説明

Fターム[3G301HA13]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 機関型式 (19,471) | 排ガス再循環装置(EGR)付機関 (1,579)

Fターム[3G301HA13]に分類される特許

101 - 120 / 1,579


【課題】エンジンの低負荷域で適正に圧縮自己着火燃焼を行うことができるとともに、エンジンの高負荷域で異常燃焼の発生を効果的に防止できるようにする。
【解決手段】吸気ポート16に燃料を噴射するポート燃料噴射手段57と、燃焼室19の中心部に燃料を噴射する筒内燃料噴射手段62とを備えた火花点火式ガソリンエンジンであって、エンジンの低負荷域では、上記ポート燃料噴射手段57により吸気行程で吸気ポート16に燃料を噴射して理論空燃比よりもリーンで均質な混合気を形成し、この混合気を自着火させ、エンジンの高負荷域では、上記筒内燃料噴射手段62から30MPa以上の燃圧で圧縮行程から膨張行程初期までの間に燃料を燃焼室19内に噴射して上記低負荷域よりもリッチな混合気を形成し、この混合気に圧縮上死点近傍で点火して圧縮上死点よりも所定期間遅れたタイミングで急速燃焼させるように制御する制御手段10を備えた。 (もっと読む)


【課題】内燃機関の出力低下制御時の過剰排ガス再循環を低減する。
【解決手段】排気再循環路11の流量制御弁12を開状態として排気路3を流れる排気ガスの一部を吸気路2へ再循環させている状態において、内燃機関1の出力を低下させるにあたり、(1)前記流量制御弁を閉じる動作、(2)前記吸気弁リフト量可変機構のリフト量を小さくする動作、(3)前記スロットル弁の開度を大きくする動作、とを、(1)の動作の開始以降完了前に、(2)の動作及び(3)の動作を同時に実行させ、これにより(1)の動作の完了前において前記流量制御弁の吸気側と排気側との差圧の増大を抑えることで、排気再循環量の低下を助力させ、(2)の動作量及び(3)の動作量の制御により内燃機関の出力を低下させる。 (もっと読む)


【課題】 負荷が急変する過渡時の負荷変化や、燃料カット時の負荷変化が生じても、空燃比を的確に制御する。
【解決手段】 負荷変化が検出された場合(ステップS33)、負荷が急変する過渡時の負荷変化であれば、負荷が急変している際に吸気行程で、燃料噴射期間の中心位置が吸気バルブの閉動作以前に位置するように燃料を噴射し(ステップS32)、燃料カット時の負荷変化であれば、燃料カットが行われる前及び燃料カットからの復帰時に吸気行程で、燃料噴射期間の中心位置が吸気バルブの閉動作以前に位置するように燃料を噴射し、新たに付着する燃料量を考慮せずに、燃料供給量を容易に算出する。 (もっと読む)


【課題】有害排気ガス低減のため、三元触媒コンバータを備えた圧縮着火エンジンを提供する。
【解決手段】低エンジン負荷の第1モードでは、エンジンは、NOxの排出を減らすために、通常のディーゼル燃焼状態で高EGR率で運転され、中間から高エンジン負荷の第2モードでは、エンジンは、三元触媒コンバータを用いてNOxの排出を低減することができる化学量論的な状態で運転され、非常に高いエンジン負荷及び/又はエンジン速度の第3モードでは、エンジンは、最大トルクを得るために通常のディーゼル燃焼状態及び低EGR比率で運転される。 (もっと読む)


【課題】複数回の燃料噴射によって燃焼室内での燃焼が行われる圧縮自着火式の内燃機関における燃焼状態の評価の容易化を図る。
【解決手段】パイロット噴射での燃焼開始からメイン噴射での燃焼終了までの期間における燃料の単位体積当たりの発生熱量の最大値であるトータル燃焼基準熱発生効率と、その期間において実際に燃焼室3内で燃料が燃焼している際の燃料の単位体積当たりの発生熱量であるトータル燃焼実熱発生効率とを比較する。パイロット噴射での燃焼及びメイン噴射での燃焼のそれぞれにおいて、その燃焼期間における燃料の単位体積当たりの発生熱量の最大値である燃焼基準熱発生効率と、その期間において実際に燃焼室3内で燃料が燃焼している際の燃料の単位体積当たりの発生熱量である燃焼実熱発生効率とを比較する。これら比較により、パイロット噴射量の補正及びメイン噴射量の補正を行う。 (もっと読む)


【課題】空燃比気筒間インバランス発生時において、エミッション量低減制御が実行されることに起因する失火の発生等を抑制すること。
【解決手段】気筒別空燃比の間の差(空燃比気筒間インバランス)の大きさを表わす「インバランス指標値」が、触媒の上流に配置された空燃比センサの出力値に基づいて取得される。インバランス指標値により表わされる空燃比気筒間インバランスの大きさが、第1の程度以上且つ第1の程度より大きい第2の程度未満のとき、エミッション量低減制御の実行が「制限」され、第2の程度以上のとき、エミッション量低減制御の実行が「禁止」される。エミッション量低減制御としては、パージ制御、EGR制御、AI増量制御、冷間VVT制御、触媒暖機遅角制御、SCV制御等が挙げられる。 (もっと読む)


【課題】ディーゼルエンジンのメイン噴射に先立つ先行噴射を、広範囲に渡る運転領域で最適に制御する。
【解決手段】基本プレ噴射量設定部51にてプレ噴射量のベース値である基本プレ噴射量Gpbaseを設定し、1サイクル毎に連続爆発しない異なる気筒を対象として、プレ噴射量調整部52で基本プレ噴射量Gpbaseを順次減量補正する。そして、プレ噴射量の減量前後の燃焼状態の変化をプレ噴射量限界判定部53で判定し、その判定結果に応じて減量分を調整する。これにより、広範囲に渡る運転領域でプレ噴射量を最適化する最適に制御することが可能となる。 (もっと読む)


【課題】エンジン制御性の適正化を図り、エンジン性能を好適に制御する。
【解決手段】燃焼目標値算出部52は、性能パラメータの実値を目標値にするための燃焼パラメータの目標値を算出する。燃焼偏差算出部60は、燃焼パラメータの実値と目標値との偏差を算出する。アクチュエータ制御部70は、燃焼パラメータの偏差を解消するべく、燃焼パラメータとの相関が予め定義されている複数の制御パラメータのうちの少なくとも1つを燃焼パラメータの偏差の大小に応じて選択し、該選択した制御パラメータを操作対象として、その偏差に基づいてエンジンの燃焼制御を実施する。 (もっと読む)


【課題】燃焼騒音、HCやCO、スモークを十分低減することができる燃料噴射装置を提供する。
【解決手段】燃料噴射装置は、燃焼室内に燃料を噴射するインジェクタと、燃料を2回に分けて噴射させるようにインジェクタを制御するECUとを備えている。このとき、1回目の燃料噴射は、1回目の燃料噴射直後の予混合時間が最小になる時期よりも遅角側で行うように設定される。2回目の燃料噴射は、1回目の燃料噴射及び着火と2回目の燃料噴射及び着火とにより生じる熱発生率波形を二山形状にする時期に行うように設定される。具体的には、2回目の燃料噴射は、1回目の燃料噴射によって生じる低温酸化反応による熱発生率ピーク以降であり且つ1回目の燃料噴射によって低温酸化反応後に生じる高温酸化反応による熱発生率ピーク以前に行うことが好ましい。 (もっと読む)


【課題】低水温時でも、未燃HC・COの増加を十分抑制することができる燃焼制御装置を提供する。
【解決手段】燃焼制御装置は、インジェクタ制御部を有するECUを備えている。インジェクタ制御部は、エンジン水温が所定温度よりも低いときは、エンジン負荷及びエンジン水温に基づいて、1回目のメイン燃料噴射の前に実施するプレ燃料噴射の燃料噴射量を決定する。そして、インジェクタ制御部は、エンジン負荷が所定値より高いときは、1回目のメイン燃料噴射の燃料噴射量からプレ燃料噴射の燃料噴射量分を減量し、エンジン負荷が所定値より低いときは、2回目のメイン燃料噴射の燃料噴射量からプレ燃料噴射の燃料噴射量分を減量する。そして、インジェクタ制御部は、プレ燃料噴射、1回目のメイン燃料噴射及び2回目のメイン燃料噴射を順次実施するようにインジェクタを制御する。 (もっと読む)


【課題】性能パラメータの相互干渉による制御性悪化の回避を図るとともに、エンジン性能を好適に制御する。
【解決手段】性能パラメータ算出部31は、複数の性能パラメータの目標値をエンジン運転状態に基づいて設定する。また、目標燃費操作部40は、各性能パラメータの実値が目標値に制御されている状態で、燃費の目標値をエミッション排出量の変化量に基づいて性能良化側に操作する。目標燃費操作部40は、複数の性能パラメータと複数の燃焼パラメータとの相関を定義した相関データを用い、燃焼パラメータの動作可能範囲に基づいて各性能パラメータの変化量を算出する性能パラメータ変化量算出部43と、エミッション排出量の変化量が所定の許容範囲にある場合に、燃費の変化量を燃費操作量として設定する燃費操作量設定部44とを有する。燃焼パラメータ算出部32は、各性能パラメータの目標値に基づいて複数の燃焼パラメータの目標値を算出する。 (もっと読む)


【課題】負荷投入の発生が予測される場合、負荷投入がない場合よりも早くエンジンの運転状態を高出力側に変更できるエンジンの制御方法及び制御装置を提供する。
【解決手段】エンジンにスモークを発生させないように、エンジンに実際に掛かっている負荷の変動幅が所定の閾値を越えると、エンジンの運転条件を高出力側に変更する、作業機を駆動するエンジンの制御装置40は、エンジンに掛かる負荷が増大する高負荷側に作業機の駆動条件を変更するように作業機に指令する負荷投入予告信号の発生を検出する負荷投入予告信号検出部402と、負荷投入予告信号の発生が検出されると、作業機の作動状態の変更によって前記変動幅が前記閾値を越える前に、エンジンの運転条件を高出力側に変更する事前運転条件変更部405と、を備えている。 (もっと読む)


【課題】アイドリング状態で所定の停止条件が成立したときにエンジンを自動的に停止させ、その後に所定の始動条件が成立したときに同エンジンを自動的に再始動させるエンジンにおいて、その再始動のときに混合気の燃焼を好適に生じさせて排気改善を図る。
【解決手段】本発明に係るエンジンの制御装置は、EGR通路42に直列的に設けられた上流側EGR弁46および下流側EGR弁48、並びにこれらのEGR弁46、48のそれぞれの作動を制御するEGR弁制御手段を備えるEGR装置40を備える。EGR弁制御手段は、エンジンがアイドリング状態にあるときにEGRガスを吸気通路28に導入し、かつ、燃料噴射弁14から再始動のときに噴射される燃料が混ざるガスにEGRガスを導入するように、複数のEGR弁46、48の作動を制御する。 (もっと読む)


【課題】標準モードと低燃費モードを備えたエンジンにおいて、低燃費モードでのPMを抑制する。
【解決手段】コモンレール1を備えたエンジンEと、該エンジンEの制御を行うECU100、及び作業機21を搭載したトラクタにおいて、排気ガスを浄化する後処理装置37を機体の適宜位置に設け、ECU100内にエンジン回転数とトルクとの関係を示す性能曲線を少なくとも標準モードラインL1と低燃費モードラインL2とから構成し、該標準モードラインL1と低燃費モードラインL2との切り換えは燃費モード変更手段36で行う構成とし、低燃費モードラインL2に切り換えるとメイン噴射Iの噴射タイミングを進角ADさせるとともにアフター噴射AIの噴射量を増量させるように構成したことを特徴とするトラクタの構成とする。 (もっと読む)


【課題】空燃比気筒間インバランス発生時において、エミッション量低減制御が実行されることに起因する失火の発生等を抑制すること。
【解決手段】気筒別空燃比の間の差(空燃比気筒間インバランス)の大きさを表わす「インバランス指標値」が、触媒の上流に配置された空燃比センサの出力値に基づいて取得される。インバランス指標値により表わされる空燃比気筒間インバランスの大きさが、第1の程度以上且つ第1の程度より大きい第2の程度未満のとき、エミッション量低減制御の実行が「制限」され、第2の程度以上のとき、エミッション量低減制御の実行が「禁止」される。エミッション量低減制御としては、パージ制御、EGR制御、AI増量制御、冷間VVT制御、触媒暖機遅角制御、SCV制御等が挙げられる。 (もっと読む)


【課題】本発明は、内燃機関の最適な運転状態を保ちつつ、過給機への負担を小さくすることができる内燃機関装置を提供する。
【解決手段】内燃機関装置10のエンジンECU60は、吸気通路31においてコンプレッサホイール52とスロットルバルブ34aとの間の部分に作用する負圧が限界負圧値Pより大きくならないスロットルバルブ34aの制限開度θthrlmtを検出する。また、エンジンECU60は、スロットルバルブ34aの制限開度θthrlmtと、ディーゼルエンジン20の状態に応じて決定されるスロットルバルブ34aの最適開度θsuitとを比較し、最適開度θsuitaが制限開度θthrlmt以上であるとスロットルバルブ34aの目標開度θtargetを最適開度θsuitaとし、最適開度θsuitが制限開度θthrlmt未満であると、制限開度θthrlmtを目標開度θtargetとする。 (もっと読む)


【課題】エンジンの圧縮自着火燃焼制御中に急峻燃焼の発生を抑制することができると共に低コスト化の要求を満たすことができるようにする。
【解決手段】エンジン11の運転領域が所定の圧縮自着火燃焼領域のときには、排気バルブ23と吸気バルブ22が両方とも閉弁した状態になるNVO(負のバルブオーバーラップ)期間中に筒内に燃料を噴射した後に吸気行程で燃料噴射を行って圧縮行程の圧縮により混合気を自着火させて燃焼させる圧縮自着火燃焼制御を実行する。この圧縮自着火燃焼制御中に急峻燃焼有りと判定されたときに、NVO期間中の燃料噴射量が所定の下限判定値(例えば燃料噴射弁19の最小噴射量)よりも大きい場合には、NVO期間中の燃料噴射量を低減させて急峻燃焼の発生を抑制し、NVO期間中の燃料噴射量が下限判定値以下の場合には、NVO期間中の筒内の酸素量を低減させて急峻燃焼の発生を抑制する。 (もっと読む)


【課題】圧縮着火燃焼を実行する圧縮着火モードと、火花点火燃焼を実行する火花点火モードとの間でモードの切り替えを行う火花点火式ガソリンエンジン1において、火花点火モードにおける燃焼安定性を高めることによって、吸気充填量の低減が必要となる負荷領域を可及的に縮小する。
【解決手段】制御器(PCM10)は、低負荷域では圧縮着火モードとし、高負荷域では、燃料圧力を高めると共に、圧縮行程後期から膨張行程初期にかけてのリタード期間内で燃料噴射を行う火花点火モードとする。火花点火モードでは、外部EGR制御を実行する。制御器はさらに、火花点火モードにおける所定負荷以下の領域では、EGR率を所定負荷よりも高い領域でのEGR率よりも高く設定すると共に、吸気充填量を圧縮着火モード時よりも低下させる充填量制御を実行する。 (もっと読む)


【課題】圧縮着火燃焼を実行する圧縮着火モードと、火花点火燃焼を実行する火花点火モードとの間で、モードの切り替えを行う火花点火式ガソリンエンジン1において、モードの遷移期間における制御遅れに起因する問題を回避する。
【解決手段】制御器(PCM10)は、所定の低負荷域では圧縮着火モードとし、それよりも負荷の高い高負荷域では、燃料圧力を相対的に高めると共に、圧縮行程後期から膨張行程初期にかけてのリタード期間内のタイミングで行う燃料噴射を少なくとも含むように、燃料噴射弁67を駆動すると共に、点火プラグ25を駆動する火花点火モードとする。制御器はまた、圧縮着火モードから火花点火モードへと移行する際のモードの遷移期間内では、火花点火モードにおける特定タイミングよりも遅角したタイミングで燃料を噴射すると共に、その噴射後に点火する。 (もっと読む)


【課題】幾何学的圧縮比が比較的高く設定された高圧縮比の火花点火式ガソリンエンジン1において、高負荷域における異常燃焼を回避する。
【解決手段】制御器(PCM10)は、エンジン本体の運転状態が低速域にあるときには、高負荷域では、低負荷域よりも燃料圧力が高くなるように、燃圧可変機構(高圧燃料供給システム62)を駆動し、高負荷域では、低負荷域での燃料の噴射タイミングよりも遅角側のタイミングであって、圧縮行程後期から膨張行程初期にかけてのリタード期間内のタイミングで行う燃料噴射を少なくとも含むように、燃料噴射弁(直噴インジェクタ67)を駆動する。制御器10はまた、高負荷域では、リタード期間内における、燃料の噴射後のタイミングで点火するように、点火プラグ25を駆動する。 (もっと読む)


101 - 120 / 1,579