説明

Fターム[3G301HA13]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 機関型式 (19,471) | 排ガス再循環装置(EGR)付機関 (1,579)

Fターム[3G301HA13]に分類される特許

161 - 180 / 1,579


【課題】排気通路個別の排気温度から算出される温度比率に基づいて流量調整手段を制御することで、排気通路間の排出ガス流量の差を減少させること。
【解決手段】電子制御装置30は、各排出通路22a,22bに設けられた上流排気温センサ28a,28bと下流排気温センサ29a,29bとから検出される上流排気温度と下流排気温度とに基づいて、酸化触媒26a,26bを通過する排気流量に依存した温度比率を算出する。そして、電子制御装置30は、各温度比率の差を利用して、排出ガス流量の差を減少させるように過給機16a,16bのタービン部162a,162bにおけるベーン開度を制御する。 (もっと読む)


【課題】低圧ループEGR装置が付帯した内燃機関において、減速の際の失火を有効に回避する。
【解決手段】排気通路4におけるタービン52の下流側と吸気通路3におけるコンプレッサ51の上流側とを接続するEGR通路2にEGR弁22が設けられてなる低圧ループ式の排気ガス再循環装置を備える内燃機関0にあって、減速要求があったときには、一時的にコンプレッサ51の下流側にあるスロットル弁33を減速要求に応じた開度よりも大きく開くとともに、気筒1での燃焼回数を間引く制御を行うこととした。 (もっと読む)


【課題】 エミッション量の低減効果を確保しつつ空燃比気筒間インバランスの検出精度を向上させること。
【解決手段】 気筒別空燃比の間の差(空燃比気筒間インバランス)の大きさを表わす「インバランス指標値」が、触媒の上流に配置された空燃比センサの出力値に基づいて取得される。インバランス指標値により表わされる空燃比気筒間インバランスの大きさが大きいとき、EGR制御によるEGRガス導入までのディレイ時間として、空燃比気筒間インバランスの大きさが大きくなるほど通常時におけるディレイ時間に比べて大きくなるディレイ時間が設定される。そして、設定されたディレイ時間内において、EGRガス導入に伴う影響が排除されたインバランス指標値が取得される。 (もっと読む)


【課題】排ガス流量が減少した後に、排ガス流量が少ない状態が継続する場合においても、DPF入口温度を目標温度に安定的に制御できる内燃機関の排ガス浄化装置を提供することを目的とする。
【解決手段】フィードフォワード制御手段47と、DPF7の目標温度に対する補正操作量を指令するフィードバック制御手段49と、フィードフォワード手段47からの基本操作量とフィードバック制御手段49からの補正操作量とを加算して操作量を算出する操作量加算手段51とを有し、排ガス流量が急減少したときにフィードバック制御手段49を構成する積分器の積分値をリセットする積分器リセット手段55、または排ガス流量に基づく信号によってフィードフォワード制御手段の基本操作量を算出する基本操作量算出手段の少なくとも一方を備えることを特徴とする。 (もっと読む)


【課題】排気浄化用の三元触媒とEGRシステムとを利用した簡素な構成で、水素を吸気通路へ供給してノッキングの発生を抑制し、かつ、混合気の当量比を制御することで水素供給量を調整可能とする。
【解決手段】所定条件下で水性ガスシフト反応により水素が生成される三元触媒13と、この三元触媒13よりも下流側の排気通路12からEGR通路19を通して排気ガスの一部を吸気通路11へ還流し、そのEGR率を機関運転状態に応じて制御するEGRシステム18と、を有する。EGR領域では、三元触媒13で生成された水素の一部が、EGR通路19を通して排気ガスとともに吸気通路11側へ供給されるように構成されている。この吸気通路11側への水素供給量を適正化するように、EGR率と触媒温度とに基づいて混合気の当量比を制御する。 (もっと読む)


【課題】過給機付ディーゼルエンジン1の制御装置において、主噴射の開始時点の気筒11a内の温度及び圧力状態を最適化して主燃焼の制御性を向上させつつも、その気筒11a内の状態の最適化のために必要な前段噴射の燃料噴射量を少なくする。
【解決手段】エンジン本体1が低回転でかつ部分負荷である特定運転領域にあるときであって、気筒の圧縮端温度が所定温度よりも低い低温状態時には、過給機62による過給量を、所定温度以上の高温状態時の過給量よりも多い、所定以上の過給量としつつ、噴射制御手段(PCM10)は、少なくとも特定運転領域では、拡散燃焼を主体とした主燃焼を行うために圧縮上死点又はそれよりも前に燃料噴射を開始する主噴射と、主燃焼の開始前に前段燃焼が生起するように、主噴射よりも前のタイミングで少なくとも1回の燃料噴射を行う前段噴射と、を実行する。 (もっと読む)


【課題】ディーゼルエンジン1の制御装置において、予混合燃焼モードを実行可能な運転領域を、高負荷側に拡大する。
【解決手段】EGR率制御手段は、エンジン本体1の負荷の増大に伴い、所定負荷までは気筒11a内のO濃度が次第に低下する一方、所定負荷以上ではO濃度が次第に上昇するように、エンジン本体の負荷に応じてEGR率を調整し、噴射制御手段(PCM10)は、気筒内のO濃度が最も低い所定負荷を含む低負荷の運転領域においては(黒四角又は黒丸)、燃料噴射を圧縮上死点前に終了し、その後、燃料を着火及び燃焼させる予混合燃焼モードとする一方、予混合燃焼モードの運転領域よりも負荷が高い運転領域においては、燃料の噴射と当該燃料の着火及び燃焼とを並行して行う拡散燃焼モードとする。 (もっと読む)


【課題】流動強化弁の開度は流動のみならず流量に対しても影響をおよぼすために、流動強化弁開度が過渡的に変化する場合には、流動強化弁開度と点火時期との定常運転時に得られる関係にもとづいて点火補正制御を行うと、点火時期を最適点より遅角側あるいは進角側に設定してしまう不具合を生じる。
【解決手段】流動強化弁を備えた内燃機関の制御装置において、エアフローセンサにて検出された吸入空気量と回転速度と流動強化弁の動作状態にもとづいてシリンダ筒内に流入する吸入空気量を演算し、回転速度と前記筒内に流入する吸入空気量と流動強化弁の動作状態にもとづいて筒内の乱れ強度指標を演算し、回転速度と前記筒内に流入する吸入空気量と前記乱れ強度指標にもとづいて点火時期を演算する。 (もっと読む)


【課題】燃料量が増加するときの排出成分を抑制する。
【解決手段】内燃機関用吸排気システム(1)は、排気を吸気に還流させる還流ダクト(16、17)をもつ排気還流系統(11、12)を備える。還流ダクト(16、17)は、供給ダクト(31)における新気入口(35)より下流の領域に排気合流口(18)を形成するように供給ダクト(31)に接続されている。内燃機関用吸排気システム(1)は、新気入口(35)と排気の合流口との間において供給ダクト(31)に設けられ、新気の流れ(新気通路)(9)を開閉する可変絞り(22)を備える。所定値以下の燃料量での運転時に、新気(27)をほとんど導入しない環状の流れが形成される。環状の流れは、濾過済排気および/または低圧排気(25)が還流する排気還流系統(11)だけに通される。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、吸気バルブの高温化とノッキングの抑制とを両立可能な内燃機関の制御装置を提供することを目的とする。
【解決手段】吸気バルブ26a,bを排気行程の前半毎に交互に開くことで、内部EGRガスを吸気ポート24a,bにそれぞれ逆流させることができる。これにより、吸気バルブ26a,bのバルブ温度を上昇させることができる。また、吸気ポート24a,bにそれぞれ逆流させた内部EGRガスは、冷却水で冷やされて温度の低いポート壁によって冷やされる。従って、排気行程で開かなかった吸気バルブをその直後の吸気行程で開くと、冷却された内部EGRガスを、新気と共に筒内に吸入させることができる。 (もっと読む)


【課題】 運転者の要求出力に応じた目標トルクの設定をより適切に行い、良好な操作感を実現することができる内燃機関の制御装置を提供する。
【解決手段】 アクセルペダル操作量AP及びエンジン回転数NEに応じてドライバ要求係数KGADRVが算出されるとともに、大気圧PA及び吸気温TAに応じて最大吸気量GAMAXが算出される。最大吸気量GAMAXと最小吸気量GAMINの差分(GAMAX−GAMIN)に、ドライバ要求係数KGADRVを乗算することにより基本ドライバ要求吸気量GADRVBが算出され、基本ドライバ要求吸気量GADRVBに最小吸気量GAMINを加算することにより、ドライバ要求吸気量GADRVが算出される。ドライバ要求吸気量GADRVに基づいて、点火時期の遅角補正量DIGRTD及び排気還流率REGRTを考慮してドライバトルクTRQが算出される。 (もっと読む)


【課題】既存システムを利用してインジェクタに付着するデポジットの低減が可能なエンジン制御システムを提供する。
【解決手段】筒内直接噴射式のエンジンを制御するエンジン制御システムであって、前記エンジンの排気系に設置された空燃比センサと、前記エンジンの排気系から吸気系へ排ガスを再循環させる排ガス再循環装置と、前記エンジン及び前記排ガス再循環装置を制御すると共に、前記空燃比センサの出力信号に基づいて空燃比フィードバック係数を算出する制御装置と、を具備し、前記制御装置は、低燃圧、低エンジン回転数且つ低負荷状態時に前記空燃比フィードバック係数の上昇を検知した場合、前記排ガス再循環装置を制御して前記排ガスの再循環を行う。 (もっと読む)


【課題】燃費及びエミッション性能の向上を図りつつ、燃焼騒音の抑制及び燃焼の安定化を図る。
【解決手段】エンジン1は、軽油を主成分とする燃料が供給される、幾何学的圧縮比が15以下のエンジンであって、その燃焼状態を制御するPCM10を備えている。PCM10は、エンジン1の負荷が所定の低負荷側であって且つ定常状態でEGRが実行されるEGR運転領域において、エンジン1に予混合燃焼を行わせる予混合燃焼モードとエンジン1に拡散燃焼を行わせる拡散燃焼モードとで切り替えるように構成されている。EGR運転領域には、予混合燃焼モードとなる予混合領域a2と、予混合領域a2よりもエンジン負荷の低負荷側に設けられ、拡散燃焼モードとなる低負荷側拡散領域a1と、予混合領域a2よりもエンジン負荷の高負荷側に設けられ、拡散燃焼モードとなる高負荷側拡散領域a3とが含まれる。 (もっと読む)


【課題】ターボ過給機付ディーゼルエンジン1において、EGRガスを導入しているような特定の運転状態における、煤の排出低減とNVH性能の向上とを共に達成する。
【解決手段】エンジン1が低回転側でかつ部分負荷である所定の運転領域にあるときに、EGR量制御手段は気筒11a内にEGRガスを導入し、噴射制御手段(PCM10,インジェクタ18)は主噴射と前段噴射とを実行する。噴射制御手段は、所定の運転領域内における相対的に低負荷の領域(領域D)では、主噴射の噴射量に対して所定の噴射割合となる前段噴射を実行する第1噴射モードで燃料噴射を実行すると共に、相対的に高負荷の領域(領域E)では、第1噴射モードよりも前段噴射の噴射割合を減らす一方で、主燃焼が継続するようなタイミングであって、噴射した燃料噴霧がキャビティ外に至るようなタイミングで、燃料を噴射する後段噴射を行う第2噴射モードで燃料噴射を実行する。 (もっと読む)


【課題】自動車搭載用ディーゼルエンジンAにおいて、予混合燃焼モードと拡散燃焼モードとの間で燃焼モードを移行する際に、NVH及び排気エミッションの双方についてその許容限界を確実に回避する。
【解決手段】噴射制御手段(ECU40)は、予混合燃焼モードから拡散燃焼モードへ移行するときには、燃料噴射パターンを予混合燃焼用パターンから拡散燃焼用パターンに切り替えると共に、その拡散燃焼用パターンのタイミングを、拡散燃焼モードでの第2のタイミングよりもさらに遅い第3のタイミングに設定して燃料噴射を実行した後に、当該第3のタイミングを、気筒2内の酸素濃度の変化に応じて第2のタイミングに向かって変更していく過渡制御を実行する。 (もっと読む)


【課題】過渡状態であるか否かを正確に判断することができると共に、PMの排出量の増加を防止することができるエンジンを提供する。
【解決手段】燃料を噴射する燃料噴射装置としてのコモンレール燃料噴射装置3と、エンジン回転数Nを検知する回転数センサ71と、コモンレール燃料噴射装置3及び回転数センサ71が接続されるコントローラ7と、を備えるエンジン1において、コントローラ7により、エンジン回転数Nとコモンレール燃料噴射装置3の燃料噴射量Qとの関係を規定する制御マップ73に基づいてエンジン回転数Nに応じた燃料噴射量Qを算出し、燃料噴射量Qの変化に基づいて過渡状態であるか否かを判断するものである。 (もっと読む)


【課題】過渡状態であるか否かを正確に判断することができるエンジンを提供する。
【解決手段】燃料を噴射する燃料噴射装置としてのコモンレール燃料噴射装置3と、エンジン回転数Nを検知する回転数センサ71と、コモンレール燃料噴射装置3及び回転数センサ71が接続されるコントローラ7と、を備えるエンジン1において、コントローラ7は、エンジン回転数Nとコモンレール燃料噴射装置3の燃料噴射量Qとの関係を規定する制御マップ73に基づいてエンジン回転数Nに応じた燃料噴射量Qを算出し、燃料噴射量Qの単位時間当たりの増加量として噴射量偏差ΔQnを算出し、噴射量偏差ΔQnが基準噴射量偏差としての基準過渡噴射量偏差A2を上回る場合に、過渡状態であると判断するものである。 (もっと読む)


【課題】自動車搭載用ディーゼルエンジンにおいて、燃料の噴射形態が切り替わる過渡時において、気筒内の燃焼状態の不安定性や燃焼音の増大等を含む不都合を回避する。
【解決手段】噴射制御手段(PCM10、インジェクタ18)は、主噴射と、少なくとも1回の前段噴射と、を実行すると共に、エンジン本体1の負荷が高い運転領域ほど、前段噴射の実行を少ない回数に設定する。噴射制御手段はまた、エンジン本体1が、相対的に低負荷の領域からそれよりも高負荷の領域に移行する加速時には、高負荷の領域に移行した後、所定期間は、前段噴射の回数を、当該領域において設定されている回数よりも多い回数に保持する過渡制御を実行する。 (もっと読む)


【課題】エンジン1の暖機が完了する前において、オイル希釈に起因するエンジンへの悪影響を回避しつつ、スモークの発生をさらに抑制する。
【解決手段】制御手段(エンジン制御器100)は、エンジン本体1の暖機が完了する前の未暖機状態において、ノック限界と最高トルク発生タイミングとの関係に基づいて、点火時期を最高トルク発生タイミングよりも進角させない第1運転状態と、前記点火時期を前記最高トルク発生タイミングよりも進角させる第2運転状態とを切り替えると共に、
第1運転状態のときには、吸気行程時における燃料噴射時期を進角側の所定時期に設定する一方、第2運転状態のときには、燃料噴射時期を所定時期よりも遅角側に設定する。 (もっと読む)


【課題】 パイロット噴射の回数及び1回の噴射における燃料噴射量を適切に設定することにより、潤滑油希釈化及び燃焼騒音の増大を抑制しつつ、主噴射で噴射された燃料を確実に着火させることができる内燃機関の燃料噴射制御装置を提供する。
【解決手段】 主噴射時期θmainにおける推定燃焼室温度TCMEが算出され、主噴射において噴射された燃料が自着火可能な目標温度TCMTGTと、推定燃焼室温度TCMDとの温度差DTCMに応じて、必要熱発生量Jpilottotalが算出され、必要熱発生量Jpilottotalが上限熱発生量Jpilotmaxを超えるときに、複数のパイロット噴射が実行される。上限熱発生量Jpilotmaxは、パイロット噴射において噴射された燃料が燃焼することによる熱発生率HRRが許容閾値HRRMAX以下となるように設定される。 (もっと読む)


161 - 180 / 1,579