説明

クリー インコーポレイテッドにより出願された特許

41 - 50 / 468


【課題】絶縁層が保護されて、遮断状態において高電圧を維持することのできるデバイスを得ることを課題とする。
【解決手段】SiC半導体デバイスはその遮断状態において高電圧を保持するようになっている。該デバイスは2つの部分(1,2)からなっていて、その各々が単数あるいは複数のSiCの半導体層を有し、該デバイスの2つの反対側の端子の間で接続されており、その第1の部分は遮断状態において低電圧のみに耐えることのできる副半導体デバイス(1)であり、第2の部分はデバイスの遮断状態において高電圧に耐えることができ、遮断状態においてデバイスにかかる電圧の大部分を受け持つことによって、該副半導体デバイスを保護するようになっている電圧制限部(2)である。 (もっと読む)


【課題】シリコンカーバイドパワーデバイスを形成する方法を提供する。
【解決手段】n”シリコンカーバイド層が、シリコンカーバイド基板上に設けられる。p型シリコンカーバイドウェル領域が、nシリコンカーバイド層上に設けられる。pシリコンカーバイドの埋込み領域が、p型シリコンカーバイドウェル領域に設けられる。シリコンカーバイドのn領域が、pシリコンカーバイドの埋込み領域上に設けられる。パワーデバイスのチャネル領域が、pシリコンカーバイドの埋込み領域とシリコンカーバイドのn領域に隣接する。n”領域は、チャネル領域上に設けられ、&領域の一部分が除去され、それにより、n”領域の一部分が、チャネル領域上に残って、チャネル領域の表面粗さの低減をもたらす。 (もっと読む)


【課題】より高い破壊電圧およびより低いオン抵抗を含み、高周波数において十分に機能するパワースイッチングデバイスを提供する。
【解決手段】多重フィールドプレートトランジスタが、活性領域、ならびにソース18、ドレイン20、およびゲート22を含む。第1のスペーサ層26が、活性領域の上方でソースとゲートの間にあり、第2のスペーサ層28が、活性領域の上方でドレインとゲートの間にある。第1のスペーサ層上の第1のフィールドプレート30、及び第2のスペーサ層上の第2のフィールドプレート32が、ゲートに接続される。第3のスペーサ層34が、第1のスペーサ層、第2のスペーサ層、第1のフィールドプレート、ゲート、および第2のフィールドプレート上にあり、第3のフィールドプレート36が、第3のスペーサ層上にあり、ソースに接続される。 (もっと読む)


【課題】
ドーパントが注入されたSiC基板がオーミックコンタクトの形成前に薄くされる場合には、オーミックコンタクトを形成するために堆積された金属は、基板上に堆積されたときにオーム特性を持たないことがある。
【解決手段】
炭化ケイ素半導体デバイスを形成する方法は、第1の厚さを有する炭化ケイ素基板の第1の表面に半導体デバイスを形成するステップと、前記第1の表面にキャリア基板を取り付けるステップとを含む。さらに、前記炭化ケイ素基板を、前記第1の厚さ未満の厚さまで薄くするステップ、前記第1の表面とは反対側の前記薄くされた炭化ケイ素基板の表面に金属層を形成するステップ、前記金属層を局所的にアニールするステップを含む。前記炭化ケイ素基板は、個片化された半導体デバイスを提供するために、個片化される。 (もっと読む)


【課題】電子トラッピングによる、DC特性とRF特性の差を低減する。
【解決手段】トランジスタ10は、チャネル層を有する活性領域を含み、この活性領域と接触してソースおよびドレイン電極20,22が形成され、このソース電極とドレイン電極との間にあって活性領域と接触したゲート24が形成される。ゲートとドレイン電極との間およびゲートとソース電極との間の複数の活性領域の表面の少なくとも一部分上にスペーサ層28がある。このスペーサ層上にはフィールドプレート32があり、活性領域の上のスペーサ上をドレイン電極に向かって延びる。このフィールドプレートはさらに、活性領域の上のスペーサ層上をソース電極に向かって延びる。少なくとも1つの導電性経路34,36が、フィールドプレートをソース電極またはゲートに電気的に接続する。 (もっと読む)


【課題】誘電性材料に与えるダメージの少ない乾式または湿式エッチングプロセスを用いることなく、フィールドプレートされたデバイスを実現できるシングルゲートまたはマルチゲートフィールドプレートの製造方法を提供する。
【解決手段】電界効果トランジスタ10は、ソースオーミックコンタクト12と、ドレインオーミックコンタクト14、ゲートコンタクト16、および活性領域18を含む。(1)デバイスの真性および外因性領域に誘電性材料を堆積または成長させ、(2)乾式または湿式エッチングプロセス、あるいはリフトオフプロセスで誘電性材料をパターニングし、(3)パターニングされた誘電性材料上にフィールドプレートを蒸着させるステップを包含する方法。 (もっと読む)


【課題】チャネル内へのキャリアの閉じ込めを改善すること。
【解決手段】へテロ接合トランジスタは、III族窒化物を含むチャネル層14と、チャネル層の上のIII族窒化物を含む障壁層16と、チャネル層14が障壁層16とエネルギー障壁38との間にあるようにした、チャネル層14の上のインジウムを有するIII族窒化物の層を含むエネルギー障壁とを備えることができる。障壁層16は、チャネル層よりも大きなバンドギャップを有することができ、エネルギー障壁38のインジウム(In)の濃度はチャネル層14のインジウム(In)の濃度よりも高い可能性がある。 (もっと読む)


【課題】金属−絶縁体−金属コンデンサや、内部接続構造の金属間誘電体として使用して、その素子や構造の平均故障寿命を改善できる誘電体構造を提供すること。
【解決手段】酸化膜層、誘電体材料層及び誘電体材料層の上に第2酸化膜層を有する、炭化ケイ素用のコンデンサ及び内部接続構造が提供される。酸化膜層の厚みは、酸化膜層と誘電体材料層の約0.5から約33パーセントであってよい。誘電体構造として酸窒化ケイ素層を有する炭化ケイ素用のコンデンサおよび内部接続構造もまた提供される。こうしたコンデンサ及び構造を作製する方法もまた提供される。 (もっと読む)


【課題】高周波特性を改善する。
【解決手段】III族窒化物系高電子移動度トランジスタ(HEMT)20は、GaNバッファ層26を備えており、Ganバッファ層26上にAlGa1−yN(y=1又は≒1)層28がある。AlGa1−xN(0≦x≦0.5)バリア層30が、GaNバッファ層26の反対側でAlGa1−yN層28上にあり、該層28のAl濃度は、バリア層30よりも高い。GaNバッファ層26とAlGa1−yN層28との間の界面に2DEG38が形成されている。バリア層30上に、ソース、ドレイン、及びゲート・コンタクト32、34、36が形成されている。また、AlGa1−yN層28の反対側において、バッファ層26に隣接する基板22も含み、GaNバッファ層26と基板22との間に、核生成層24を含むことができる。 (もっと読む)


【課題】深いレベルのドーパントがほとんど存在しない半絶縁性のSiC基板上にMESFETを形成することにより、バックゲート効果が減少された、SiCのMESFETを提供する。
【解決手段】半絶縁性の基板上10に選択的にドープされたP型の炭化珪素の層13、及びN型のエピタキシャル層14を積層し、背面ゲート効果を減少させる。また2つの凹部を有するゲート構造体も備える。これにより、出力コンダクタンスを1/3に減少することができ、また電力のゲインを3db増加することができる。クロム42をショットキーゲート接点として利用することもでき、酸化物−窒化物−酸化物(ONO)の保護層60を利用して、MESFET内の表面効果を減少させる。また、ソース及びドレインのオーム接点をn型チャネル層上に直接形成して、これにより、n+領域を製造する必要がなくなる。 (もっと読む)


41 - 50 / 468