説明

Fターム[3G301HA13]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 機関型式 (19,471) | 排ガス再循環装置(EGR)付機関 (1,579)

Fターム[3G301HA13]に分類される特許

1,561 - 1,579 / 1,579


(a)フィッシャー・トロプシュ誘導燃料含有第一燃料と空気との混合物を圧縮点火内燃機関1の燃焼室に導入する工程、(b)該機関1から排気ガスを排出し、その一部を任意に該機関の燃焼室に再循環させる工程、(c)フィッシャー・トロプシュ誘導燃料含有第二燃料及び酸素及び/又は水蒸気を接触部分酸化改質器2に供給して合成ガスを製造する工程、(d)該合成ガスの少なくとも一部を、(i)排気ガス後処理器3、(ii)機関1の燃焼室、又はその両方に供給する工程を含む、接触部分酸化改質器2及び任意に排気ガス後処理器3と組合わせた圧縮点火内燃機関1の操作方法。 (もっと読む)


本発明は、EGR還流率の制御応答性を高める装置である。EGR制御のために、エンジンの吸気通路の開度を制御するスロットル弁(すなわち、EGR制御に供されるスロットル弁)と、吸気通路に還流される排気ガスの流量を制御するEGR弁とを備える。スロットル弁,その駆動モータおよび減速ギア機構を有する第1のボディと、EGR弁,その駆動モータおよび減速ギア機構を有する第2のボディとを、を備える。第1,第2のボディが一つの集合体となるように結合され、第1,第2のボディには、それぞれの減速ギア機構を覆う第1,第2のカバー部が取り付けられる。少なくともスロットル弁を駆動制御するための回路基板が、前記カバー部の少なくともいずれか一方に内装されている。回路基板には、スロットル弁のほかにEGR弁を駆動制御する回路を併設してもよい。 (もっと読む)


本発明は、多気筒内燃機関と、それを作動させるための方法とに関する。排気ラインと、それぞれの1つのガス吸気弁(E)及びガス排気弁(A)とが、シリンダに割り当てられる。さらに、内燃機関(B)のシリンダ(1〜6)の少なくとも1つには、追加の排気弁(Z)が設けられ、この追加の排気弁が開状態にあるときに、流路が燃焼室と排気ラインとの間に確立される。本発明によれば、通常の作動中に得られる排気ガス組成物及び/又は排気ガス温度とは異なり、かつ排気ラインに配置される排気ガス浄化ユニットの再生を支援する排気ガス組成物及び/又は排気ガス温度は、少なくとも1つのシリンダの追加の排気弁(Z)を作動させることによって前記排気ガス浄化ユニットを再生するために使用される再生モードに関連して調節することができる。本発明の方法によれば、少なくとも1つのシリンダの追加の排気弁(Z)は、排気ガス浄化ユニットの再生処理に関連して少なくとも一時的に開放される。
(もっと読む)


往復エンジンのフィードバック制御で用いるイオン信号を活用して燃焼状態を検出する装置および方法を提供する。イオン信号をフィードバック信号として用いてEGRおよびディーゼル噴射タイミングを制御する。この装置は、スパークプラグ型センサを有する点火システムである。点火システムを用いて、ディーゼルエンジンにはコールドスタート機構を提供し、スパ−ク点火エンジンでは燃焼開始を行う。点火と、エンジン制御可能なイオン検知フィードバックとを組合せる。

(もっと読む)


動作する気体燃料式内燃機関のピストン・シリンダ内にパイロット燃料を導入し、1組のエンジン・パラメータを監視し、1組のエンジン・パラメータから機関負荷および機関速度を決定し、気体燃料の第1の部分をシリンダ内に導入する方法および装置であって、気体燃料の第1の部分は、燃焼前に気体燃料と空気を含む実質的に均一の混合気を形成し、機関に関する過剰なノッキングを回避するため、パイロット燃料を導入する。第2の量の気体燃料が実質的に拡散燃料モードで燃焼するように加えられることも可能である。
(もっと読む)


【課題】 予混合圧縮自着火内燃機関のEGR装置において、運転領域をより高負荷側に拡大可能な構成を提供する。
【解決手段】 燃焼室5に連通する吸気通路(19・17・13・11)及び排気通路(22・23)と、前記燃焼室5と前記吸気通路(19・17・13・11)の間を開閉する吸気弁7と、前記燃焼室5と前記排気通路(22・23)の間を開閉し、その排気行程における閉弁時期がピストン上死点より進角して設定される排気弁9と、前記吸気通路(19・17・13・11)に設置される過給圧可変型の過給機15と、を有する。 (もっと読む)


放熱率(HRR)制御レバー、すなわち気体燃料圧縮着火式の内燃機関において使用されるパイロット燃料のタイミングおよび/またはパイロット燃料の量を使用して、目標とするHRRに制御する方法と装置が開示されている。HRRを目標とするHRRに制御する機構が、そのような機関に関する改善された機能および排出をもたらす。目標とするHRRは、機関のサイクルに関して決定される。次いで、HRR制御レバーが、機関の燃焼状態、および目標とするHRRとサイクルHRRとの間の差を考慮して目標とするHRRに調整するのに使用され、そのサイクルHRRは、一例として、以前のサイクルから導出されるHRRトレース、圧力トレース、直接決定された排気ガスの測定された特性、または機関に関する目標とするHRRに調整することを可能にする較正中に与えられるマッピングされた値を参照することによってサイクルに関して予測される。マッピングされた値は、機関の燃焼状態に対して相互参照できる。
(もっと読む)


ブーストを調整すると共に、シリンダ内の酸素濃度レベルを厳密に制御し調整して、遅延型直接シリンダ燃料噴射を利用するエンジンにおける過渡状態の間の有害物質の放出を最小にするための方法が提供される。過渡状態の間のブースト圧の変化と共に閉ループにリンクする方式においてEGR流量が調整され、吸入給気酸素濃度およびブーストレベルが制御温度・低放出の燃焼のための臨界範囲内で維持される。シリンダ内への燃料供給の変化が、燃焼用シリンダ内への給気のブーストレベルの変化を待つように、あるいはこれに続くようにしてある。給気のブーストのレベルが燃焼用シリンダ内に取り込まれるのに応答して燃料供給を制御することにより、過渡状態の間、一時的な燃料レベルが所望の燃料/酸素比を超えることは許容されない。
(もっと読む)


【課題】火花点火式エンジンにおいて部分負荷領域で圧縮自己着火燃焼を行わせ、特に燃料のオクタン価が変わった場合でも、圧縮自己着火燃焼を良好に行わせるようにする。
【解決手段】供給された燃料のオクタン価を判別するオクタン価判別手段32と、圧縮自己着火が行われる運転領域の一部もしくは全部の領域で、圧縮上死点前に燃焼室内の混合気を点火することにより圧縮自己着火を促進する着火アシスト手段35と、着火アシスト手段35による圧縮自己着火促進のための点火が行われる運転領域で、上記オクタン価に応じて点火時期を設定する着火アシスト用点火時期設定手段36とを備える。着火アシスト用点火時期設定手段36は、上記オクタン価が高いほど点火時期を進角させるようになっている。 (もっと読む)


本発明は、ディーゼルエンジン(1)と、給気回路(11、13、14)と、エンジンから発生する排気ガスの排気回路(16、3、4)と、エンジン(1)の中へ入る空気流量(D)を制御するための調整手段(22、23)を有する給気回路とを含んでなり、排気回路は排気ガスの中に含まれる窒素酸化物を貯留するための窒素酸化物トラップ(3)を有する推進装置に関する。窒素酸化物トラップ(3)を再生するために、排気ガスに還元剤を供給する再生モードの間に、エンジンの動作点に応じて空気流量(D)の設定値を決定し、設定値に近い空気流量(D)を得るように調整手段(22、23)を制御し、主噴射燃料量(Qp)の噴射と2次噴射燃料量(Qs)の噴射とを実行し、膨張行程中における2次噴射燃料量(Qs)の噴射は、排気ガスを還元性状態に維持するように調整される。
(もっと読む)


本発明はディーゼル酸化触媒(3)を使用して現代のディーゼルエンジン(1)の排ガスを浄化する方法および装置に関する。前記ディーゼルエンジン(1)は低い負荷範囲で酸化触媒(3)のライトオフ温度より低くできる排ガス温度を有する。これはディーゼルエンジン(1)が低い負荷で運転される期間に不十分な汚染物の変換を生じ、触媒の閉塞を生じる。本発明の方法は特に触媒温度を、エンジン(1)が低い負荷および最低温度より低い、低い排ガス温度で運転される期間中に、十分な汚染物の変換を保証する最低温度に少なくとも上昇することにより前記問題を解決する。
(もっと読む)


本発明は、ラムダ変化を使用して、ディーゼルエンジンの排ガス浄化システムのディーゼルパティキュレートフィルタを再生する方法を提供する。適時再生に際して、相応のディーゼルエンジンの運転点についての空燃比を調節して、実質的に最高の排ガス温度を達成する。この目的のために、空燃比(ラムダ値)を、大部分の負荷範囲にわたって、好ましくは最小かつ実質的に一定に保ち、そして再生段階に際して、エンジンを全負荷で運転させる。
(もっと読む)


【課題】 アイドル運転時においてアイドル安定性を確保でき且つ燃費の悪化を防止可能な筒内噴射型火花点火式内燃機関の制御装置を提供する。
【解決手段】 筒内噴射型火花点火式内燃機関の制御装置において、燃料噴射制御手段は、アイドル運転時(S10)、所定空燃比以下の空燃比で運転するときには(S18)、燃料を吸気行程と圧縮行程とに分けて分割噴射(2段混合運転)するようにした(S20)。 (もっと読む)


【課題】 排気上流側の保持剤において硫黄成分離脱処理を行っても大気中に硫黄成分が放出されてしまうことのない排気浄化装置を提供する。
【解決手段】 機関排気通路上に上流側硫黄保持剤23と下流側硫黄保持剤26とを具備し、上流側硫黄保持剤23の排気下流に下流側硫黄保持剤26を配置し、これら硫黄保持剤はそれぞれ硫黄離脱条件以外の条件において排気ガス中に含まれる硫黄成分を保持すると共に硫黄離脱条件において保持した硫黄成分を排気ガス中に放出する排気浄化装置において、下流側硫黄保持剤26がその硫黄離脱条件に到達することがないように上流硫黄成分保持剤23をその硫黄離脱条件に到達させる上流側硫黄離脱処理を実行することができる上流硫黄離脱手段をさらに具備する。 (もっと読む)


【目的】 内燃機関の空燃比制御装置において、排気系の状態に応じた最適な空燃比を設定して、排ガス制御を実施することを可能とし、制御システムに合った適正な燃料供給量(燃料噴射量)とし、排ガスの悪化を防止し、更に、運転者に余計なアクセル操作を強いる必要をなくし、ドライバビリティを良好な状態に維持することにある。
【構成】 排気系に排気を浄化する触媒を設け、この触媒の触媒温度を検出する触媒温度検出手段を設け、この触媒温度検出手段によって検出された触媒温度と触媒の設定された活性化判定値とを比較判定する比較判定部を備え、この比較判定部の判定に応じて空燃比センサが活性した後の目標空燃比の値を異ならせる制御手段を設けている。 (もっと読む)


【課題】 排気ガス中のNOx を浄化しつつ排気ガス中の微粒子をパティキュレートフィルタ上において連続的に酸化除去させる。
【解決手段】 機関排気通路内にNOx 吸収機能を有するパティキュレートフィルタ22を配置する。単位時間当りに燃焼室5から排出される排出微粒子量をパティキュレートフィルタ22上において単位時間当りに輝炎を発することなく酸化除去可能な酸化除去可能微粒子量よりも少なくし、かつパティキュレートフィルタ22の温度をNOx 吸収率が一定値以上となる温度範囲内に維持する。 (もっと読む)


【課題】 パイロット噴射の形態を最適に設定する。
【解決手段】 複数の気筒にそれぞれ設けられた燃料噴射弁20を共通のコモンレール21に接続する。1燃焼サイクル内において主噴射に先立ち少なくとも1回の着火源形成用パイロット噴射を行う。着火源形成用パイロット噴射が行われないと仮定したときの、主噴射による燃料の目標着火時期における筒内温度を機関運転状態に基づき予測する。予測された筒内温度に基づいて主噴射による燃料がその目標着火時期に着火するように着火源形成用パイロット噴射の形態、即ち着火源形成用パイロット噴射の回数、燃料噴射量、及び燃料噴射時期を設定する。 (もっと読む)


【課題】 ディーゼルエンジンを対象として排気通路にHC変動型NOx還元触媒を備える場合に、減速になってもHC変動型NOx還元触媒が活性温度域にある場合に、HC変動型NOx還元触媒のNOx吸蔵量を減らす機会を確保する。
【解決手段】 減速時かつHC変動型NOx還元触媒71が活性温度域にあるかどうかを判定手段72が判定し、この判定結果より減速時かつ前記触媒71が活性温度域にある場合に、HC濃度変動付与手段73が前記触媒71に流入する排気中のHC濃度に変動を与える。 (もっと読む)


【課題】エンジン1の運転状態に応じて、燃焼室4の空燃比が目標値になるように、EGR弁24の開度を制御して、吸入空気量を調整するようにしたディーゼルエンジンの排気還流制御装置Aにおいて、空燃比制御の応答性を低下させることなく、その空燃比制御の不安定化に起因するする乗車フィーリングの悪化等を防止する。
【解決手段】エンジン1が定常運転状態にあって(S7)、吸気絞り弁14の開度THが設定開度TH0よりも小さいとき(S8)、EGR通路23の還流排ガスの流れが臨界状態になっていることを臨界状態判定手段35bにより判定し、そのとき、そうでないときよりもEGR弁24の作動速度が低くなるようにフィードバックゲインKを補正する(S10)第1補正手段35cを設ける。エンジン1が過渡運転状態にあれば、フィードバックゲインKを大きな値とする(S17)。 (もっと読む)


1,561 - 1,579 / 1,579