説明

Fターム[2G059JJ15]の内容

光学的手段による材料の調査、分析 (110,381) | 光学要素 (16,491) | ミラー、反射面 (2,430) | 光走査用 (548)

Fターム[2G059JJ15]に分類される特許

541 - 548 / 548


提供されるものは、撮像平面における位置のシフトを得るために少なくとも二つの異なる角度で問題の物体を撮像するステップ及びその後に器官の表面に関する撮像された物体の座標を得るために二つの画像における物体の相対的なシフトを比較するステップを含む、本発明に従った、直交偏光分光撮像(OPSI)を使用する、拡散性の散乱媒体の表面より下の物体の、特に、ヒトの皮膚のような器官における毛細血管の、検出用の方法及び装置である。
(もっと読む)


【課題】廉価で、頑丈および単純な光学リモート・センシング装置を提供する【解決手段】システムは非常にポータブルであるが、固定してあるいはそれらの組み合せとして使用することができる。本方法およびシステムは、容積測定のターゲット化学種(個体、液体、あるいはガス)によって放射されあるいは吸収された放射線を分配し、アパーチャーし、変調し、そしてスペクトル解析する能力を備えている。放射線は、レンズ、レンズ、望遠鏡あるいは鏡のような単一の集光装置によってまず集められ、次いで、スペクトル識別コンポーネントを通じて複数の検知器に分配し、必要に応じて所望の検知および識別を達成するために孔を通過させる。 (もっと読む)


反射率対光路差の明確なプロファイル(ミラー項の無いAスキャン)を供給し、正の光路差と負の光路差との間に差を付けるか、又は光路差の選択された間隔で出力を与えるためのスペクトル干渉装置及びスペクトル干渉法が提供される。その装置は、光源からのビームを目標物体(55)に送出し、物体ビームを生成する物体光学系と、参照ビームを生成する参照光学系とを備える。物体ビーム(41’)及び参照ビーム(42’)との間に間隙(g)を生成するための変位手段(57)が設けられる。回折格子及びプリズムのような光スペクトル分散手段(7)が、2つの相対的に変位したビームを受光し、それらのスペクトル成分をCCDのような読取り素子上に分散させる。変位手段及び光スペクトル分散手段の組み合わせは、物体ビーム及び参照ビームの波列間に固有の光学的遅延を生成し、この固有の光学的遅延を干渉計内の光路差とともに用いて、干渉計内の光路差のためのチャネルドスペクトルを読取り素子上に生成することができる。

(もっと読む)


ダクト(4)内のガス中における通常ゼロすなわち許容できるレベルより上の一過性微粒子の存在を検出するための装置および方法。前記装置は、ダクト(4)のほぼ全断面にわたって投影することができる赤外線、紫外線および可視光線から選択した照射用の少なくとも1つのエミッタ(2)と、微粒子からの照射の任意の閃光を検出するための少なくとも1つの検出器(8,18,25)とを備える。装置および方法は、例えば、病院および発電所のような微粒子の堆積または存在が望ましくないエリア内の微粒子を検出、監視する際に特に役に立つ。
(もっと読む)


本発明は、対象物保持体(13)に配置された試料(15)のためにエバネッセント波照明を提供する光源(1)を有する走査顕微鏡に関する。位置検出器(35,36)は、試料(15)のラスターポイントから発された検出光(51)を受ける。ビーム発散装置(29)が検出光のビーム経路に配置され、それにより試料のラスターポイントの位置が移動する。
(もっと読む)


【課題】 レンズ特性(分光透過率特性と絞り特性)の測定と書き込み作業を効率化することのできるレンズ測定機及びその制御方法を提供する。
【解決手段】 被検レンズ(11)を装着するマウント部(1)と、光束を発する光源(2)と、被検レンズを介して入射した光束、及び、被検レンズを介さずに入射した光束について、波長毎の光強度を測定する測光手段(3)と、測光出力に基づいて分光透過率を検出する分光透過率検出手段(6b)と、波長毎の光強度とカメラボディ内に設けられた他の測光手段の分光特性とから輝度データを算出する輝度算出手段(6c)と、被検レンズ内の絞りを複数の位置に移動させて輝度データを測定して実効絞り値を検出する実行絞り値検出手段(6d)と、分光透過率と実効絞り値を、被検レンズ内に設けられた記憶手段に記憶させる記憶制御手段(6e)とを具備するレンズ測定機である。 (もっと読む)


本発明の好ましい実施例は、共通路干渉計検査、位相基準化、能動的安定化及び差動測定を含むが、それらに限定されない、多数の戦略の組み合わせを用いて、位相ノイズの問題に取り組む位相測定用システムに向けられている。実施例は光を用いて小さな生物学的対象を画像形成する光学デバイスに向けられている。これらの実施例は、例えば、細胞生理学及び神経科学の分野に適用出来る。これらの好ましい実施例は位相測定及び画像形成技術の原理に基づく。位相測定及び画像形成技術を使う科学的動機付けは、例えば、限定せぬが、形成異常の起源の画像形成、細胞接合、神経伝達及び遺伝暗号の実施を含むことが出来るが、それらに限定されない、μm以下のレベルでの細胞生物学から導出される。細胞以下の構成部分の構造とダイナミックスは、例えば、X線及び中性子散乱を含む現在の方法と技術を使ってはそれらの自然な状態で現在研究することは出来ない。対照的に、ナノメーターの解像度を有する光ベースの技術は細胞マシナリー(cellular machinery)がその自然な状態で研究されることを可能にしている。かくして、本発明の好ましい実施例は干渉計検査及び/又は位相測定の原理に基づくシステムを含み、細胞生理学を研究するため使われる。これらのシステムは位相を測定するために光学的干渉計を使う低コヒーレンス干渉計検査(LCI)又は細胞部分自身内の干渉が使われる光散乱スペクトロスコピー(LSS)の原理を含むか、又は代わりにLCI及びLSSの原理が組み合わされ本発明のシステムに帰着する。
(もっと読む)


本発明は、対象物を研究するための光学デバイスに関するものである。本発明による光学デバイスは、単純な手段によって干渉器アームどうしの最大の適合を確保することができる。これにより、医療条件下や産業的条件下での使用時に、深さ方向の解像度を得ることができる。本発明においては、干渉計の少なくとも一方のアームにおいて、特定の光学的パラメータを有した少なくとも1つの交換可能部分を使用する。この特定の光学的パラメータは、例えば、他方のアームの光学的特性によって決定され、特に、光ファイバプローブの光学的特性によって決定される。
(もっと読む)


541 - 548 / 548