材20を駆動する駆動手段が設けられる。駆動手段としては、任意の力を利用する任意の手段とすることができるが、この例では、静電力を利用したものとなっている。即ち、空洞16において構造部材12の上面には、駆動電極対30が設けられ、該上面に対向する構造部材14の部分には、駆動電極対32が埋め込まれている。そして、それぞれの駆動電極対の一方の駆動電極30a、駆動電極32aは、それぞれ切替器40を介して駆動用電源42に接続される。また、それぞれの駆動電極対の他方の駆動電極30b、32bは、それぞれ接地される。
【0029】
以上のMEMS型RFスイッチ10は、マイクロマシニング技術で製作することができる。必要な電極等を備えた構造部材12、13、14及び可動部材20をそれぞれマイクロマシニング技術で製作した後、互いに貼り付けて可動部材20を入れて空洞16を形成するようにするか、または、犠牲層を用いて構造部材12、13、14と可動部材20及び空洞16とを形成することにしてもよい。好ましくは、空洞16は真空引きにより真空状態になった完全閉空間となっているとよいが、一部分が外部に開放されていてもよい。また、切替器40及び駆動用電源42も一緒に集積化することができる。尚、本実施形態では可動部材20の一部が導電性である例を示したが、可動部材20全体が導電性材料(例えば金属)で構成されていてもよい。
【0030】
以上のように構成されるMEMS型RFスイッチ10の作用を説明する。
【0031】
いずれの駆動電極対30、32にも駆動用電源42からの電圧が印加されていない状態では、可動部材20は常時作用する外力、例えば重力に従っている。よって、重力方向が図中上向きであれば、可動部材20は構造部材14の方に寄っていて、接点22aと接点23aは非導通となるために、スイッチはOFF状態にある。
【0032】
一方、切替器40を切り替えて、駆動電極対30に駆動用電源42からの電圧を印加すると、電場が形成され、可動部材20に対して図中下向きの吸引力が働く。このときの初期吸引力は可動部材20が常時作用する外力に打ち勝つ大きさである必要がある。この条件が満足されると、可動部材20は駆動電極対30に接近し始めるが、静電吸引力は両者の距離の2乗に反比例するから、接近するにつれて可動部材20は大きな静電吸引力を受けることになる。こうして可動部材20が構造部材12に接近すると、可動部材20は接点22a、23aに接触しON状態となる(図2)。この接点に接触した状態では可動部材20は最大の吸引力を受けており、このため、可動部材20の金属層20aが接点22a、23aに押しつけられ、接触を確実なものとする。
【0033】
また、ON状態からOFF状態へと遷移させるためには、切替器40を切り替えて、駆動電極対32に駆動用電源42からの電圧を印加すると、電場が形成され、可動部材20に対して図中上向きの吸引力が働く。この結果、可動部材20は図中上方に移動を開始するため、接点22a、23aは非導通となりOFF状態となる(図1)。可動部材20は、最終的に構造部材14に到達するが、ここでも、移動初期時の吸引力に比較して大きな吸引力を受けて、構造部材14に押し付けられて拘束されるために、電極間インピーダンスが外力によって変動しないよう構成することができる。
【0034】
OFF状態とした後、その後は、要求されるスイッチの仕様に応じて、駆動電極対32への電圧印加を継続してもよく、または、可動部材20が重力等の外力に依存した状態で十分な場合には、駆動電極対30、32のいずれにも電圧を印加しない状態としていてもよい。
【0035】
以上のように、本発明のMEMS型RFスイッチ10によれば、良導体による金属層20aによって接点22a、23aが導通されるため、電流流路の抵抗値を小さくすることができ、挿入損失を極めて小さくすることができる。
【0036】
可動部材20は、空洞16において構造部材に何ら連結されていないために、可動部材20をスイッチ動作のために駆動するための駆動力は小さくて済む。カンチレバーや両端支持レバーのようにレバーが何らかの点で構造部材等と連結されている従来例と比較して、可動部材とレバーの大きさを同じとし、同じ移動距離を移動させると仮定した場合に、本発明は、スイッチ動作のための必要な駆動最大電力を小さくできる。更に、従来例では、カンチレバーの厚みが動作と密接に関連する設計因子であるが、本発明では、可動部材20の厚みはほぼ自由に設定可能であり、さらには、可動部材20に不要な部分の肉抜きや穿設を行うなどして軽量化のための手段を駆使することができる。この結果、更に必要な駆動電力を低減化することができる。
【0037】
また、OFF状態においても、前述のように、可動部材が安定的に構造部材14に押し付けられた状態で拘束されて、電極間インピーダンスの変動が少ないために、アイソレーション特性が変動しにくい。これに対して、従来例では、カンチレバーが外力による間隔の変更を生じると電極間容量が変化するため、高周波的なインピーダンスが変化し、アイソレーションがふらつく現象が発生する。そのようなアイソレーションのふらつきを防ぐため、従来例では、レバーの硬さを上げる必要があるが、そうすると、前述のような必要な駆動最大電力が上昇するというジレンマに陥る。本発明では、空洞16内において構造部材に何ら連結されていない可動部材20を用いることにより、このトレードオフを完全に解消することができ、低電圧駆動を実現することができる。
【0038】
また、図5に示した従来例とは異なり、可動部材20にはRF信号源やRF負荷に接続された信号ラインを構成する電極がない。このため、従来例では、OFF時には可動接点58が微小なアンテナを形成してしまい、外部への輻射や、外部からの干渉を受け易いという欠点があるが、本発明ではその欠点がない。
【0039】
(第2実施形態)
図3は、本発明の第2実施形態を表している。この実施形態では、信号用電極22、23で構成される第1信号ラインの他に、第2信号ラインを構成する信号用電極24と25が構造部材14上に形成されている。信号用電極24、25は構造部材14上で高周波伝送線路を構成しており、信号用電極24と25の互いに近接する端部は、構造部材14を貫通して空洞16に向かって延びており、それぞれ接点24a、25aが空洞16内へ突設される。また、信号用電極24、25との間にはグランド電極26が形成される。
【0040】
可動部材20には構造部材12に対向する面に金属層20aが形成されるのみならず構造部材14に対向する面に金属層20bが設けられている。または、可動部材20全体を導電性素材を用いて形成してもよい。
【0041】
この実施形態において、いずれの駆動電極対30、32にも駆動用電源42からの電圧が印加されていない状態では、可動部材20は常時作用する外力、例えば重力に従っている。
【0042】
切替器40を切り替えて、駆動電極対30に駆動用電源42からの電圧を印加すると、図3Bに示すように、可動部材20に対して図中下向きの吸引力が働くため、接点22aと接点23aとが導通し、信号用電極22と23とが導通し、第1信号ラインがON状態となる。一方、第2信号ラインはOFF状態となる。
【0043】
これに対して切替器40を切り替えて、駆動電極対32に駆動用電源42からの電圧を印加すると、図3Cに示すように、可動部材20に対して図中上向きの吸引力が働くため、接点24aと接点25aとが導通し、信号用電極24と25とが導通し、第2信号ラインがON状態となり、第1信号ラインがOFF状態となる。
【0044】
こうして、2つの信号ラインを択一的にON状態またはOFF状態にさせることができるようになる。
【0045】
この実施形態において、通常時には、いずれかの駆動電極対に電圧を印加して、いずれかの信号ラインを常ON状態にするか、または、可動部材20が重力等の外力に依存した状態で十分な場合には、駆動電極対30、32のいずれにも電圧を印加しない状態としていてもよい。
【0046】
(第3実施形態)
図4は、本発明の第3実施形態を表している。この実施形態では、第2実施形態の駆動電極対30、32に代えて、構造部材12には、空洞16に面して2つの駆動電極対50、52が形成され、対向する構造部材14には、空洞16に面して2つの駆動電極対54、56が形成される。また、可動部材20の導体20a、20bはスルーホール20cにより接続されている。前述したように、可動部材20全体が導電性素材を用いて形成されていてもよい。
【0047】
いずれの駆動電極対50、52、54、56にも駆動用電源42からの電圧が印加されていない状態では、可動部材20は常時作用する外力、例えば重力に従っている。
【0048】
そして、切替器40を切り替えて、駆動電極対50と52とに駆動用電源42からの電圧を印加すると、図4Aに示すように、可動部材20に対して駆動電極対50、52へと接近するように吸引力が働くため、接点22aと接点23aとが導通し、信号用電極22と23とが導通し、信号用電極22と信号用電極23とからなる第1信号ラインがON状態となる。
【0049】
一方、切替器40を切り替えて、駆動電極対54と56とに駆動用電源42からの電圧を印加すると、図4Bに示すように、可動部材20に対して駆動電極対54、56へと接近するように吸引力が働くため、接点24aと接点25aとが導通し、信号用電極24と25とが導通し、信号用電極24と信号用電極25とからなる第2信号ラインがON状態となる。
【0050】
または、切替器40を切り替えて、駆動電極対52と54とに駆動用電源42からの電圧を印加すると、図4Cに示すように、可動部材20に対して駆動電極対52、54へと接近するように吸引力が働くため、接点23aと接点24aとが導通し、信号用電極23と24とが導通し、信号用電極23と信号用電極24とからなる第3信号ラインがON状態となる。
【0051】
または、切替器40を切り替えて、駆動電極対50と56とに駆動用電源42からの電圧を印加すると、図4Dに示すように、可動部材20に対して駆動電極対50、56へと接近するように吸引力が働くため、接点22aと接点25aとが導通し、信号用電極22と25とが導通し、信号用電極22と信号用電極25とからなる第4信号ラインがON状態となる。
【0052】
このように、可動部材20には、信号ラインを構成する電極自体が形成されておらず、信号ラインを構成する電極同士を導通させる導体が形成されているだけであるため、本発明のスイッチは、多数の信号ラインを切り替えるスイッチ切替状態をとることも可能である。
【0053】
以上のMEMS型RFスイッチは、携帯電話などの各種通信装置、レーダ等の電波応用機器に用いることができる。
【符号の説明】
【0054】
10 MEMS型RFスイッチ
12、13、14 構造部材
20 可動部材
20a、20b 金属層(導体)
22a、23a、24a、25a 信号用接点
30、32、50、52、54、56 駆動電極対
40 切替器

【特許請求の範囲】
【請求項1】
マイクロマシニング技術を用いて製作されるMEMS型RFスイッチであって、
内部に空洞が形成された構造部材と、
前記空洞を介して対向する構造部材の2つの対向面の少なくとも1つの面において、互いに離間されて形成された2つの信号用接点と、
構造部材の前記空洞よりも僅かに小さい寸法を持ち、空洞内において該構造部材のいずれの部分とも連結されずに空洞内に配置されて空洞内で移動可能となっており、その表面の少なくとも一部が導体となった可動部材と、
前記可動部材を空洞内で移動させる駆動手段と、
を備え、駆動手段の駆動により、前記可動部材の導体が前記2つの信号用接点に対して接触した第1スイッチ切替状態と、前記2つの信号用接点に対して離反した第2スイッチ切替状態とを切り替えるように可動部材が空洞内を移動可能となったMEMS型RFスイッチ。
【請求項2】
前記駆動手段は、前記2つの対向面側のそれぞれに設けられた駆動電極対と、この2つの駆動電極対のいずれかの駆動電極対に選択的に電圧を印加する切替手段とを備えることを特徴とする請求項1記載のMEMS型RFスイッチ。
【請求項3】
前記2つの対向面の両方にそれぞれ2つの信号用接点が形成され、前記可動部材の導体が一方の面に形成された2つの信号用接点に対して接触した第1スイッチ切替状態と、他方の面に形成された2つの信号用接点に対して接触した第2スイッチ切替状態とに、切替可能となっていることを特徴とする請求項1または2記載のMEMS型RFスイッチ。
【請求項4】
前記可動部材の導体が一方の面に形成された一方の信号用接点と他方の面に形成された一方の信号用接点に対してそれぞれ接触した第3スイッチ切替状態と、前記可動部材の導体が一方の面に形成された他方の信号用接点と他方の面に形成された他方の信号用接点に対してそれぞれ接触した第4スイッチ切替状態とに切替可能となっていることを特徴とする請求項3記載のMEMS型RFスイッチ。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図4D】
image rotate

【図5】
image rotate